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Abstract. We consider two coupled nonlinear p.d.e's describing heat and current

flow in a thermistor. For certain boundary conditions these equations may be reduced

to one nonlinear o.d.e. and Laplace's equation, as noted in [1]. We give a geometrical

interpretation of this reduction in two space dimensions in terms of a conformal map

from the thermistor onto a rectangle.

1. Introduction; results from [1]. In a recent paper [1] Cimatti has considered the

following boundary value problem for the static temperature u and electric potential

0 in a thermistor represented by an open bounded connected subset Q of R3. The

field equations for u and 0 are

V • (a(w)V0) = 0 (1.1)

-V • (k{u)Vu) = cr(w)|V0|2 (1.2)

in Q. The boundary dQ is divided into three mutually disjoint parts dQi, dQ.2, and

dQj, and the boundary conditions for u and 0 are

u = uq, 0 = (j)\ on (1.3)

u = uq, <(> = 02 > 0i on dQ.2, (1.4)

and

du dcp „ .
— = — = 0 on <9Q3 (1.5
an dn

where uq, 01; and 02 are constants.

This problem has also been studied in [2, 3] and references therein. It is shown

in [1] under very general assumptions on the functions k(u) and a(u) that, provided

that

a _ f°° k
~ Jun O

m dt > (jh^M

then (1.1)—(1.5) has a unique solution, while if

^ (^2 - 01 ) 2
OL <  ^ 
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there is no solution at all. It is noteworthy that this result does not depend at all on

the shape of Q, but only on the functional form taken by the boundary conditions

(1.3)—(1.5); this indifference to the geometry is explained further in Sec. 2 below. The

idea behind the proof is that the boundary conditions for u and (f>, being either both

of Neumann type (on dQ.3) or of Dirichlet type (on dQ\, dQ.2), force the family of

level curves u =constant to be the same, up to relabelling the constants, as the family

of level curves <f> ^constant. Thus u = w(</>(x)), x e Q, and (1.1) and (1.2) reduce to

one ordinary differential equation and one partial differential equation. Indeed, with

u = u(<j>) we can define a function y by

and then from (1.1),

with

V<// = <r(w)V^ (1.6)

A if/ = 0 in Q, (1.7)

y/ = 0 on <9Q, (1.8)

>_¥

dn
|^=0 ondQ3 (1.9)

and

where

1// = y/2 on dQ.2 (110)

r<P 2

yy2= o{u{4>))d<}>, (1.11)
J<j> 1

in which u(<f>) is obtained by solving the ordinary differential equation referred to

above. This is found from (1.1) and (1.2) to be

with u = uq at 0 = 4>i, 4>2; that is, u{cfr) is given implicitly by the formula

"(<P) lc(1\dl \

4/—= -(1.13)
'Mo 2

The restriction on a is the necessary and sufficient condition for (1.13) to be soluble

for m(0).

L

2. Special results in two space dimensions. The purpose of this note is to give

another, and it is hoped illuminating, interpretation of (1.7)—(1.9), and in particular

of the function if/. We consider only two space dimensions, (the results of [ 1 ] are valid

in two dimensions as well as in three), and we use techniques of complex analysis.

Because we have specialised to two dimensions, we assume now that 9Q3 has two

disjoint components, and dQj, and that <9Qi lies between and dd\ going

anticlockwise round dQ while dQj lies between dtl] and <9Qj. For convenience we
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Fig. 1

label the point <9Qi n 9Q3 as A, the point <9Qj n <9Q? as B, and similarly for C, D

(See Fig. 1). The crucial observation is the following lemma.

Lemma 2.1. The two-dimensional equivalents of equations and boundary conditions

(1.1)—(1.5) are invariant under conformal mapping. That is, their form remains the

same under the change of variables (x,y) —> (X, Y) where

X + iY = f(x + iy)

and / is analytic, |/'| > 0 in fi.

Proof. By direct calculation using the chain rule and the Cauchy-Riemann equa-

tions. □

Remark. This invariance depends critically on the quadratic nature of the Joule

heating term cr(w)|V<^>|2. □

An immediate consequence of Lemma 2.1 is that one can use conformal mapping

to simplify the geometry of the problem, in just the same way as one uses conformal

mapping to solve Laplace's equation. A particularly convenient choice is to map

Q onto a rectangle, say (0,a) x (0,6), with the insulated sides dQ^ and dO.] taken

onto opposite sides of the rectangle, for example X — 0, X = a, 0 < Y < b. In

this situation the solution is evidently independent of X, i.e., one-dimensional in

character, and u and 0 may be found as functions of Y by a quadrature; inverting

the conformal map completes the solution.

It remains to construct the conformal map from Q onto a rectangle. Lemma 2.2

shows that the function y achieves precisely this.

Lemma 2.2. ^ is the imaginary part of an analytic function f(z) = x + W which

conformally maps Q onto a rectangle (0,a) x (0,b), with A mapped onto (a, 0),
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B onto {a,b), C onto (0,b), and D onto (0,0). Here b = if/2 (given by 1.10) and

a = fg d\f//dnds, the integral being taken along dO.2-

Proof. Define ~x to be the harmonic conjugate of then F = x + iif is analytic in

Q; without loss of generality set / = 0 on dQ.]. We must show (i) that / maps Q onto

the required rectangle, and (ii) that |/'| > 0 in Q. The first of these statements, and

the value of a, are obtained by simple application of the Cauchy-Riemann equations.

For the second, a straightforward proof is to map Q onto a half-plane Rl(s) > 0

(guaranteed possible by the Riemann mapping theorem) and to write / directly in

terms of 5 (it is a linear combination of logarithms); it is easy to show then that

|df /ds\ > 0 and hence that \df /dz\ — \df /ds\/\dz/ds\ >0. □
In conclusion, we have shown that the geometrical aspect of the solution, that is

the shape of the level curves of u and <j>, is determined completely by in a manner

essentially independent of the electrical and thermal properties of the thermistor;

these enter only in the solution of (1.12). Indeed, after rescaling if/ with ^2 by setting

V = V2V*, we see that y/* is precisely the potential that would result if o(u) were

constant and a unit potential difference were applied across All the solutions with

variable a are simple transformations (using (1.6) and (1.13)) of this basic potential.
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