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Abstract. In this article, we propose a joint halftoning and data
hiding technique for color images. To ensure high quality of the
printed image, the color direct binary search (CDBS) iterative
halftoning algorithm is used. The proposed approach uses the
commonly available cyan, magenta and yellow colorants to hide
data in the chrominance channels. Orientation modulation is used
for data embedding during the iterative CDBS halftoning stage.
The detector is using PCA-learned components to extract the
embedded data from the scanned image. Experimental results
show that this proposed CDBS-based data hiding method offers
both higher data hiding capacity and higher robustness to the
print-and-scan channel when compared to the state-of-the-art
grayscale counterpart method. The relatively high correct detection
rate make this approach suitable for applications which require exact
extraction of embedded data in prints. c© 2016 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2016.60.5.050407]

INTRODUCTION
Despite the expansion of digital media, printed content
will be used in the foreseeable future. Large number of
official documents such as birth and citizenship certificates,
identification cards, passports and educational diplomas still
use the printed format. Magazines, posters, billboards, or
product packaging, are just other examples of commonly
used printed media. For many of these prints there is
an increasing need for technologies that allow data to
be embedded into the printed content, preferably in an
imperceptible way, so that the data can be subsequently
extracted using suitable imaging devices – such as scanners
and consumer cameras. This approach for data hiding, also
known as watermarking,1 provides additional functionalities
for security applications like document authentication,
tamper detection, source control, or steganography. Other
than security applications, hiding data can be used in general
to create ‘‘smart’’ prints2 where the embedded data may give
additional information about the printed content, or point to
an URL where the user can explore more options related to
the print.

Printers are typically binary devices which either deposit
ink or not at a given location on the printing media.
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Prior to printing, digital images are binarized per colorant
using a technique called halftoning, which exploits increased
spatial resolution of printed dots to compensate for the lost
amplitude resolution due to the binarization3 (depositing
ink or not). Halftoning can cause severe distortion to the
embedded data if it is not taken into account during the data
embedding stage; this is the main reason for developing a
wide range of watermarking techniques which embed the
data during the halftoning process. This joint halftoning and
watermarking approach implicitly includes some form of
adaptation to the print-and-scan channel, in order to achieve
higher robustness of the embedded data.

When developing data hiding techniques for printed
images, there are several challenges to be tackled. The most
important challenge is achieving robustness to the print-and-
scan channel—the process of data extraction from prints
means that the data inevitably pass through this channel.
Apart from the heavy binarization (halftoning), other sources
of distortion in the print-and-scan channel include: color
space conversion (gamut mapping), physical and optical dot
gain, non-uniform lattice of printed dots, and global geo-
metric distortions (scaling, rotation, perspective projection,
or barrel distortion). Addressing these sources of distortion
either by prior modelling or posterior compensation would
in general increase the overall robustness of hidden data.4
Another important challenge is the printed image quality
and watermark imperceptibility. The embedded data should
normally be visually imperceptible, and the visual quality
of the watermarked printed image should be very close,
ideally identical, to the quality of the non-watermarked
printed image. The amount of embeddable data (capacity)
with certain level of reliable recovery is also an important
feature to be considered when designing data hiding systems.
The amount of embeddable (and recoverable) data per
unit area should meet the application-specific requirements.
High correct detection rate (CDR) is always desirable,
and for some applications it is critical, e.g. where every
single bit of the embedded data carries equally significant
information and needs to be correctly recovered. Error
correction coding (ECC) techniques can guarantee error-free
data extraction only above a certain level of raw CDR. The
security of the hidden data is also an important issue to be
addressed—the designed system needs to be secure against
application-specific attacks.
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In its early stages the research work on combining
halftoning and data embedding was focused on monochro-
matic printing of grayscale images. Later the research work
was extended to color images; however, the amount of
published work utilizing color images is significantly lower.
In the early work, Fu and Au proposed a technique for
data embedding in black and white halftones by smart pixel
toggling, which is compensated by an opposite toggle in the
pixel neighborhood to preserve the average gray level.5 A
further improved technique was proposed by Guo where
a filter modelling the human visual system (HVS) is used
to obtain the optimal neighboring pixel whose change will
result in minimal visual error.6 The smart pixel toggling idea
was extended to use error diffusion halftoning algorithm,
where a non-causal kernel is used to reduce the error from
the pixel toggling.7 Another data hiding technique based
on pixel toggling while minimizing halftoning error metric
was proposed by Pei et al8 Their method for embedding
a visual pattern in two or more error-diffused halftones
is suitable for color halftones. The data embedding is
performed by forcing conjugacy between pixels of different
halftones. The detection is visual—when overlaying the
halftones the hidden visual pattern appears due to the
enforced conjugacy. However, all of these approaches are
embedding a data bit in a single halftone dot, so their
print-and-scan robustness is relatively low. Pei and Guo
proposed a kernel-alternated data hiding technique in error
diffusion halftones.9 The idea is to use two different kernels
for error diffusion according to the binary to-be embedded
watermark bits. The host image is block segmented so that
each block carries one watermark bit and is halftoned using
the corresponding kernel. The detection can be performed
in spatial domain by using look-up tables, or in frequency
domain as the two kernels used, Jarvis10 and Stucki,11 have
different frequency responses. Oztan and Sharma proposed
a data hiding technique12 for clustered-dot halftones based
on continuous phase modulation (CPM). The phase of the
clustered dots is altered according to the bit from the visual
watermark pattern. The detection is visual, by overlaying the
CPM halftone with non-modulated one. The same authors
extended this idea to bidirectional CPM.13 The phase shift
of halftone dots is performed in two different directions
(e.g. horizontal and vertical), so that two different visual
watermarks can be embedded in the same place without
interfering with each other. Another proposed extension
of CPM by Oztan and Sharma was to color halftone
screens.14 The colorant CMYK screens are shifted from each
other by appropriate angles to minimize dot overlap and
moiré effects. A technique for estimation of the colorant
screens from RGB scans is also proposed. The detection
is visual—by overlaying appropriate non-phase-modulated
halftone screen onto each of the colorant screens. Bulan et al.
proposed a data hiding technique for clustered-dot halftones
called orientation modulation.15 It is using the orientation
of the elliptically shaped clustered dots to embed data. The
detection is computational, and is using image moments
to detect the dot orientation. This approach achieves high

robustness to the print-and-scan channel, and it also offers
high data hiding capacity. This technique was extended to
color barcodes,16 but not to images with arbitrary content.

Few data hiding techniques have been proposed which
are based on the direct binary search (DBS) halftoning
algorithm.17,18 DBS is an iterative halftoning technique
which gives the best image quality due to the utilization
of HVS models in the halftone texture optimization stage.
Wan proposed a simple halftone pixel toggling approach
followed by DBS to improve the halftone quality.19 Zhuge
proposed a data hiding technique which is using two
DBS halftoned images to hide visual watermark.20 This
approach is similar to the ‘‘conjugacy approach’’—the data
embedding is performed by enforcing the levels of co-located
halftone pixels to correspond to the pixels of the watermark.
The minimization is performed jointly on both halftone
images and the detection is visual by overlaying the two
DBS halftones. Kacker and Allebach incorporated a block-
based spread-spectrum data embedding in the iterative
DBS technique.21 An HVS-based metric is used to estimate
the error between the continuous and the halftone image,
and another measure is used to estimate the quality of
watermark detection. While this technique is robust to the
print-and-scan channel, it is a 0-bit watermarking scheme,
meaning that the watermark carries no useful information
– the detector can only decide if a watermark signature is
present or not. Guo et al. used the orientation modulation
approach to hide data in DBS halftoned images.22,23 The
data is embedded by modulating the orientation of the
point-spread function which is used as an HVS-based
filter in the DBS halftoning process. The detector is using
trained filters and naive Bayesian classifier to detect the
orientation features in frequency domain. The robustness
to the print-and-scan channel is fair and the CDR allows
reliable data embedding and detection. An improvement
of this technique was proposed,24 where the embeddable
capacity is increased by using multi-layer watermarks, and
the computational complexity is decreased by using look-up
tables during the DBS halftoning and watermarking process.

In this article, we propose a joint halftoning and data
hiding technique based on the CDBS halftoning algorithm.25
The proposed technique for data embedding is an extension
of the previously described grayscale approach23 to color
halftones. There are several possible ways to extend the
original DBS-based orientation modulation to color; in
this work we are using only the chrominance channels
for data embedding as this results in improved capacity
and print-and-scan robustness while keeping the visual
degradation almost imperceptible. Data is embedded by
modulating the orientation of the chrominance point-
spread function used in the HVS-model-based iterative
CDBS halftoning. The proposed detection technique is
computational, and is utilizing learned templates using
principal component analysis (PCA) for correlation-based
detection of the embedded data from the scans. The obtained
evaluation results show that thismethod is suitable for a wide
range of print-and-scan robust data hiding applications.
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The next section describes the approach for data
embedding during CDBS halftoning. The process of data
extractions from scans is presented in Data Extraction from
Scanned CDBS Prints, followed by evaluation results in
Evaluation and concluding remarks in Conclusion.

DATA EMBEDDING IN CDBS HALFTONES
This section presents the joint halftoning and data embed-
ding approach. The watermark is always assumed to be
binary data; in cases where n-ary symbols are embedded, it
is assumed that the binary watermark had been converted
to n-ary data. Both the continuous and the halftone color
image are of the same size, R×C . The data is embedded into
non-overlapping blocks of size M × N . The embedding is
performed by modifying the orientation (perM ×N block)
of the chrominance point-spread function which is used in
the CDBS halftoning. The number of different orientations
is of the form 2B, where B is the number of bits embedded
in a single block of one chrominance channel. The total
number of embedded bits per color halftone block is 2B. The
proposed approach is restricted to bi-level three-colorant
(CMY) printers as well as bi-level four-colorant printers with
full undercolor removal. The assumed printing geometry is
dot-on-dot, the continuous-tone RGB image is normalized
to the [0, 1] range, and the possible CMY halftone pixel
values are: ‘‘1’’ - ink dot will be printed, and ‘‘0’’ – no ink
will be deposited. In this work, we use naive RGB to CMY
conversion: C = 1 – R,M = 1 – G, Y = 1 – B. As this work is
mainly focused on the data embedding and its visual impact
on the halftones, the absence of a full colorimetric printing
workflow is assumed to be not critical. Detailed description
of the halftoning and the data embedding process is given in
the next two subsections.

CDBS Halftoning
The color direct binary search halftoning algorithm25 is
an iterative halftoning algorithm which minimizes the
HVS-model-based perceived error between the continuous
image and the halftone image. Starting from an initial
halftone, every halftone pixel is modified (toggled) and
swapped with each of the eight neighbors. The effects of
these trial changes (seven possible toggles + eight possible
swaps for a 3-channel halftone) are evaluated so that only
the change (if any) which minimizes the perceived error the
most is accepted. All halftone pixels are examined in several
iterations until any possible pixel change does not reduce the
perceived error. Depending on the image this convergence
normally happens after 15–40 iterations; however, using our
implementation very high quality and almost converged
CDBS halftone is typically obtained only after 10 iterations,
regardless of the image content.

The original CDBS is using YyCxCz Ref. 26 as min-
imization color space, but the mathematical formulation
of CDBS in this section is not bound to any color space.
We denote the color channels of original continuous image
and the halftone image with fi[m] and gi[m], respectively;
[m] = [m, n] and (x) = (x, y) are discrete and continuous

spatial coordinates. The index i denotes the color channel—it
can be any channel from the following sets: {R,G,B}, {C,M,Y},
{Yy ,Cx ,Cz }, {Y,Cb,Cr }, or another color space. The error
image between the continuous and the halftone image is:

ei[m] = fi[m] − gi[m]. (1)

The perceived error ẽi(x) between these two images,
using a linear and channel-independent HVS model is given
in continuous spatial coordinates:

ẽi(x)=
∑
m

pi(x−Xm)ei [m] , (2)

where pi(x) is a point-spread function for the ith color
channel, the product matrix Xm addresses all of the discrete
samples of the error image ei[m]. The error metric E to be
minimized is the sum of squared perceived errors in all color
channels:

E =
∑
i

∫
ẽi2(x) dx. (3)

It is important to be noted that while the halftone gi[m]
is normally in CMY space, the error E may be expressed
(using Eqs. (1)–(3)) and minimized in another color space,
usually a luminance-opponent-color space. In this case, both
the continuous and the halftone image need to be converted
before calculating the error in the minimization space. It has
been shown18,25 that the error E can be expressed as:

E =
∑
i

∑
m

ei[m]cpe,i[m], (4)

where the matrix cpe,i [m] is the error ei [m] filtered with
the flipped matrix cpp,i [m]. This cpp,i [m] matrix is the
autocorrelation function cpp,i(x) of the point-spread function
pi(x) evaluated on the discrete coordinates of the halftone
image x= Xm:

cpe,i [m]=
∑
n

ei [n] cpp,i[n−m] (5)

cpp,i [m]= cpp,i (x= Xm) ; cpp,i(x)=
∫

pi(x)pi(y+ x) dy.

(6)

When a halftone pixel at location denoted as mt in the ith
(CMY) channel is modified (toggled), the change in the
halftone can be denoted with the values {ai [mt ] , 1≤ i≤ 3}.
The value of ai [mt ] can be either ‘‘-1’’ –if the ith color
channel pixel is switched off, ‘‘0’’ –if the ith color channel
pixel is not changed, or ‘‘1’’ –if the ith color channel pixel
is switched on. This halftone pixel change will cause pixel
value changes in the minimization color space which does
not need to be the same as the halftone color space. These
changes in the minimization color space, denoted with the
values {bi [mt ] , 1≤ i≤ 3}, can be calculated from {ai [mt ]}
by involving the appropriate color space transform between
the halftone color space and the minimization color space.
The change in the errorE caused by this halftone pixel change
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is given by:

1Et =
∑
i
(b2

i [mt ]cpp,i[0] + 2b2
i [mt ]cpe,i[mt ]). (7)

When a halftone pixel at location mt in the ith (CMY)
channel is swapped with a neighboring halftone pixel
at location denoted as ms, the change can be seen as
two consecutive toggles defined with the set of values
{ai [mt ] , bi [mt ] , ai [ms] , bi [ms]}. The change in the error
E caused by this pixel swap is given by:

1Es =
∑
i

(
b2
i [mt ]cpp,i[0] + 2b2

i [mt ]cpe,i[mt ]

+ b2
i [ms]cpp,i[0] + 2b2

i [ms]cpe,i[ms]
)
. (8)

If 1E is negative, it means the trial change is reducing the
error so it is a possible candidate for an accepted change.
After all possible toggles and swaps are examined for a given
pixel, the change which results in the biggest error reduction
(biggest abs (1E)) is accepted, and both the halftone and the
cpe,i [m] matrix are updated:

gi,new [m]= gi [m]+ai [mt ] δ[m−mt ] + ai [ms] δ[m−ms],

cpe,i,new [m]= cpe,i [m]+ bi [mt ] cpp,i[m−mt ]

+ bi [ms] cpp,i[m−ms],

δ[m] =

{
1, m= 0
0, m 6= 0.

(9)

Equations (7) and (8) show that no actual point-spread
function filtering is needed every time a change is made
in the halftone; the impact of the trial pixel change on the
error E can be easily calculated from cpp,i[m] and cpe,i[m],
which are initialized using Eqs. (5), (6) and (1), and cpe,i[m]
is constantly updated using Eq. (9) during the iterations.

The initial CMY halftone for the CDBS algorithm can
be either a random halftone, or as originally proposed,25
a channel-independent DBS halftone which is obtained by
halftoning the colorants separately with a monochromatic
DBS18 using a point-spread function which models the
luminance contrast sensitivity. The monochromatic DBS is
implemented using the same set of Equations (1)–(9), with
the only change that both continuous and halftone images
are single channel images. Channel-independent DBS is also
used as a starting halftone in this work—it results in a faster
overall computation when compared to calculating a CDBS
halftone from a random initial halftone. The search strategy
used in this work is a block-based search strategy:27 instead
of performing trial changes and accepting them on a pixel
level, the block-based strategy is performing the trial changes
for every pixel, but only one change is accepted within a
D×D block. Accepting only the change which reduces the
error the most within a block ensures faster minimization
convergence (up to 10 times faster).27

Data Embedding using Orientation Modulation
Using orientation modulation for data embedding during
iterative DBS halftoning of grayscale images was originally
proposed by Guo et al23 The main idea of this technique is
to use a point-spread function (in Eq. (6)) which is modified
(oriented) according to the data which is to be embedded in
theM ×N block. Each different orientation can encode one
n-ary symbol. Such a modified point-spread function should
no longer be seen as one which models the HVS behavior,
but rather as a function which controls the orientation of
error distribution during the iterative minimization. The
resulting halftone texture is coarser (the error ismore spread)
in the orientation of the point-spread function (and it is
smoother in the perpendicular orientation), which can be
easily detected in the frequency domain because of lower
energy concentration in the smoothening spatial orientation.

There are different possible ways to extend the original,
grayscale-based, point-spread function orientation modula-
tion embedding to CDBS halftones. Our initial empirical
test showed that using only chrominance channels for data
embedding while leaving the luminance channel intact
results in less visible distortions (per unit of data embedded)
when compared to data embedding in color channels which
also contain luminance information. This does not come as
surprise; it is commonly known that the contrast sensitivity
of the HVS is higher for the luminance channel than for the
red-green or blue-yellow opponent-color channels.28–31

In this work, we use the YCbCr opponent-color space
as error minimization space for the CDBS algorithm. Using
this color space resulted in finest halftone textures when
compared to the CIELAB and YyCxCz opponent-color
spaces. For the luminance channel Y we use the same
point-spread function which was proposed in the original
DBS/CDBS; it is derived from the luminance contrast
sensitivity function proposed by Nasanen.32 For the point-
spread function used for the two chrominance channels Cb
and Cr , we start with a Gaussian function23,33 and add two
parameters to control its orientation and eccentricity:

pc,θ (x, y)= e−(ax
2
r +by2

r ),

xr = x cos(θ)− y sin(θ), yr = y cos(θ)+ x sin(θ),

a=
η

2σ 2 , b=
1

η2σ 2 . (10)

In the last equation, θ is angle which controls the orientation
(θ + 90◦) of the point-spread function,σ controls its effective
spatial support, while xr and yr are rotated coordinates. The
parameter η (η > 1) is a quality factor which controls the
eccentricity of the elliptic point-spread function pc,θ (x, y).
The number of possible orientations is 2B, where B is the
amount of information bits which can be embedded in a
block of one chrominance channel. The angle difference
between neighboring orientations is 180/2B deg. During
the CDBS initialization, a separate cpp,i,θ [m] matrix is
calculated using Eq. (6) for each of the differently oriented
point-spread functions. The actual choice of cpp,i,θ [m]
during minimization is made on a M × N block basis,
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Figure 1. Fourier transform of a Cb halftone block, θ = 135◦. The quality factor from left to right: η= 1.5; 2; 2.5; 3; 3.5; 4.

(a) (b)

Figure 2. (a) Different variations of embedded orientation feature for θ = 45◦, η= 3. (b) The first three principal components for θ = 45◦, η= 3.

depending on the chrominance channel and the actual data
to be embedded.

In contrast to the originally proposed approach,23 the
error minimization is not performed in parallel for all the
blocks, but in the usual raster-scan order. The update of
an accepted change using Eq. (9) causes changes within the
support of cpp,i,θ [m] which may influence the neighboring
M ×N blocks. However, this influence is such that it ensures
smooth transitions between different M × N blocks. The
reason we are using single-pass raster-scan minimization
is to prevent generating border artefacts because of using
different cpp,i,θ [m] through the halftone image, which results
in a visually higher quality image.

When increasing the parameter η, the eccentricity
of the point-spread function also increases, which forces
the error smoothing in the particular orientation to be
more localized and emphasized. This practically regulates
both the shape of the embedded oriented feature and the
distortion in the halftone texture. Figure 1 shows the Fourier
transform of different Cb halftone blocks (derived from the
same continuous block) for different values of the quality
factor η. Please note that while the orientation of the
embedded feature is θ , the orientation of the corresponding
point-spread function is θ + 90◦.

DATA EXTRACTION FROM SCANNED CDBS PRINTS
This section presents the proposed detection scheme for
data extraction from scanned CDBS prints. There are few
different approaches for detection of oriented features in the
state-of-the-art halftoning and data hiding techniques. Guo
et al. in the grayscale version of orientationmodulation23 use
a trained spatial filter to obtain a single correlation measure
for each orientation, which can then be used in a probabilistic
channel model for naive Bayesian classification. Bulan et al.
use second-order image moments as features for Bayesian
classification of orientations in clustered-dot halftones.15
Son et al. proposed another detector for oriented clustered
dots which is employing separate learned dictionary of

templates for each orientation.34 The dictionary which yields
to minimal error when representing (with limited number
of templates/words) the oriented clustered-dot defines the
extracted bit. This approach achieved better results when
compared to second-order image moments-based detection,
which is expected as a large learned dictionary is able to
capture the different variations among clustered dots with
same orientation. However, this approach has also proven to
be very slow (compared to the moments-based detection it is
around 103 times slower)34 because of the computationally
expensive search for the set of optimal templates in the
dictionary.

In this work we propose a detection method which can
be seen as a combination between using correlation-based
output of trained filters, and employing different filters
which can better capture the variation among oriented CDBS
halftone blocks. The data embedding described in Data
Embedding using OrientationModulation is not explicit and
direct, but is rather a product of ‘‘enforcing certain error
distribution’’ in the converging CDBS algorithm. The speed
of convergence is dependent on the image content (and
the initial halftone), so a certain energy level of embedded
data cannot be strictly guaranteed. This results in variation
among the embedded oriented features. It needs to be noted
that while the quality factor η regulates, or more accurate,
influences the shape of the embedded orientation feature,
there is still significant variation for fixed η among the
oriented features, which is affected by the different visual
content. This feature variation is depicted in Figure 2(a).

In order to account for the oriented feature variation
among each orientation, we use principal component analy-
sis (PCA) to learn themainmodes of variation. The principal
components (eigen-templates) eθ,k[m] are calculated for
each orientation θ from a digital watermarked halftone, so
they are not implicitly printer/scanner dependent. Fig. 2(b)
shows the first three principal components obtained using
8192 visually diverse training halftoneM ×N templates.
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Figure 3. Images used for the evaluation, from left to right indexed as 1 to 6.

The M × N training templates are transformed using
fast Fourier transform (FFT). The central 3× 3 coefficients
(corresponding to the DC coefficient and the lowest spatial
frequencies) are removed as they are highly dependent
on the image data but are not useful for detection of
the orientation. The same case is with the highest spatial
frequencies – they just add noise to the training templates
and carry no information about the orientation, so all of
the FFT coefficients above the empirically chosen � =

0.7π normalized frequency are removed from the training
templates. Then PCA is performed which results in the
eigen-templates eθ,k[m].

The similarity measure for a testing FFT template t[m],
for the orientation θ , is defined by:

Dθ =
K∑
k=1

∑
m

eθ,k[m]t[m] −
K∑
k=1

∑
m

eθ+90,k[m]t[m], (11)

where Dθ is a similarity measure for the testing template
t[m] using the first K eigen-templates for the θ orientation.
The first term on the right side in Equation (11) is clearly
a correlation measure between the template t[m] and the
eigen-templates for the θ orientation. The second term
is a correlation measure between the template t[m] and
the eigen-templates which correspond to the perpendicular
orientation θ + 90◦. The fact that two features with perpen-
dicular orientations are the most dissimilar can be observed
by the strong negative value of their cross-correlation.
Subtracting the two terms in Equation (11)means that theDθ
measure consists of similarity with the inspected orientation
θ but also dissimilarity with the perpendicular orientation
θ + 90◦. The detected orientation θd is:

θd = arg max
θ

Dθ . (12)

The detected orientation θd is further decoded to the binary
bit (or bit-string) it represents. Prior to detection, the scanned
image ismanually aligned and resized tomatch the size of the
printed halftone. Thus, the geometric distortions introduced
during the scanning process (translation, rotation, and scal-
ing) are manually compensated, as an automatic geometric
synchronization is not in the focus of this work.

EVALUATION
In this section, we present experimental results for the
proposed data hiding technique. The evaluation image
set consisted of six images from the publicly available

CID:IQ image database.35 The six images were selected to
include wide visual diversity in terms of luminance level,
saturation, and texture. The size of all images is 800× 800.
The selected image set is shown in Figure 3. The CDBS
halftoning and data hiding algorithm was implemented in
C/C++. A channel-independent DBS is calculated first
using random initial color halftone; then it is followed by
the proposed joint CDBS and data embedding. The total
computational time for embedding around 6 kilobits of
data in a 1-megapixel halftone (starting from a random
halftone) is around 4.3 seconds on the i7-5600U CPU. We
printed our CMY halftones at 300 dpi and 600 dpi using
the HP Design Jet Z3200 printer and the Caldera raster
image processing software. HP Premium Instant-Dry Satin
Photo Paper 260 g/m2 was used, the amount of ink for
each of the CMY colorants was set to the experimentally
obtained 33% which, for the used photo paper, ensures 100%
ink coverage per colorant. The dot-gain compensation curve
was approximated using a gamma function (γ = 0.6 for all
colorants). The prints were scanned at twice the printing
resolution, using the Epson 10000XL scanner. All color
management options were switched off during printing and
scanning. Only the first two principal components (K = 2)
were used for detection, the size of the blocks in the CDBS
search strategy is D = 4, and the standard deviation in the
chrominance point-spread function was set to σ = 2. An
MS Windows demo application for watermark embedding,
along with Matlab scripts for watermark detection, can be
downloaded from here: http://www.colourlab.no/cid.

Objective Quality Evaluation
An example of both CDBS and watermarked CDBS digital
RGB halftone is shown in Figure 4; the quality factor is
η = 2.5, and the difference between the two halftones is
difficult to notice when displayed (printed) at 300 dpi or
higher resolution.We use two different image qualitymetrics
to provide objective evaluation of the distortion introduced
from data embedding. The first metric, HPSNR, is also used
in the grayscale version of orientation modulation,23 so it is
using only the luminance information:

HPSNR=10 log10

 R×C × 2552∑
m
(fY [m] ∗ h [m]−gY [m] ∗ h[m])2

 .
(13)

In the last equation, R and C denote the number of rows and
columns of the image, fY [m] and gY [m] are the luminance
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Figure 4. (left) Non-watermarked CDBS RGB digital halftone.
(right) Watermarked CDBS RGB digital halftone using blocks of size
32×32, B= 3 bits per block, and quality factor η= 2.5.

Table I. HPSNR for different η.

η= 1.5 η= 2.5 η= 3.5

HPSNR [dB] 39.8 39.67 39.5

components of the original digital RGB continuous-tone
f [m] and the watermarked RGB halftoned image g [m],
respectively. The symbol ‘∗’ denotes convolution with a 7× 7
normalized Gaussian filter h [m] with standard deviations
σx = σy = 1.3 (as used in the reference grayscale method).23
The purpose of this Gaussian filtering is to simulate the
low-pass nature of the HVS when calculating the image
difference. The results shown in Table I are averages for all of
the six test images. It can be seen that the HPSNR values do
not vary significantly when increasing the watermark quality
factor η (increasing the introduced distortion). Even though
different images were used for evaluation in the reference
grayscalemethod, it is worth noting that the obtained average
HPSNR values with our method are at least 3.5 dB higher.
This shows that, as intended, most of the data embedding
distortion is distributed in the chrominance channels.

We use the S-CIELABmetric36 tomeasure the perceived
color difference 1Eab between the continuous-tone and
the watermarked halftone in digital domain. S-CIELAB is
employing spatial filtering to model the HVS behavior, so
when calculating the metric, the viewing distance was set
to 50 cm, and the halftone pixel resolution was set to both
300 dpi and 600 dpi to match the actual prints. The averaged
results for the six test images are shown in Table II. It can be
seen that the impact of increasing η is bigger on the 300 dpi
halftone than on the 600 dpi halftone. The obtained low1Eab
values using digital images are consistent with the actual
physical prints—it is very difficult to notice the introduced
image distortion in the printed images, especially for the 600
dpi prints, regardless of the different values for the quality
factor η.

Correct Detection Rate
The CDR is defined as percentage of correctly extracted
bits from the scanned prints. When quaternary (B = 2) or
8-ary (B= 3) symbols are embedded, Gray coding37 is used
to map the n-ary symbols (orientations) to binary strings.

Table II. S-CIELAB metric:1Eab for different η.

η= 1.5 η= 2.5 η= 3.5

300 dpi 0.85 1.09 1.38
600 dpi 0.48 0.53 0.56

Table III. CDR [%] for different block sizes M × N . (B = 2, η= 2).

24× 24 32× 32 40× 40

300 dpi 87.7 93.2 93.7
600 dpi 86.4 92.7 93.0

We provide results about the dependence of CDR on the
block size M × N used for data embedding, as well as on
the different quality factors η, and different number of bits
B embedded per chrominance channel block. The scanning
resolution is twice the printing resolution, and the scans are
manually aligned and resized prior to detection. Table III
shows the impact of different block sizes on the CDR. Two
bits were embedded per block (B = 2), and the quality
factor was set to η = 2. The CDR is averaged for all six
images and two chrominance channels. While the CDR for
24× 24 blocks is considerably lower, it is almost identical for
32× 32 and 40× 40 blocks. In all of the remaining results
we used 32× 32 blocks. It needs to be noted that the 4th
image (with significant amount of saturated blue and no
red channel at all) contributed most to dropping the total
CDR, as the CDR for data embedded in the red-difference
channel of this image is around 40–50%. When the result
for this image is excluded from the averaging, the overall
CDR in Table III is higher for approximately 4 percentage
points. Table IV shows the impact of different η and B on
the CDR. The shown CDR is averaged for all six test images
and chrominance channels. When increasing the quality
factor η, the embedded features are more distinctive, so the
CDR also increases. When increasing the embedded bits per
chrominance channel block B, the CDR decreases as the
angle between the embedded orientations becomes smaller.
It can be seen that the embedded information is robust for
both B = 1 and B = 2. The same notice about the 4th test
image applies to these results as well—if the 4th test image
is excluded from the results then the CDR in Table IV will
be higher for about 3–4% points. The most common source
of detection error is high frequency noise, as well as extreme
levels in the color channels (especially the red and the blue
channel). When compared to the grayscale method, it can
be seen that a significant improvement of CDR is achieved
with our proposed method; e.g. the CDR of the method23 for
B= 2, and for 300 dpi and 600 dpi prints is around 85% and
55%, respectively.We are unable to provide exact comparison
as different test images are used (grayscale versus color).

We tested the CDR dependence on luminance level, by
printing a ramp for all 256 gray levels where each gray level
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Figure 5. Average CDR (%) for flat gray (C =M= Y ) patches.

Table IV. CDR [%] for different quality factors and different number of embedded bits
per 32× 32 block, for both 300 dpi and 600 dpi prints of all six test images.

300 dpi 600 dpi
B = 1 B = 2 B = 3 B = 1 B = 2 B = 3

η= 1.5 94.8 90.3 61.6 93.9 87.8 56.9
η= 2.5 95.7 94.5 79.2 95.5 93.5 71.9
η= 3.5 95.9 94.5 83.6 95.7 94.2 79.1

patch contains 100 embeddable blocks. The CDR is shown
in Figure 5, and is 100% in the interval [23, 234]. It needs
to be noted that this excellent robustness to luminance levels
is partly because of the constant (flat) patches used, which
ensures stable presence of all three colorants and leads to
nearly optimal features embedding and detection.

Data capacity
The total number of bits which can be embedded in a color
halftone depends on the halftone size, the block sizeM ×N
used for embedding, and the number of bits embedded per
block per chrominance channel, B. When compared to the
grayscale version, the available data embedding capacity is
doubled as two chrominance channels are used. The CDR
results showed that the number of correctly recovered bits
additionally depend mainly on the image content and the
quality factor η. Different data hiding applications may
have different requirements on the CDR. For example, if a
binary visual pattern is embedded, then it may be visually
recognized from as low as 70% of its bits.8,38 But if sensitive
data is embedded, such as names, ID numbers or URLs, then
nothing less than CDR= 100% may be acceptable. We also
note that error correction coding (ECC) techniques may be
used to ensure perfect data recovery from the prints at the
expense of reducing the amount of embedded actual useful
data. However, in order for ECC techniques to be beneficial,
they may still require high CDR of raw data. So, the actual
useful data capacity also depends on the minimally required
CDR, and on the ECC technique used (if any). Table V shows
the maximum number of raw embeddable bits for different
printing resolutions and for minimum 95% CDR without
using ECC techniques.

Table V. Maximum number of embeddable bits for minimum CDR= 95%, without
using ECC, for different printing resolutions and printed area.

Square inch Passport photo Business card
(4.5 cm× 3.5 cm) (9 cm× 5 cm)

300 dpi 350 850 2450
600 dpi 1400 3400 9800

CONCLUSION
In this article, we have proposed an extension of the
grayscale orientation modulation data hiding technique23
to the high quality color direct binary search halftones.
The data embedding is performed in the chrominance
channels of the YCbCr color space, by modulating the
orientation of the point-spread function during the iterative
halftoning error minimization. A robust similarity measure
based on eigen-templates is proposed for the computational
detection. The proposed method provides high quality of
the watermarked image, variable data embedding capacity,
and relatively high robustness to the print-and-scan channel.
The experimental results show significant improvement
over the grayscale method both in terms of available data
embedding capacity and CDRs after printing and scanning.
The relatively high CDR makes the proposed approach
suitable for data hiding applications which require exact data
extraction.

The next steps to follow this work will include: searching
for other embeddable features suitable for integration in
CDBS halftoning while also improving the scalability of the
technique in terms of different types of imaging devices
which may be used for data extraction, analyzing the
visibility of the embedded data and propose data hiding
with uniform visibility across different image content, as
well as proposing techniques which will enable automatic
geometrical synchronization for data extraction from color
prints.
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