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ABSTRACT 

Genomic imprinting leads to different expression levels of maternally and paternally derived 

alleles. Over the last years, major progress has been made in identifying novel imprinted 

candidate genes in plants, owing to affordable next-generation sequencing technologies. 

However, reports on sequencing the transcriptome of hybrid F1 seed tissues strongly disagree 

about how many and which genes are imprinted. This raises questions about the relative 

impact of biological, environmental, technical, and analytic differences or biases. Here, we 

adopt a statistical approach, frequently used in RNA-seq data analysis, which properly models 

count overdispersion and considers replicate information of reciprocal crosses. We show that 

our statistical pipeline outperforms other methods in identifying imprinted genes in simulated 

and real data. Accordingly, reanalysis of genome-wide imprinting studies in Arabidopsis and 

maize shows that, at least for the Arabidopsis dataset, an increased agreement across datasets 

can be observed. For maize, however, consistent reanalysis did not yield in a larger overlap 

between the datasets. This suggests that the discrepancy across publications might be partially 

due to different analysis pipelines but that technical, biological, and environmental factors 

underlie much of the discrepancy between datasets. Finally, we show that the set of genes that 

can be characterized regarding allelic bias by all studies with minimal confidence is small 

(~8,000/27,416 genes for Arabidopsis and ~12,000/39,469 for maize). In conclusion, we 

propose to use biologically replicated reciprocal crosses, high sequence coverage, and a 

generalized linear model approach to identify differentially expressed alleles in developing 

seeds. 

 

 

INTRODUCTION 

 In a diploid cell, the maternal and paternal alleles of a given gene usually share the 

same expression state in a specific tissue, meaning that they are either both expressed or both 

silent. Important exceptions to this rule are genes regulated by genomic imprinting, where the 

expression state depends on the parental origin of the alleles and only one is expressed while 

the other remains silent or is weakly expressed. The two alleles do not differ in their sequence 

but rather carry parent-specific, epigenetic imprints that allow the cell to distinguish the two 

alleles (Reik and Walter, 2001; Grossniklaus, 2007; Bartolomei and Ferguson-Smith, 2011; 

Ferguson-Smith, 2011; Barlow, 2011; Raissig et al., 2011; Jiang and Köhler, 2012; Gehring, 

2013). Genomic imprinting evolved independently in mammals and in flowering plants 
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(angiosperms) (reviewed in Messing and Grossniklaus, 1999; Baroux et al., 2002; Feil and 

Berger, 2007; Köhler and Weinhofer-Molisch, 2010; Raissig et al., 2011; Gutierrez-Marcos et 

al., 2012; Pires and Grossniklaus, 2014; Rodrigues and Zilberman, 2015). In both groups, the 

offspring develop within the mother and depend solely on her nutrients for growth and 

development. This common reproductive strategy results in an intragenomic parental conflict 

over resource allocation, which likely underlies the evolution of genomic imprinting, at least 

for loci that control growth (Haig and Westoby, 1989; Moore and Haig, 1991; Pires and 

Grossniklaus, 2014). Accordingly, some imprinted genes in both, mammals and plants, have a 

role in controlling growth (e.g. Lau et al., 1994; Ludwig et al., 1996; Grossniklaus et al., 1998; 

Kinoshita et al., 1999; Kiyosue et al., 1999; Luo et al., 2000; Ingouff et al., 2005; Tycko and 

Morrison, 2002; Monk, 2015). Consistent with this function, many imprinted genes are 

preferentially expressed in the tissues that support embryonic growth, i.e. the placenta in 

mammals or the triploid endosperm in the seeds of flowering plants.  

 In the last decade, the advent of Next-Generation Sequencing (NGS) allowed (nearly) 

genome-wide imprinting studies by sequencing the transcriptome of hybrid F1 seed tissues: 

Given exonic polymorphisms between the parents, reads overlapping heterozygous SNPs can 

be assigned to their parent-of-origin, and reciprocal crosses allowed the discrimination 

between parent-of-origin-dependent and strain-specific genetic effects. Accordingly, a 

number of research groups performed genome-wide, allele-specific transcriptome profiling 

studies of hybrid seeds in Arabidopsis and maize to identify genes that are preferentially 

expressed from one parental allele (Autran et al., 2011; Gehring et al., 2011; Hsieh et al., 

2011; McKeown et al., 2011; Waters et al., 2011; Wolff et al., 2011; Zhang et al., 2011; 

Pignatta and Gehring, 2012; Waters et al., 2013; Xin et al., 2013; Zhang et al., 2014; Pignatta 

et al., 2014). As a result, the total number of imprinted genes increased from around 20 

(Raissig et al., 2011) to over 900 potentially imprinted plant genes (Gehring et al., 2011; 

Hsieh et al., 2011; McKeown et al., 2011; Waters et al., 2011; Wolff et al., 2011; Zhang et al., 

2011; Waters et al., 2013; Xin et al., 2013; Pignatta et al., 2014).  

 However, comparisons of the identified imprinted candidate genes revealed little 

overlap between the studies (McKeown et al., 2011; Köhler et al., 2012; Pignatta and Gehring, 

2012). In general, the analysis of RNA-sequencing (RNA-seq) data to identify allele-specific 

expression is prone to false positives due to both, biological and technical variation (DeVeale 

et al., 2012; Wang and Clark, 2014; Castel et al., 2015). Thus, even studies with seemingly 

similar design heavily disagree on the number of imprinted genes in the mouse brain, e.g. 

ranging from less than 200 (DeVeale et al., 2012) to over a thousand (Gregg et al., 2010). To 
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date, although guidelines for the analysis of allele-specific expression have recently become 

available (Castel et al., 2015), many different methods have been applied to filter, normalize, 

and statistically assess allelic imbalance from RNA-seq data. For the analysis of allele-

specific expression several analysis methods and software (Castel et al., 2015) have been 

developed, yet only very few are suitable for an analysis of imprinted expression. Moreover, 

no specialized method is available for statistical testing of imprinting in the triploid 

endosperm, where the expected allelic ratio is 2:1 because the mother contributes two 

genomes to this tissue. In plants, many authors have used count tests (such as Chi-Square, 

binomial, or Fisher’s exact tests), which heavily underestimate the count dispersion typically 

observed in RNA-seq data (Zhou et al., 2011; Wang and Clark, 2014; Castel et al., 2015), 

resulting in increased numbers of false positives particularly for large counts. Highly 

expressed transcripts may appear imprinted with high statistical significance, as count tests 

are sensitive to very small allelic imbalance at high counts, requiring additional filtering with 

somewhat arbitrary imbalance cut-offs. 

 Here, we present a new statistical approach to call imprinted genes from large allele-

specific RNA-seq datasets from endosperm that outperforms other methods in simulated and 

real data. We propose a generally applicable approach using generalized linear models (GLM) 

implemented in edgeR (Robinson et al., 2010), which is based on the negative binomial 

distribution to deal with potential count overdispersion (Anders and Huber, 2010) as it is 

typically seen in RNA-seq data. The presented pipeline outperforms other methods using 

simulated data. Furthermore, we reanalyze the raw data from seven studies to assess the 

relative importance of differences in data generation and data analysis. The consistent 

reanalysis by the proposed pipeline results in a larger overlap of imprinted candidate genes 

across Arabidopsis datasets, but showed little improvement across maize datasets. In 

conclusion, consistent data analysis can improve concordance between datasets but biological 

and technical variation in data generation contributes most to differences in datasets. 

 

RESULTS 

Comparison of Genome-wide Imprinting Studies in Plants: Biological, Technical, and 

Statistical Differences 

 To shed light onto discrepancies between published studies and potential biases, we 

compared the genome-wide, allele-specific transcriptome profiling studies of hybrid seeds in 

Arabidopsis and maize that were designed to identify imprinted candidate genes in the 
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endosperm. All studies were based on reciprocal crosses of two polymorphic inbred strains, 

and all studies used manually dissected endosperm. In Arabidopsis, a total of 343 genes were 

proposed to be maternally expressed imprinted genes (MEGs) in at least one study using the 

Landsberg erecta (Ler) and Columbia-0 (Col-0) accessions (Fig. 1). The three studies 

proposed between 116 and 165 MEGs (Gehring et al., 2011; Hsieh et al., 2011; Pignatta et al., 

2014). The large majority of genes (83%) were unique to a single study and only eleven 

MEGs were identified as imprinted in all three studies (3%; Fig. 1). 68 genes were proposed 

to be paternally expressed imprinted genes (PEGs) in at least one study with six PEGs being 

commonly identified in all three studies (9%; Fig. 1). In maize, the four available studies 

using the inbreds B73 and Mo17 (Waters et al., 2011; Zhang et al., 2011; Xin et al., 2013; 

Zhang et al., 2014) listed 322 different MEGs and 228 PEGs (Fig. 1). The majority of genes 

(79% and 52% for MEGs and PEGs, respectively) was proposed by a single study only. The 

overlap between studies was also small, with 14 MEGs (4%) and 23 PEGs (10%) being 

commonly identified by all four studies.  

 The low concordance between studies could be due (i) to intrinsic, biological 

differences (e.g. developmental stage analyzed), (ii) to technical differences (particularly 

library preparation and complexity, sequencing depth and batch effects, reviewed in [Wang 

and Clark, 2014; Castel et al., 2015]), and/or (iii) to the varying bioinformatics/statistical 

analysis protocols applied. As summarized in Table 1, all studies differ in terms of 

developmental stage and some use different accessions creating considerable biological 

variation. Technical differences like library preparation, sequencing platform, read length, and 

single-end vs. paired-end sequencing introduce a further level of variation. Particularly, the 

observed differences in sequencing depth, expected read-mapping biases (Degner et al., 2009), 

as well as in the completeness and quality of available SNP annotations, present likely 

technical sources of inconsistency (Table 1). Regarding statistical analysis, all studies applied 

count statistics (Table 1), which do not properly model count dispersion of RNA-Seq data, 

resulting in increased numbers of false positives particularly for large counts (Zhou et al., 

2011; Wang and Clark, 2014). Lastly, the studies apply very different criteria for filtering 

potentially imprinted genes according to the allelic bias (Table 1). The requirement to call a 

gene’s expression parentally biased differed tremendously between the studies and ranged 

from 90% of all reads that have to derive from one parent (Waters et al., 2011), over 5 times 

more reads from one parent (Zhang et al., 2011), to simply assessing deviations from the 

expected 2:1 ratio in the endosperm (Gehring et al., 2011).  
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Analysis of Allelic Bias Using edgeR Outperforms other Methods 

  It was previously noticed that a large part of the differences between publications is 

owed to different statistical pipelines to call imprinted genes. When the two Arabidopsis 

datasets that analyzed the same accessions and a similar developmental stage and tissue 

(Gehring and Hsieh datasets) were analyzed in the same way, the overlap increased 

substantially (from 14 to 56 MEGs and from 6 to 18 PEGs; Gehring et al., 2011). Therefore, 

we created a statistical pipeline to identify genes with statistically significant allelic imbalance 

from the expected, endosperm-specific 2:1 ratio. Our pipeline is based on edgeR  (Robinson 

et al., 2010) and analyzes counts by a generalized linear model (GLM), based on a negative 

binomial distribution in a paired design (parentals of the same cross) with two or more 

biological replicates (or reciprocal crosses). Importantly, edgeR models count overdispersion 

as shown exemplarily for the Pignatta dataset (Supplemental Figure S1). 

 We then tested the performance of our statistical pipeline compared to other methods 

based on synthetic data, where we could control the settings and the true genomic imprinting 

status of each gene. We simulated counts using negative binomial distributions, with mean 

and dispersion parameters estimated from real data (see Material and Methods). Imprinted 

genes were introduced by adding 200 genes with a parent-of-origin specific allelic bias: 50 

MEGs each with strong (99% maternal reads) or moderate (85% maternal) allelic bias as well 

as 50 PEGs each with strong (34% maternal reads) or moderate (48% maternal reads) allelic 

bias. Random allelic read sampling was modeled by sampling from a binomial distribution. 

 We evaluated the performance of three different methods: our edgeR-based pipeline, 

Fisher's exact test, and Stouffer's method. Fisher's exact test is the analysis method used in 

most published plant studies where each reciprocal cross is tested individually, resulting in 

two p-values per gene. With this method, a gene is called imprinted if both adjusted p-values 

independently reach significance. From now on this method will be called "Fisher-separate". 

Stouffer's method (Stouffer et al., 1949) is a method to combine p-values bearing the same 

null hypothesis. We combined the two p-values per gene calculated by Fisher's exact tests 

using Stouffer's method and calculated a combined adjusted p-value. From now on this 

method will be called "Fisher-combined". 

 In our simulation setting, our pipeline (edgeR) identified the largest number of 

observed true positives (spiked-in MEGs and PEGs) (Fig. 2A), identifying 131 true positives 

(of 200, 66% true positive rate [TPR]) with 8 false positives (falsely detected as imprinted), 

whereas the second best method, Fisher-combined, identified only 93 true positives (47% 

TPR) with 0 false positives (0% FPR). Fisher-separate identifies only 33 true positives (17% 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/180745doi: bioRxiv preprint first posted online Sep. 30, 2017; 

http://dx.doi.org/10.1101/180745
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

TPR) with 0 false positives (0% FPR). The Venn diagram (Fig. 2A) shows that 33 genes are 

identified between all three methods, 60 are shared between edgeR and Fisher-combined, 46 

genes are only identified by edgeR and 69 true positive genes were not identified by any 

method. Considering the genes that were simulated to be imprinted as the true positive group 

and the remaining genes as the true negative group, we computed the false positive rate and 

the true positive rate for all possible score thresholds and constructed a ROC (Receiver 

Operating Characteristic) curve for each method (Fig. 2B). edgeR and Fisher-combined had a 

performance advantage in detecting the spike-in genes over Fisher-separate, which 

underperforms over the entire range. We divided the assessed genes into four equally sized 

bins according to their number of counts. As expected, the true positive rate (TPR) increased 

with larger counts per gene for all methods (Fig 2C). TPR was highest for edgeR in all 

categories with a large advantage in the two categories with the lowest counts, while Fisher-

separate method only passed the 50% TPR for the quarter of genes with the largest counts. 

True positive rates also depended on the degree of allelic imbalance: at a 5% False Discovery 

Rate (FDR) cut-off, edgeR achieved TPRs of 80% and 54%, respectively, for strong and weak 

MEGs, and TPRs of 70% and 58%, respectively, for strong and weak PEGs. In contrast, the 

second best method Fisher-combined achieved TPRs of 60% and 42%, respectively, for 

strong and weak MEGs, and TPRs of 58% and 26%, respectively, for strong and weak PEGs. 

Simulations with count distributions similar to the largest observed datasets showed that 

edgeR still performed better than the other methods (data not shown). 

 

Consistent Reanalysis of Published Imprinting Studies with edgeR Identifies More 

Common Imprinted Candidate Genes in Arabidopsis but not in Maize 

 To test our statistical pipeline on real data, we reanalyzed the raw data from the nine 

published studies starting from the raw reads. We examined all reads overlapping with 

previously known exonic SNPs (see Materials and Methods), separated and counted maternal 

and paternal reads overlapping SNPs, and summed up informative (i.e. SNP containing) reads 

across transcripts. After discarding very lowly expressed genes (< 10 counts per gene), 

median reads per transcript were 95-654 for the different datasets. We then identified genes 

with statistically significant allelic imbalance from the expected, endosperm-specific 2:1 ratio 

using edgeR (Robinson et al., 2010). For simplicity, we only compared studies using Ler and 

Col-0 accessions (Arabidopsis) or B73 and Mo17 inbreds (maize). We identified between 28-

771 candidate MEGs and 33-311 candidate PEGs for the examined datasets using a 5% FDR 
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cut-off (Fig. 3). Diagnostic plots exemplary for the Pignatta dataset are shown in 

Supplemental Figure S2 and display a good model fit. A list of the called imprinted candidate 

genes in Arabidopsis and maize can be found in Supplemental Table S1 and S2, respectively.  

 In Arabidopsis, we identified a larger number of potentially imprinted genes with 

clearly increased overlaps: 145 common MEGs were found from all three datasets (46% of 

the smallest dataset [Hsieh], and 19% of the largest dataset [Gehring]) and, in addition, 68 

MEGs (22% of the smaller dataset) that were shared by the Gehring and Hsieh datasets, and 

218 MEGs (48%) shared by the Gehring and Pignatta datasets, which used a similar 

developmental stage and were generated by the same authors (Fig. 3). Now only 44% and 

29% of identified MEGs were unique to the Gehring and Hsieh datasets, respectively. In the 

Pignatta dataset, only a small minority of MEGs (79/450, 18%) and PEGs (4/33, 12%) were 

not shared with any other dataset, potentially owing to the fact that (i) the Pignatta dataset had 

the largest sequencing depth and therefore the largest gene coverage, and (ii) three biological 

replicates per cross could be analyzed, allowing the identification of high-confidence 

candidates with a small number of false positives. We also identified an almost three-fold 

increased number of PEGs (186 instead of 68 genes as originally published), although with an 

increased proportion of non-shared PEGs in the Gehring (from 51% to 66%) and Hsieh (from 

30% to 66%) datasets. 

 In maize, we identified a large number of imprinted candidate genes, 518 MEGs and 

311 PEGs (Fig. 3).  85 MEGs (16%) and 84 PEGs (27%) were identified from at least two 

different datasets, leading to an overlap of MEGs similar to the one found in the originally 

published lists (Fig. 3). The number of candidate imprinted genes varied a lot between 

datasets, limiting the maximum number of genes shared by all four datasets. The proportion 

of non-shared MEGs and PEGs decreased for all datasets, except for Waters MEGs and PEGs 

which increased from 31% to 74% and from 41% to 73%, respectively, likely due to the 

significant increase in the number of imprinted candidate genes (Fig. 3). In contrast, the 

Zhang datasets, as well as the PEGs identified from the Xin dataset, showed almost no 

exclusive candidate imprinted genes. 

 Furthermore, we identified the top50 imprinted candidate genes, which are statistically 

most significant for each dataset and compared the number of shared genes (Supplemental 

Figure S3). Between 13-28 candidate genes were common to all compared datasets and the 

proportion of non-shared candidates decreased or was similar as in the originally published 

lists except for the Hsieh PEGs. 

 In summary, a reanalysis of the datasets using our edgeR-based pipeline produced 
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gene lists with a clearly larger overlap in Arabidopsis, despite identifying a larger number of 

imprinted candidate genes with less pronounced allelic imbalance. Thus, the Jaccard 

similarity indices between Arabidopsis datasets were higher both for MEGs and PEGs after 

reanalysis with edgeR compared to the originally published gene lists (Supplemental Table 

S3). For maize, however, we did not see an increase in dataset concordance after reanalysis. 

 

Reanalysis Using the edgeR Analysis Pipeline Identifies Novel Imprinted Candidate 

Genes in Comparison to the Original Analysis  

 Having identified imprinted candidate genes using our new analysis pipeline, we 

compared the candidate genes pairwise with the lists from the original publications (Fig. 4). 

When comparing with our candidate MEGs and PEGs at a 5% FDR cut-off, 26-95% of 

previously published imprinted candidate genes were also identified by our pipeline. 

 From the reanalysis we selected the genes with topmost significance to get the 

equivalent number of the previously published imprinted candidate genes and compared them 

to the original publications. Arabidopsis PEGs and maize MEGs and PEGs generally 

overlapped at 40-78% between the reanalysis and the original gene lists (Supplemental Figure 

S4), much higher than for Arabidopsis MEGs, where often only negligible overlaps were 

observed. 

 In conclusion, the reanalysis with a standardized analytical pipeline identifies a large 

number of similar candidates but also additional novel candidate genes. Furthermore, it fails 

to identify previously called imprinted candidates, likely owing to the improved statistical 

analysis, which takes into account count overdispersion and neglects large allelic biases in 

transcripts covered by a low number of reads. 

 

 

Consistent Reanalysis Using Fisher's Exact Test Identifies Fewer Overlapping 

Imprinted Candidate Genes 

 We also reanalyzed the data from the seven studies using the "Fisher-combined" 

method in order to assess its performance with real data. We selected the genes with topmost 

significance to get for each dataset the equivalent number of the previously published 

imprinted candidate genes (Supplemental Figure S5). In Arabidopsis, the number of genes 

identified from all three datasets (5 MEGs and 0 PEGs; Supplemental Figure S5) was only a 

fraction than after reanalysis with edgeR (58 MEGs and 8 PEGs; Supplemental Figure S6). 
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Also the number of genes shared between at least two different datasets (60 MEGs and 6 

PEGs; Supplemental Figure S5) was clearly smaller than after reanalysis with edgeR (123 

MEGs and 27 PEGs; Supplemental Figure S6).  The proportion of non-shared genes was 50-

95% per dataset, much higher than after reanalysis with edgeR, where proportions of non-

shared genes were 10-40%. A reanalysis of the maize datasets using the “Fisher-combined” 

method produced a similar concordance between datasets as edgeR (Supplemental Figures S5 

and S6). Accordingly, Jaccard similarity indices between datasets were markedly higher in 

Arabidopsis after reanalysis with edgeR both for MEGs and PEGs compared with Fisher-

combined reanalysis or the originally published gene lists (Supplemental Table S3). 

 

Power of Detecting Imprinted Genes Is Relatively Small due to Non-saturating 

Sequencing Depth 

 The power of allelic imbalance detection depends mainly on the degree of allelic bias, 

the sequencing read length and coverage (expression strength), as well as the divergence of 

the crossed strains (number of SNPs per transcript) (Fontanillas et al., 2010). Although the 

three Arabidopsis studies all use the same accessions, the number of callable genes ranges 

from 8,319 for the Hsieh dataset to 14,229 for the Pignatta dataset (Fig. 5A): Among the 

27,416 protein-coding Arabidopsis genes 31% do not overlap with any exonic SNP and their 

imprinting cannot be assessed. Another 17-39% of the genes are not or only very weakly 

expressed (<10 allelic counts overall), and were thus discarded from further analysis. 

Ultimately, only 30-52% of all predicted Arabidopsis genes can be assessed for genomic 

imprinting in the three different studies as only those have a sufficient number of allele-

specific reads to identify statistically significant biased expression (Fig. 5A). 7,876 genes 

(29% of all Arabidopsis genes) can be assessed for genomic imprinting by all three datasets 

(Fig. 5B).  

 Among the 39,469 maize protein-coding genes, 33% do not overlap with any exonic 

SNP (Fig. 5A) between the B73 and Mo17 inbreds. Another 26-33% were not or very weakly 

expressed (<10 counts overall) and were discarded (Fig. 5A). In the end, between 34% 

(Zhang11) and 41% (Waters) of maize genes can be assessed for genomic imprinting per 

dataset and only 31% of all maize genes can be assessed in all datasets (Fig. 5A and 5B). In 

conclusion, even after consistent reanalysis, the set of genes that can be assessed for genomic 

imprinting differs considerably between the datasets. 

 In addition, sequencing depth is far from being saturated, as shown by random 
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subsampling of each dataset and detecting MEGs and PEGs by our edgeR-based pipeline (Fig. 

5C). For most datasets, the number of detected MEGs and PEGs do hardly flatten with 

increasing sampling proportions. The relatively flat slopes for the total number of callable 

genes indicate that a huge increase in sequencing depth would be required to assess the 

remaining 4-10% genes that were expressed, but did not reach the minimal read coverage of 

10 reads. 

 

DISCUSSION 

Reanalysis of Imprinting Studies Reveals that Biological and Technical Differences 

Strongly Contribute to Biases in Identifying Imprinted Genes 

 Published studies strongly disagree in the extent and composition of imprinted genes 

in the endosperm (Fig. 1). We reanalyzed both simulated and real data from seven genome-

wide imprinting studies in Arabidopsis and maize, using a standardized bioinformatics 

pipeline based on generalized linear models. In Arabidopsis, our analysis identified an 

increased number of imprinted genes co-identified by at least two different datasets, 

particularly for MEGs where the overlap between datasets was strikingly larger (Fig. 3 and 

Supplemental Figure S4). In maize, consistent reanalysis identified a slightly increased 

number of imprinted genes shared between studies both for MEGs and PEGs. 

 It was previously proposed that the discrepancies might at least in part stem from 

different data analysis pipelines to call imprinted genes and, in fact, filtering with similar 

filtering conditions produced more overlap (Gehring et al., 2011; Pignatta and Gehring, 2012). 

However, even after consistent reanalysis, a high number of imprinted candidate genes are 

unique to a single dataset, and reanalysis is able to increase the overlap across datasets only 

by a limited degree. This suggests that biological variation (such as different environmental 

growth condition, different developmental seed stage, stochastic allelic expression 

differences), technical differences (e.g., library preparation/complexity, batch effects [Wang 

and Clark, 2014; Castel et al., 2015]), and differences in sequencing depth inherent to the 

datasets contribute to these discrepancies and cannot be corrected for in silico.  

 Particularly in maize, reanalysis did not increase the concordance between datasets. 

Even though the developmental seed stages did vary to some extent (Table 1; 10-14 DAP) we 

cannot fully explain this finding by biological variation only. All original analyses used the 

same statistical test and highly similar conditions for allelic bias filtering. Possibly, the 

published original analyses of maize datasets used filtering conditions close to the optimum, 
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such that edgeR-based reanalysis could not further improve concordance. Furthermore, the 

co-identification of imprinted genes is additionally hampered by unequal read coverage: 48 of 

129 imprinted genes proposed by Zhang and colleagues (2011) had too few reads to 

characterize imprinted expression in the data of Waters and colleagues (2011). The relative 

importance of biological versus technical biases on the large discrepancy between the datasets 

from maize is currently difficult to assess.  

 

A Statistical Approach that Uses Generalized Linear Models and Takes Into Account 

Replicate Information Largely Increases Sensitivity 

 Our statistical approach involves modeling of count data and is quite different from 

the approach chosen by the authors in the original publications. Our approach relies on 

generalized linear models and edgeR, which is a commonly used, well-established and robust 

method for differential expression analysis of RNA-seq data. By interpreting allelic counts of 

a cross as separate samples and imprinting analysis as a differential gene expression problem, 

we benefit from the power and flexibility of generalized linear models based on edgeR. The 

method is highly flexible, i.e. also batch effects can be modeled. The general methodology 

used here is also applicable to imprinting analysis in other cell types where a deviation from 

1:1 is tested. A further advantage of our statistical approach is that it circumvents somewhat 

arbitrary minimum cut-offs of allelic imbalance. Most genes are only partially imprinted and 

we believe that the current knowledge does not support the exclusion of genes with moderate 

allelic imbalance yet reaching statistical significance. Our approach also allows (nearly) 

genome-wide ranking of genes according to their likelihood of being imprinted, allowing 

downstream applications, such as gene set enrichment analysis, with increased statistical 

power (e.g. for Gene Ontology analysis).  

 Prior to read counting, many steps are required to map, filter, and count allelic reads. 

To assess the importance of the preprocessing/counting relative to statistics, we reanalyzed 

the original allelic counts from Gehring et al. (2011) using our method. We found a large 

discrepancy for MEGs and PEGs with original gene lists, whereas MEGs and PEGs largely 

agreed with the gene lists obtained from complete reanalysis with our analysis pipeline (data 

not shown). Given the large discrepancy, the statistical approach seems to have a larger 

relative contribution than the earlier steps required to obtain the variant counts.  

 

Simulation Reveals that edgR-based Analysis Outperforms Other Methods   

 The edgeR-based approach performed well in our simulation setting and clearly 
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outperformed the other tested methods. Notably, the other methods based on Fisher's exact 

test seem overly conservative and missed most spike-in imprinted genes. edgeR was the only 

method to predict false positives due to a relatively poor FDR control for the lowest quarter of 

counts (10-23 counts per gene) where 4 of edgeR's totally 8 false positive imprinted genes 

were identified. edgeR's specificity could be further increased by selecting a larger minimal 

number of counts per gene (e.g., a cut-off of 20 allelic counts per gene).  

 Importantly, our simulation did not aim to model biological variability predicting 

biological replicates. All biological systems have inherent biological variation and edgeR can 

account for it, whereas Fisher's exact test completely ignores the within-condition variability, 

as it requires counts from replicates to be summed up for each condition. Therefore, we 

expect that edgeR would outperform methods using Fisher's exact tests even more strikingly 

when biological replicates are available. 

 

Higher Coverage, Replicate Samples, and edgeR-based Analysis Could Improve the 

Identification of Imprinted Genes 

The first generation of genome-wide studies identified many new imprinted genes in plants, 

yet a considerable proportion of genes could not be characterized due to low sequencing depth 

or insufficient genetic heterogeneity between the parents. Future experiments in genomic 

imprinting will be performed using paired-end reads with high sequencing coverage. With the 

rapid development in NGS, higher coverage is now readily achievable, which will notably 

increase the statistical power to detect imprinted genes. In the studies reanalyzed here, low 

counts were observed for many genes close to the minimal coverage cut-off of 10, where the 

variance is large and a large allelic bias is required to reach significance. Importantly, a 

sufficient number of biological replicates (i.e., at least three per reciprocal cross [Liu et al., 

2014]) would permit to reliably estimate the variability from the data, enabling the 

performance of a more robust differential expression analysis and a more reliable estimation 

of the total number of imprinted genes.  

 

Biological Perspectives 

 When comparing datasets from different studies, we assume that the same set of genes 

is imprinted over the sampling time period. Partial or complete violations of the assumption 

also decrease the amount of overlap across datasets in addition to technical and analytic biases. 

Indeed, first studies showed dynamic expression of imprinted genes in maize (Xin et al., 

2013). Furthermore, we cannot solely rely on statistical significance in calling a gene 
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imprinted or not. There are several ways to prioritize a gene list after statistically calling 

genes with an allelic bias in a given tissue. First, filtering the gene lists by fold difference 

between the two parental alleles could help to identify genes that can more easily be validated 

experimentally. Second, filtering the gene lists against tissue-specific expression data from 

seeds might identify genes relevant to the tissue of interest (Belmonte et al., 2013; Schon and 

Nodine, 2017). However, expression of a given gene in other (maternal sporophytic) tissues 

does not exclude an allelic bias in the fertilization products (Raissig et al., 2013). Third, 

comparing the gene list against central cell and sperm cell expression data (Borges et al., 2008; 

Wuest et al., 2010; Schmid et al., 2012) can inform to what extent the allelic bias is a result of 

expression in the fertilization products or might at least partially represent carry-over of 

gametic transcripts that were produced prior to fertilization. 

 An improved assessment including larger gene sets (by using different sets of strains), 

as well as imprinted genes with moderate allelic imbalance, will provide further insights into 

the extent and biological significance of genomic imprinting. Having the full catalog of 

imprinted genes in several plant species will also allow the tackling of evolutionary questions 

about genomic imprinting, including its origin and fixation, the conservation of imprinted 

genes, and their gain and loss of imprinting status on the phylogenetic tree.  

 Lastly, we have to stress that without further confirmation, gene lists are not 

representative with regard to the absolute number of imprinted candidate genes expressed in 

the endosperm. Considering this, it is indispensable to confirm bioinformatically identified 

imprinted candidate genes by alternative methods, such as allele-specific expression analysis 

using RT-PCR and Sanger sequencing, pyrosequencing, and/or reporter gene assays. 

 

 

MATERIALS AND METHODS 

Read Mapping and Counting 

 FASTQ-formatted raw reads were downloaded from the NCBI Short Read Archive 

(SRA) for endosperm experiments for Arabidopsis (GSM674847, GSM674848, GSM756822, 

GSM756824, GSM607727, GSM607728, GSM607732, GSM607735, GSM1276498, 

GSM1276500, GSM1276502, GSM1276504, GSM1276505, GSM1276508, GSM1276509, 

GSM1276512, GSM1276514, GSM1276515) and for maize (SRX105679, SRX105678, 

SRX114629, SRX114630, SRX047539, SRX047544, SRP031872, GSE48425). Hsieh 

samples obtained through laser capture microdissection were not included in the analysis as 
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their inclusion reduced the overlap with other datasets (data not shown). Reads were quality-

checked with the FastQC application 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). To reduce the bias in mapping 

reads towards reference alleles, we aligned the reads to a masked reference genome, in which 

bases at known polymorphic sites were replaced with “N”. Reads were mapped to the genome 

using STAR v2.3.0e (Dobin et al., 2012). Only reads that mapped to a unique position in the 

genome were considered for further analysis.  

 For Arabidopsis the genome annotation TAIR10 (http://www.arabidopsis.org/) was 

used, and for maize AGPv3 annotated genes were downloaded from Ensembl Plants Release 

31 (http://plants.ensembl.org/ [Monaco et al., 2013]). Arabidopsis SNP annotation files were 

obtained from the 1001 Genomes project (Cao et al., 2011; 

http://1001genomes.org/data/MPI/MPISchneeberger2011/releases/2012_03_14/). Maize 

hapmap v3.2.1 SNP variants (Bukowski et al., 2015) in VCF format (Release date 3/3/2016) 

were obtained from the Panzea database 

(http://cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?filegroupid=15) and filtered for 

high-confidence (flag LLD) biallelic SNP variants which were polymorphic between B73 and 

Mo17 and homozygous in both inbred strains. Allelic reads were counted at previously 

identified SNP positions between homozygous parentals, using python v3.2 with pysam 

v0.8.4 (Li, 2011), while positions with low sequencing quality (phred quality <20) were 

excluded. No more than one SNP was counted per read to prevent pseudo-replication. Counts 

were summed up per gene and variants with less than 10 reads (summed across the two 

reciprocal crosses) were discarded. 

 

Testing for Allele-specific Expression 

 To assess allele-specific expression, we used edgeR version 3.4.2 (Robinson et al., 

2010). It uses an empirical Bayes estimation based on the negative binomial distribution. For 

library size normalization and to eliminate composition biases between libraries we used the 

TMM (Trimmed Mean of M-values) method. TMM normalization keeps the ratio between 

maternal and paternal allelic reads in a cross at approx. 2 (data not shown). Experiments were 

analyzed using a generalized linear model with a paired design (the two allelic counts of the 

same cross treated as paired samples) and at least two biological replicates (the two reciprocal 

crosses). When biological replicates were available, they were included in the model. We 

used tagwise dispersion estimates. False Discovery Rate (FDR) was calculated according to 
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Benjamini and Hochberg (1995). The R software version 3.0.3 (R Core Team, 2012) was used 

for statistical analysis and for creating graphs. 

 

Simulation of genomic imprinting 

 For generating synthetic data we used the function makeExampleDESeqDataSet of the 

DESeq2 version 1.2.10 (Anders and Huber, 2010) R/Bioconductor package. Mean and 

dispersion parameters that were used in the simulation were estimated from real RNA-seq 

data (interceptMean=2, interceptSD=3). Two biological replicates were simulated to serve as 

the two reciprocal crosses. No outlier counts and differential expression were introduced. The 

total number of genes in each simulated dataset was 15,000, and their true proportion of 

maternal reads was set to 2/3. Then we randomly picked 200 genes and modified their 

imprinting status, 50 each of strong MEGs (99% maternal reads), weak MEGs (85%), strong 

PEGs (34%) and weak PEGs (48%). Random allelic read sampling was modeled by sampling 

from a binomial distribution with the probability of success set to the true proportion of 

maternal reads. 

 

We evaluated three methods for identifying genes with parent-of-origin specific expression: 

edgeR, Fisher's exact test and Stouffer's method. Fisher's exact test does two separate 

statistical tests for the two reciprocal crosses and the resulting two p-values per gene were 

combined with Stouffer's method (calculated by sumz function of R package metap). 

Benchmarking was performed using Venn diagrams and Receiver Operating Characteristic 

(ROC) curves with iCOBRA (Soneson and Robinson, 2016) 

https://github.com/markrobinsonuzh/iCOBRA. 

 

Comparison with Published Gene Lists 

 Published gene lists were compiled from the Supplementary Data of the respective 

publications. For the Waters B73xMo17 comparison, the updated list from Waters et al. (2013) 

was used, not the original one (Waters et al., 2011). If lists of imprinted genes were available 

at various stringencies, we used the least stringent list (e.g. moderately imprinted genes for the 

Waters dataset). Accession/inbred-specific imprinted genes were omitted. Only the lists of 

106 MEGs and 91 PEGs at 12DAP (Prof. Xiaomei Lai, personal communication) described in 

Zhang et al. (2014) were used as the endosperm samples at 10DAP were already described in 

Zhang et al. (2011). 
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Saturation Plots 

 In order to assess the degree of undersampling, we performed random subsampling on 

the count data and performed the same processing and statistical analysis steps as for the full 

data. 

 

Code and data availability 
 Scripts and data used in this manuscript are available on 

github (http://www.github.com/swyder/Reanalysis_plant_imprinting). 
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SUPPORTING INFORMATION 

Supplemental Figure S1. Count overdispersion in the Pignatta dataset. Mean and variance 

are plotted for A) ColxLer versus LerxCol samples (3 samples each) and B) maternal 

versus paternal samples in ColxLer crosses (3 samples each). The blue line shows the 

Negative Binomial model with common dispersion and the black line shows the Poisson 

mean-variance relationship. The best fit with the data is observed by averaging raw 

variance for tags split into bins by overall expression level (red crosses). In both plots the 

variance for the counts between samples is much larger than the mean indicating 

overdispersion. 

Supplemental Figure S2. Diagnostic plots for the Pignatta dataset. A) Genewise biological 

coefficient of variation (BCV) against gene abundance (in log2 counts per million). B) 

MA plot of the Pignatta dataset.  Genes with a significant allelic bias at a 5% FDR cut-off 

are highlighted in red. 

Supplemental Figure S3. Venn diagrams showing the overlap between top50 imprinted 
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candidate genes across datasets when reanalyzing the raw data using the same 

standardized method using generalized linear models and edgeR. Numbers in brackets 

denote the percentage of non-shared genes relative to the full set detected in the dataset. 

Supplemental Figure S4. Pairwise comparison of imprinted genes between the originally 

published analysis and the reanalysis using generalized linear models and edgeR. The 

same numbers of topmost imprinted genes were selected from the datasets reanalyzed 

with generalized linear models and edgeR. Numbers in brackets denote the percentage 

relative to the full set. 

Supplemental Figure S5. Venn diagrams showing the overlap between imprinted candidate 

genes across datasets when reanalyzing the raw data using Stouffer's method ("Fisher-

combined"). Numbers in brackets denote the percentage of non-shared genes relative to 

the full set detected in the dataset. 

Supplemental Figure S6. Venn diagrams showing the overlap between imprinted candidate 

genes across datasets when reanalyzing the raw data using generalized linear models and 

edgeR. Numbers in brackets denote the percentage of non-shared genes relative to the full 

set detected in the dataset. 

 

Supplemental Table S1. List of candidate imprinted genes identified in this study for 

Arabidopsis. Genes are sorted with decreasing probability of being imprinted in Gehring, 

Hsieh and Pignatta datasets. 

Supplemental Table S2. List of candidate imprinted genes identified in this study for maize. 

Supplemental Table S3. Jaccard similarity indices between originally published datasets or 

after reanalysis using edgeR or Stouffer's method in Arabidopsis and maize. The same 

numbers of topmost imprinted genes were selected from the reanalyzed datasets. 
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Figure 1. Venn diagrams showing the number of imprinted genes in hybrid endosperm 
reported by different studies in Arabidopsis Ler/Col accessions and in maize B73/Mo17 
inbreds. Numbers in brackets denote the percentage of non-shared genes relative to the full set 
reported. The “Xin” and "Zhang11" sets comprise genes identified at 10 days after pollination 
and "Zhang14" comprises genes at 12 days after pollination. Accession/inbred-specific 
imprinted genes were excluded from the analysis. 
  

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/180745doi: bioRxiv preprint first posted online Sep. 30, 2017; 

http://dx.doi.org/10.1101/180745
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure	   2.	   Benchmarking	   of	   three	   tested	   methods	   to	   identify	   imprinted	   genes	   using	  

simulated	   data.	   A,	   Overlap	   of	   detected	   spike-‐in	   imprinted	   genes	   between	   different	  

methods.	   B,	   ROC	   curves.	   C,	   True	   positive	   rates	   (TPR)	   and	   false	   positive	   rates	   (FPR)	  

across	  four	  equally	  sized	  categories	  of	  genes	  with	  increasing	  number	  of	  counts.	  
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Figure	   3.	   Venn	   diagrams	   showing	   the	   overlap	   between	   imprinted	   candidate	   genes	  

across	   datasets	   when	   reanalyzing	   the	   raw	   data	   using	   the	   same	   standardized	  method	  

using	   generalized	   linear	   models/edgeR	   at	   a	   FDR	   cut-‐off	   of	   5%.	   Numbers	   in	   brackets	  

denote	  the	  percentage	  of	  non-‐shared	  genes	  relative	  to	  the	  full	  set	  detected	  in	  the	  dataset.	  

The	  “Xin”	  and	  "Zhang11"	  sets	  comprise	  genes	  identified	  at	  10	  days	  after	  pollination	  and	  

"Zhang14"	  comprises	  genes	  at	  12	  days	  after	  pollination.	  
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Figure	   4.	   Pairwise	   comparison	   of	   imprinted	   genes	   between	   the	   originally	   published	  

analysis	  and	  the	  reanalysis	  using	  generalized	   linear	  models	  and	  edgeR	  with	  a	  5%	  FDR	  

cut-‐off.	  Numbers	  in	  brackets	  denote	  the	  percentage	  of	  non-‐shared	  genes	  relative	  to	  the	  

full	  set	  detected	  in	  the	  dataset.	  For	  the	  “Xin”	  dataset	  only	  one	  timepoint	  (10	  days	  after	  

pollination)	   is	   shown.	   The	   "Zhang11"	   set	   comprises	   genes	   identified	   at	   10	   days	   after	  

pollination	  and	  "Zhang14"	  comprises	  genes	  expressed	  at	  12	  days	  after	  pollination.	  
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Figure	   5.	   Power	   of	   detecting	   imprinted	   candidate	   genes	   in	   reanalyzed	   datasets.	   A,	  

Callable	  genes	  assessable	  for	  genomic	  imprinting	  were	  required	  to	  overlap	  with	  at	  least	  

1	   exonic	   SNP	   and	   to	   have	   read	   counts	   of	   at	   least	   10.	   Number	   of	   genes	   are	   shown	   as	  

percentages	   of	   the	   total	   number	   of	   genes.	   B,	   Venn	   diagrams	   showing	   the	   overlap	   of	  

callable	  genes	  for	  Arabidopsis	  and	  maize	  datasets.	  C,	  Saturation	  curves	  showing	  numbers	  

of	   detected	   MEGs	   and	   PEGs	   from	   various	   datasets.	   The	   curves	   were	   generated	   by	  

randomly	   sampling	   increasing	   proportions	   of	   each	   dataset	   and	   identifying	   imprinted	  

candidate	  genes	  using	  the	  same	  pipeline.	  Values	  are	  means	  (and	  standard	  errors)	  of	  10	  

random	  subsamples.	  
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SUPPLEMENTAL	  DATA	  

	  
Supplemental	   Figure	   S1.	   Count	   overdispersion	   in	   the	   Pignatta	   dataset.	   Mean	   and	  

variance	   are	   plotted	   for	   A)	   ColxLer	   versus	   LerxCol	   samples	   (3	   samples	   each)	   and	   B)	  

maternal	   versus	   paternal	   samples	   in	   ColxLer	   crosses	   (3	   samples	   each).	   The	   blue	   line	  

shows	  the	  Negative	  Binomial	  model	  with	  common	  dispersion	  and	  the	  black	  line	  shows	  

the	   Poisson	   mean-‐variance	   relationship.	   The	   best	   fit	   with	   the	   data	   is	   observed	   by	  

averaging	  raw	  variance	  for	  tags	  split	  into	  bins	  by	  overall	  expression	  level	  (red	  crosses).	  

In	  both	  plots	  the	  variance	  for	  the	  counts	  between	  samples	  is	  much	  larger	  than	  the	  mean,	  

indicating	  overdispersion.	  
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Supplemental	  Figure	  S2.	  Diagnostic	  plots	  for	  the	  Pignatta	  dataset.	  A)	  Genewise	  

biological	  coefficient	  of	  variation	  (BCV)	  against	  gene	  abundance	  (in	  log2	  counts	  per	  

million).	  B)	  MA	  plot	  of	  the	  Pignatta	  dataset.	  	  Genes	  with	  a	  significant	  allelic	  bias	  at	  a	  5%	  

FDR	  cut-‐off	  are	  highlighted	  in	  red.	  
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Supplemental	  Figure	  S3.	  Venn	  diagrams	  showing	  the	  overlap	  between	  the	  top50	  

imprinted	  candidate	  genes	  across	  datasets	  when	  reanalyzing	  the	  raw	  data	  using	  the	  

same	  standardized	  method,	  using	  generalized	  linear	  models	  and	  edgeR.	  Numbers	  in	  

brackets	  denote	  the	  percentage	  of	  non-‐shared	  genes	  relative	  to	  the	  full	  set	  detected	  in	  

the	  dataset.	  
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Supplemental	  Figure	  S4.	  Pairwise	  comparison	  of	  imprinted	  genes	  between	  the	  

originally	  published	  analysis	  and	  the	  reanalysis	  using	  generalized	  linear	  models	  and	  

edgeR.	  The	  same	  numbers	  of	  topmost	  imprinted	  genes	  were	  selected	  from	  the	  datasets	  

reanalyzed	  with	  generalized	  linear	  models	  and	  edgeR.	  Numbers	  in	  brackets	  denote	  the	  

percentage	  relative	  to	  the	  full	  set.	  
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Supplemental	  Figure	  S5.	  Venn	  diagrams	  showing	  the	  overlap	  between	  imprinted	  

candidate	  genes	  across	  datasets	  when	  reanalyzing	  the	  raw	  data	  using	  the	  "Fisher-‐

combined"	  (Stouffer's)	  method.	  Numbers	  in	  brackets	  denote	  the	  percentage	  of	  non-‐

shared	  genes	  relative	  to	  the	  full	  set	  detected	  in	  the	  dataset.	  
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Supplemental	  Figure	  S6.	  Venn	  diagrams	  showing	  the	  overlap	  between	  imprinted	  

candidate	  genes	  across	  datasets	  when	  reanalyzing	  the	  raw	  data	  using	  generalized	  linear	  

models	  and	  edgeR.	  Numbers	  in	  brackets	  denote	  the	  percentage	  of	  non-‐shared	  genes	  

relative	  to	  the	  full	  set	  detected	  in	  the	  dataset.	  
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Supplemental	  Table	  S1.	  List	  of	  candidate	  imprinted	  genes	  identified	  in	  this	  study	  for	  

Arabidopsis.	  Genes	  are	  sorted	  with	  decreasing	  probability	  of	  being	  imprinted	  in	  Gehring,	  

Hsieh,	  and	  Pignatta	  datasets.	  

Supplemental	  Table	  S2.	  List	  of	  candidate	  imprinted	  genes	  identified	  in	  this	  study	  for	  

maize.	  

Supplemental	   Table	   S3.	   Jaccard	   similarity	   indices	   between	   originally	   published	  

datasets	  or	  after	  reanalysis	  using	  edgeR	  or	  Stouffer's	  method	  in	  Arabidopsis	  and	  maize.	  

The	   same	   numbers	   of	   topmost	   imprinted	   genes	   were	   selected	   from	   the	   reanalyzed	  

datasets.	  
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Table 1. Characteristics of data generation and data analysis of published genome-wide imprinting datasets in Arabidopsis and maize.

Wolff 2011 Gehring 2011 Hsieh 2011 Pignatta 2014 Waters 2011 Zhang 2011 Xin 2013 Waters 2013 Zhang 2014
Organism Arabidopsis Arabidopsis Arabidopsis Arabidopsis Maize Maize Maize Maize Maize
Strains Col-0, Bur-0 Col-0, Ler Col-0, Ler Col-0, Ler, Cvi B73, Mo17 B73, Mo17 B73, Mo17 B73,Mo17,Ki11,Oh43 B73, Mo17
Starting Material whole seeds dissected 

endosperm / 
embryo

dissected 
endosperm / 

embryo

dissected 
endosperm / 

embryo

dissected 
endosperm / 

embryo

dissected 
endosperm / 

embryo

 whole kernels (0,3,5 
DAP) / dissected 

endosperm (7, 10,15 
DAP)

dissected endosperm dissected endosperm 

Timepoint 4 DAP 6 – 7 DAP 7- 8 DAP 6 DAP 14 DAP 10 DAP 0,3,5,7,10,15 DAP 14 DAP 12 DAP
Biological Replicates per cross 1 1 2 3 1 1 1 1 1
Sequencing Platform Illumina GAII Illumina GAII Illumina GAII Illumina HiSeq Illumina GAII/HiSeq Illumina HiSeq Illumina HiSeq Illumina HiSeq Illumina HiSeq
Read Length 36 bp 50 / 36 bp 76 bp 40 / 80 bp 2x76 bp 2x100 bp 2x90 bp 2x100 / 2x50 bp 2x100
NCBI SRA study ID SRP005700 SRP007424 SRP003799 SRP033371 SRP009313 SRP011991 SRP026399 SRP031872 SRP011991
Genome annotation TAIR 8 TAIR 9 TAIR 8 TAIR 10 B73 AGPv2 n/a B73 release 5b.60 n/a B73 (V2)
Total number of raw reads (hybrids) 122 mio 100 mio 165 mio 1,837 mio 245 mio 149 mio 379 mio 1,969 mio 154 mio
Total Number of SNPs 569,859 347,928 402,226 384,612 1.6 mio 51,416 exonic 6.5 mio 28,195-142,033 exonic 4.2 mio
Mapping
Mapping software vmatch TopHat Bowtie Tophat v2.0.8 GSNAP bwa TopHat2 TopHat TopHat
Number mismatches allowed 2/36 n/a 3/76 1/40 2/36 n/a n/a 2 n/a
Allele-specific mapping bias Alignment to Col 

and Bur 
Pseudoreference 

(only SNPs)

n/a Alignment to Col 
and Ler 

Pseudoreference 
(only SNPs)

n/a n/a Mapping to SNP-
masked genes

Mapping to both 
genomes (reference-

guided assembly of 
Mo17)

Mapping to SNP-
masked transcripts 

(filtered gene set  
v5b.60)

Mapping to SNP-
masked genes

Counting and Statistics
Minimal coverage (allelic reads) ≥10 (≥30) ≥15 n/a n/a ≥10 reads assigned 

to one allele in both 
hybrids

≥10 per cross ≥40 (non-stringent: ≥5 
per cross)

≥10 per cross n/a

Summing Reads across gene gene individual SNPs gene gene gene
Statistical Test Binomial Storer-Kim Fisher's exact test Fisher's exact test Chi-Square Chi-Square Chi-Square Chi-Square Chi-Square
Multiple Testing Correction yes (FDR 5%) no (p<0.01) no (p<0.001) yes (FDR 1%) no (p<0.01) no (p<0.05)unknown adjustment (p<0.001) no (p<0.05 or p<0.01) no (p<0.05)
Allelic bias filtering n/a only unique 

expression
MEGs: maternal 

score ≥4x paternal 
score; PEGs: 

paternal score ≥ 
1.5x maternal score

MEGs:  ≥85% 
maternal reads   

PEGs: ≥50% 
paternal reads

≥90% reads from 
one parent in both 
reciprocal crosses

≥83% reads from 
one parent

MEGs: ≥90% maternal 
reads                 PEGs: 
≥70% paternal reads            

<6 paternally de- rived 
reads at 0 DAP

Moderate MEGs: >90% 
maternal reads PEGS: 

>60% paternal reads   
Strong MEGs/PEGs: 

>90% maternal/paternal 
and p<0.01

≥83% reads from one 
parent (reduced criteria: 

Chi-Square p<0.05)

Filtering out potentially deposited 
transcripts

Expression SLR in 
endosperm ≥3x 

seed coat and SLRs   
in vegetative tissues 

<5 (less strigent 
criteria for low 

expressed genes)

MEGs expression  
in endosperm ≥ 2x 
higher than in the 

seed coat

Expression levels in  
endosperm < 4x  

than LCM-disected 
endosperm

Expression levels  < 
2x higher in the 
seed coat than 

embryo or 
endosperml 

n/a n/a n/a B73 expression atlas n/a

Abbreviations: DAP, days after pollination; FDR, false discovery rate; LCM, Laser Capture Microdissection; MEG, maternally expressed imprinted gene; 
PEG, paternally expressed imprinted gene; SNP, single-nucleotide polymorphism; SLR, signal log ratio; SRA, short read archive (http://www.ncbi.nlm.nih.gov/sra)
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