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Abstract

This research investigates the dynamics of capacity planning and dispatch
in the US electric power sector under a range of technological, economic,
and policy-related uncertainties. Using a two-stage stochastic programming
approach, model results suggest that the two most critical risks in the near-
term planning process of the uncertainties considered here are natural gas
prices and the stringency of climate policy. Stochastic strategies indicate
that some near-term hedging from lower-cost wind and nuclear may occur
but robustly demonstrate that delaying investment and waiting for more in-
formation can be optimal to avoid stranding capital-intensive assets. Hedging
strategies protect against downside losses while retaining the option value of
deferring irreversible commitments until more information is available about
potentially lucrative market opportunities. These results are explained in
terms of the optionality of investments in the electric power sector, leading
to more general insights about uncertainty, learning, and irreversibility. The
stochastic solution is especially valuable if decision-makers do not sufficiently
account for the potential of climate constraints in future decades or if fuel
price projections are outdated.

Keywords: Electricity, uncertainty, stochastic programming, climate

policy, risk management
JEL: 1.94, Q48, Q52, D84

*Tel.: +1 650 353 8566.
Email address: jbistline@epri.com (John E. Bistline)

Preprint submitted to Energy Economics June 28, 2015

© 2015. This manuscript version is made available under the Elsevier user license
http://www.elsevier.com/open-access/userlicense/1.0/


http://ees.elsevier.com/eneeco/viewRCResults.aspx?pdf=1&docID=5703&rev=2&fileID=151238&msid={894DEC6B-D51D-4635-96F1-F75734A615B5}

1. Introduction

Utilities, generators, and other energy planners face many uncertainties
when making near-term decisions. Since energy-sector assets like power
plants, transmission facilities, and refineries are long-lived and largely ir-
reversible, insufficiently characterizing or accounting for uncertainty can im-
pose economic and environmental burdens on a range of stakeholders. Decision-
makers in the US electric power sector must grapple with many simultaneous
challenges, including compliance with an array of environmental regulations,
an aging fleet of generators, sudden changes to the economics of fossil re-
sources, and an increased emphasis on demand-side management.

Given the complexity and centrality of uncertainty in energy and envi-
ronmental management, there is a need for decision support tools to provide
a greater sense of clarity and to reduce exposure to downside losses while
preserving options for upside gains from volatility. However, in the energy
modeling community, there is currently a gap between the recognition of
uncertainty’s importance and its actual incorporation in models. Many en-
ergy models use deterministic frameworks, and when uncertainty analysis is
performed, it often involves simple methods like sensitivity or scenario anal-
ysis (Kann and Weyant, 2000). When incorporating uncertainty, modelers
typically opt for propagation approaches like Monte Carlo analysis. Since
propagation frameworks suggest a different strategy for each state of the
world, these approaches leave decision-makers in a quandary about how to
choose among alternatives before uncertainty is resolved and how to trans-
late results of modeling efforts into actionable insights (Birge and Louveaux,
2011; Infanger, 1994). Additionally, since the costs associated with uncer-
tainty remain unknown, propagation frameworks cannot quantify the relative
importance of uncertainties.

In contrast, sequential decision-making frameworks like stochastic pro-
gramming and stochastic control incorporate uncertainty explicitly and iden-
tify hedging strategies that balance the risks of premature action with those
of delay. Such models determine optimal policies in multiple stages based on
updated information and offer more robust treatments of uncertainty than
propagation models, which select policies once and do not incorporate learn-
ing thereafter. The energy modeling literature that uses stochastic program-
ming typically has limited capabilities and does not take full advantage of
the framework (Bistline and Weyant, 2013). Appendix A discusses this
literature in detail.



This work investigates how the explicit inclusion of uncertainty through
sequential decision-making can provide insights to energy planners. The ob-
jective is to identify novel conclusions that cannot be captured in (or would
not be apparent using) standard deterministic approaches (Birge and Rosa,
1996; Kanudia and Shukla, 1998; Durand-Lasserve et al., 2010; Usher and
Strachan, 2012). In doing so, the tools developed and applied here provide
better guidance for uncertainty characterization, analysis, and communica-
tion. In particular, this paper investigates how uncertainty may impact the
deployment of supply-side technologies in the US power sector using a two-
stage stochastic programming framework with uncertainties related to the
stringency of climate policy, natural gas prices, upstream methane emissions
from gas production, and others.

The motivations of this research are to examine how technological, eco-
nomic, and policy-related uncertainties can impact near-term planning de-
cisions and to quantify the value of explicitly incorporating uncertainty and
flexibility in the decision-making process. In addition to providing a frame-
work for analyzing adaptive management strategies, this energy-economic
model is among the first to use a stochastic programming framework with a
wide range of simultaneous uncertainties and many scenarios. The model is
also the first to incorporate upstream emissions from natural gas production
to examine the trade-offs between uncertain life-cycle costs and environmen-
tal impacts of different technologies, as discussed in Section 3. Another
contribution is to offer rigorous quantifications of distributions for uncer-
tainties instead of using ad-hoc probabilities or uniform distributions. This
characteristic exhibits a higher degree of fidelity to the real-world investment
problems of utilities and generators.

The remainder of the paper is organized as follows. Section 2 formulates
a two-stage stochastic programming model of capacity planning for the US
power sector and defines metrics for quantifying the importance of uncer-
tainty. Section 3 discusses the uncertainties included in the analysis and
their quantification. Section 4 presents model results for capacity planning
and dispatch under these uncertainties, and Section 5 analyzes these results
in the broader context of learning, irreversibility, and optionality of capital
investments. Section 6 summarizes the primary insights from the analysis.



2. Modeling Approach

Capacity planning in the power sector is well-suited to the stochastic
programming paradigm, where strategies adjust over time as new informa-
tion becomes available about technologies, resources, and polices. Decisions
about capacity expansion and operation take place against long and highly
uncertain planning horizons. Uncertainties about developments in the system
environment impact the cost-effectiveness of planning decisions, particularly
in the power sector where long-lived and irreversible capital investments are
designed to last many decades. The long lead times and lifetimes of as-
sets mean that the environments in which power plants come online may be
very different from the ones in which they are planned. Hence, suboptimal
near-term decisions that do not account for a range of potential fuel prices
and environmental policies (for example) can cost ratepayers, investors, and
taxpayers and have important economic and environmental implications.

2.1. Deterministic Capacity Planning Model

This section discusses the development of an intertemporal optimization
model of capacity planning and dispatch in the US electric power sector to
address the research questions from Section 1.! The discrete-time model
determines capacity investment and production decisions between 2010 and
2050 in five-year increments with three load segments per year. The segments
create a piecewise approximation of the load duration curve and preserve
total annual generation and peak-load characteristics. The model uses a
partial equilibrium framework with exogenous fuel prices. Data for the model
come from a variety of public sources, as described in Appendix B.

The model assumes that capacity installation and electricity production
decisions are coordinated among utilities and generators. In the core deter-
ministic model, utilities determine the path of investment and capital stock
that minimizes the sum of discounted energy system costs for all capacity
blocks during all periods while satisfying power system constraints. Ap-
pendix B and Bistline (2013) provide additional mathematical detail about
the model.

IThe model data and code are available online.



2.2. Two-Stage Stochastic Programming Model with Recourse

The linear programming model in Section 2.1 computes the optimal in-
vestment strategies for the deterministic capacity planning problem. Under
perfect information, this solution provides a lower bound on discounted costs
in a particular scenario. Due to the difficulties of predicting the outcomes
of uncertainties introduced in Section 3, it is unrealistic to assume that a
strategy that is optimized for a given scenario will be optimal under a range
of states of the world. Disregarding inherently random characteristics may
limit the usefulness of solutions designed using deterministic approaches.

Stochastic programming techniques can be used to compute optimal hedg-
ing strategies in problems with uncertain data, which provide contingency
plans that adapt to realizations of random variables (Beale, 1955; Dantzig,
1955). These solutions perform reasonably well under a variety of plausi-
ble scenarios. Based on the notation of Infanger (1994), the basic two-stage
stochastic program with recourse in a cost-minimization setting can be for-
mulated as:

min z = z+E, fy”
s.t. Ax =b
—BY¥r + Dwyw = ¥
x, y“’ >0, we

Q set of all outcome paths
w € () state of the world
x vector of first-stage decisions
Y vector of second-stage (recourse) decisions

Here, all values corresponding to objective function coefficients (the ¢
vector) and first-stage constraints (the A matrix and b vector) are known
with certainty. The second-stage objective coefficients (the f“ vector) and
constraint parameters (the B and D“ matrices and d“ vector) are unknown
when utilities make first-stage decisions and are characterized only by discrete
probability distributions.

Two important questions for decision-makers and modelers are: How
much should decision-makers be willing to pay for information about uncer-
tain quantities? What is the value of incorporating uncertainty explicitly in
the decision-making process instead of using a deterministic approximation?



Stochastic programming settings provide convenient mathematical frame-
works and metrics for quantifying answers to these questions.

Before discussing these measures, it is useful to distinguish between three
approaches for solving problems under uncertainty (Infanger, 1994). The
wait-and-see (learn-then-act) approach assumes that uncertainty is resolved
and the outcome w € €2 can be observed before selecting the decision vec-
tor « (Madansky, 1960). This solution suggests that perfect information is
available before decisions are made. The problem can be formulated as:

2* = min f(z,w)

st.ze CY CR"

where the wait-and-see solution is ¥ € argmin {f(z,w) | z € C¥}. The

expected cost with perfect information can be found by taking the expected
value over all possible scenarios: z,, = Ez* = Y _2p(w). The prob-
lem with this approach is that the resulting solutions are not implementable,
which means that outcomes are superoptimal and decisions cannot be regret-
ted ex post.

The here-and-now approach finds a solution z* that hedges against all
enumerated contingencies. The optimal stochastic solution addresses the
problem where a decision-maker cannot completely resolve uncertainty before
acting:

z*=min E, f(x,w)

s.t.xEC:mC“’

we

where the here-and-now solution is expressed as * € argmin {E, f(z,w) | x €

NC“}. The expected cost of the stochastic solution is z* = min E, f(z,w).
T

Finally, the expected-value approach replaces the stochastic parameters by
their expected values or another measure of central tendency. This approach
sidesteps uncertainty by using a single set of input parameters and solves the



resulting deterministic problem:
Z4 = min f(z,w)
st.xeC”

where @ = Fw = ) _owp(w), and the expected-value solution is x4 €
argmin {f(z,w) | z € C¥}. The expected cost of the expected-value solution

is zg = E, f(x4,w). Although this approach is comparatively straightforward
to formulate and solve, this simplification may exclude critical dynamics of
the uncertain system and perform poorly in expectation. The expected-
value approach initially solves the deterministic optimization problem where
uncertain parameters are replaced by their mean values. Then, first-stage
decision variables are fixed to this solution, and the second-stage problem is
solved for each possible state of the world.

Figure 1 compares the expected costs of the expected-value (z4), stochas-
tic (z*), and perfect information (z,) strategies.? The figure also illustrates
the metrics discussed in Section 2.3.

2" =min E, f(z,w)
x

Zws = Ey,2% Zd = wa(.rd, (AJ)
] | LS Objective function
' }' I value (cost)
|
EVPI VSS

Figure 1: Number line comparing expected costs under different decision-making ap-
proaches. The spacing between values is illustrative.

2.83. Metrics

The importance of uncertainties is assessed through two metrics: the
expected value of perfect information (EVPI) and value of the stochastic so-
lution (VSS). Of the limited energy modeling research that uses a stochastic

2Madansky (1960) proves that Zg < z,s < 2* < z4 using Jensen’s inequality and the
convexity of the objective function.



programming framework, few studies perform EVPI calculations and even
fewer incorporate VSS metrics, as discussed in Appendix A. The underuti-
lization of these metrics neglects important opportunities for policy insight
and model development afforded by stochastic programming (Bistline and
Weyant, 2013).

The EVPI compares the expected costs of the stochastic and wait-and-
see solutions and represents the expected change in the objective function
value if perfectly accurate forecasts are available. The EVPI has important
implications for decision-makers in placing a bound on their willingness to
pay for information-gathering activities. The metric is defined as:

EVPI = z* — z,,
=min E, f(z,w) — E, [min f(z, w)]

The EVPI captures the notion that, even though parameters may contribute
to variations in the objective function value, these uncertainties may be ir-
relevant to decisions. This feature allows stochastic programming models
to identify decision-relevant parameters, which is one of the limitations of
deterministic sensitivity analyses and uncertainty propagation approaches.
Despite the usefulness of this metric, there are a few complicating fac-
tors involved in calculating the EVPI. First, synergistic effects among con-
temporaneous uncertainties mean that the joint value of information likely
differs from the sum of individual ones. Such effects are important areas
of exploration but require frameworks capable of modeling many simulta-
neous scenarios like the one discussed here. Second, it is often challenging
to identify a decision-maker who would place a value on information or to
pinpoint appropriate sources of information. In some cases, uncertainty may
be irreducible, even though the EVPI is large. Third, although one hopes
that gathering more information will reduce uncertainty, research and ex-
ploration often reveal unforeseen complexities and temporarily can increase
uncertainty (Hannart et al., 2013; Morgan and Keith, 1995). Finally, since
the EVPI depends on prior information about an uncertain parameter, the
EVPI can be sensitive to tail probabilities. If the well-established overconfi-
dence effect narrows prior distributions,® the EVPI is likely biased downward,

3The overconfidence effect refers to the systematic tendency to underestimate uncer-
tainty so that a decision-maker’s subjective confidence in their probability assessments is



which may lead decision-makers to systematically underestimate the utility
of information gathering (Hammitt and Shlyakhter, 1999).

The VSS compares the expected costs of the expected-value and stochas-
tic solutions and describes the “value of knowing how little you know” (Mor-
gan and Henrion, 1990). It quantifies the expected difference in cost for a
decision based on stochastic analysis and one that ignores uncertainty by
using a deterministic solution. The VSS is defined by the equation:

VSS =2, — 2*
= wa(l'd,W) — min ]wa(x,w)

The explicit inclusion of uncertainty makes decision-makers at least no worse
off in expectation, assuming that the additional costs of analysis and interpre-
tation are reasonably small. The VSS is largest in contexts with asymmetrical
payoffs for miscalculations and misforecasts.

The VSS has many implications for decision-makers and modelers. Since
stochastic programs are more difficult to formulate and solve than determin-
istic models, the VSS can indicate whether approximations of optimal strate-
gies are nearly optimal or extremely suboptimal. Hence, decision-makers can
use the VSS as a means to gauge the quality of an approximate solution and
to quantify the value of incorporating uncertainty explicitly. The VSS calcu-
lates the added value of using a sequential decision-making model and guides
analysts in the process of model construction by identifying the most impor-
tant uncertainties for inclusion. The VSS also can be used to prioritize efforts
to quantify various uncertainties by offering general guidance for tasks like
allocating resources to assess distributions, selecting the extent and exhaus-
tiveness of elicitation efforts, and determining computational trade-offs when
discretizing distributions.

Initially, it appears contradictory that the VSS can be used to determine
whether a stochastic framework is appropriate, since calculating the VSS
seems to assume that a probabilistic model is already available. However,
upper bounds for VSS values can be approximated using a core determin-
istic model. Birge (1982) shows how the EVPI and VSS are bounded by
Zq — Zws- The quantities needed to calculate this bound can be computed
using standard deterministic models but require at least preliminary esti-

higher than their objective accuracy (Fischhoff et al., 1977).



mates of probabilities associated with different scenarios, which underscores
the importance of uncertainty quantification.

Even if a stochastic model is available, the VSS is still useful for model
development. The VSS for each uncertainty under consideration can be cal-
culated individually to determine which random parameters have the largest
VSS magnitudes. Such values indicate that these uncertainties should be
included in more computationally complex joint model runs and should be
given additional attention during the uncertainty quantification and model
refinement processes.

The EVPI and VSS are different metrics that compare the expected value
of the stochastic solution with another made without incorporating uncer-
tainty. For the VSS, the other decision is made when uncertainty is dis-
regarded, even though it still exists. For the EVPI, the other decision is
made when uncertainty is removed by obtaining perfect information. Thus,
the VSS can be viewed as the additional expected cost of pretending that
uncertainty does not exist, whereas the EVPI is the expected cost of being
uncertain (Morgan and Henrion, 1990).

3. Uncertainties Considered in the Analysis

For this analysis, the model simultaneously represents eight parameters as
random variables. This section describes the motivations for including these
random variables and how uncertainty is characterized using approaches like
expert elicitations and econometric modeling.

3.1. Climate Policy

There are many sources of uncertainty that will determine the stringency
of policy measures to curb greenhouse emissions in the US and elsewhere.
The portfolio composition of generating assets will be influenced by firms’
expectations about the timing, form, breadth, and stringency of future poli-
cies.

This analysis assumes that the policy will take the form of a price on
equivalent greenhouse gas emissions, which is uncertain until the second
stage.* After this period, the CO, price is assumed to escalate in real terms at
a constant rate. Data to parameterize the distribution come from a sample of

4The only greenhouse gases incorporated in the model are CO5 and CH,.
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14 Western utility integrated resource plans (IRPs), which make assumptions
about the trajectory of carbon taxes over multidecadal planning periods.® All
14 utilities in this sample assume that the climate policy will come in the
form of a tax. Given how many of these utilities are located in the Western
Electricity Coordinating Council, which may introduce a selection bias, Bist-
line (2014b) explores the sensitivity of this model to an alternate distribution
for the climate policy uncertainty.

To illustrate the ranges of values in individual IRPs, Figure 2 presents
COy prices for 2025. The reference cases are shown along with ranges for the
lowest and highest values considered. First, note that the reference case does
not always correspond to the expected value of the carbon tax distribution,
no matter how probabilities are assigned.® Second, 8 of the 14 utilities (57
percent) consider a no-policy scenario to be a serious possibility. Finally,
comparing these ranges to the estimated stringency of the Waxman-Markey
bill (DOE/EIA, 2009) illustrates how the utilities in this sample expect that
an implemented climate policy will have a lower price on carbon than the
$47/Mt-COqe reference value for Waxman-Markey in 2025. Only 5 of 14
utilities (36 percent) include this value in their potential range.

5The utilities selected for this analysis include: Avista, Idaho Power, Los Angeles De-
partment of Water and Power (LADWP), NorthWestern, NV Energy, Pacific Gas and
Electric (PG&E), PacifiCorp, Portland General Electric (PGE), Public Service Company
of Colorado (PSCo), Puget Sound Energy (PSE), San Diego Gas and Electric (SDG&E),
Seattle City Light, Southern California Edison (SCE), and Tri-State Generation and Trans-
mission.

60nly two utilities (Avista and NorthWestern) attach probabilities to the price scenar-
ios.
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Figure 2: Carbon dioxide tax assumptions (2010$/Mt-COsqe) in 2025 by utility.

The COy price trajectory data are used to create a distribution over po-
tential 2025 prices. FEach scenario is treated as an independent draw from this
distribution, and a five-point probability mass function is used to represent
this discrete random variable, which preserves the sample mean (approxi-
mately $30/Mt-COqe) and variance.

3.2. Natural Gas and Coal Prices

Fuel prices are uncertain and fluctuate based on many complex factors.
Uncertainty about the future of natural gas is also driven by increased domes-
tic production of unconventional natural gas (Moniz et al., 2010). Although
abundant gas resources suggest expanded use, uncertainty about long-run
production costs, regulatory environmental, public acceptance, and environ-
mental impacts make the extent of this growth unclear (McJeon et al., 2014;
Huntington, 2013; TEA, 2012; DOE/EIA, 2011a; Coleman et al., 2011).

A vector autoregressive (VAR) model was created to estimate the proba-
bility distributions for future gas and coal prices for power generators. Using
historical data for delivered fuel prices from the EIA’s Annual Energy Re-
view (DOE/EIA, 2011b) and forecast data from the Annual Energy Outlook

12



(DOE/EIA, 2012), this work uses a two-step process to estimate the trend
and variability for future fuel prices and then uses this VAR model to create
density functions for annual growth rates for natural gas and coal prices.
This model is based on the techniques developed by Zdybel (2013).

25~
Historical
VAR Model
EIA
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Natural Gas Price (2010$/MMBtu)
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|
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Figure 3: Historical and forecast delivered prices of natural gas for the electric power sector.
The EIA cases represent the low price, reference, and high price scenarios (DOE/EIA,
2012). The VAR model results show the 10", 50t", and 90" percentile values.

Figure 3 shows the uncertainty ranges for delivered natural gas prices for
the VAR model results and the Annual Energy Outlook (DOE/EIA, 2012).
The trend for gas prices closely mirrors the EIA forecast, with prices in-
creasing only slightly over the coming decades. However, the results suggest
that the uncertain range of prices may be much wider than the EIA projec-
tions, both on the lower and higher ends of the distribution. Modelers do
not often quantify distributions over critical outputs or attach probabilities
to possible scenarios, and there is evidence that, when analysts do quantify
uncertainty, they tend to underestimate the range and probabilities associ-
ated with non-expected-value outcomes (Shlyakhtera et al., 1994). Although
the EIA scenarios do not have associated probabilities, these results seem to
support this finding and are consistent with the overconfidence effect.

Based on this analysis, the annual natural gas price growth rate can take
values of -5, 0, or 7 percent with probabilities of 0.30, 0.34, and 0.36, respec-

13



tively. Coal price growth rates can have possible realizations of -2, 0, or 2
percent with corresponding probabilities of 0.28, 0.51, and 0.21, respectively.

3.3. Methane Emissions from Gas Production

In addition to future prices, another uncertain issue involving unconven-
tional natural gas centers on the greenhouse gas impacts from its develop-
ment. Research on life-cycle emissions from natural gas has been an active
area of research over the past few years, which focuses primarily on upstream
CH, emissions. These studies exhibit a high degree of variation due to diver-
gent assumptions and uncertainty in the underlying data (Brandt et al., 2014;
Karion et al., 2013; Allen et al., 2013; Miller et al., 2013; Pétron et al., 2012;
Burnham et al., 2012; Cathles et al., 2012; Howarth et al., 2012; EPA, 2011;
Howarth et al., 2011; Hultman et al., 2011; Jiang et al., 2011; DOE/NETL,
2011). These problems are compounded by empirical data scarcities and the
heterogeneity of sites and drilling practices.

This uncertainty is incorporated in the model as a random variable for
emissions from shale gas production. Upstream CO, and CH, emissions also
are included for coal and conventional natural gas production. The analysis
assumes that upstream emissions from other greenhouse gases (apart from
CO, and CH,) are negligible. This analysis uses estimates of the global
warming potential from Shindell et al. (2009) and a 100-year timescale. This
work uses these values in a discrete three-point distribution with outcomes
of 0.11, 0.6, and 1.18 grams of carbon per megajoule of fuel, which are
interpreted as the 10, 50" and 90" percentiles.”

3.4. Other Uncertainties

The model also includes four additional uncertain model parameters:

o Capital costs of nuclear and C'CS: Technological uncertainties for nu-
clear and CCS-equipped coal and gas units are incorporated as dis-
tributions over investment costs. These distributions come from ex-
pert elicitations conducted at the Harvard Kennedy School (Anadon
et al., 2011). The experts’ elicited values are combined using Monte
Carlo simulations with even weights assigned to all experts. For coal
with CCS, using moment matching to create three-point discretizations

"Using the Extended Swanson-Megill approximation to assign probabilities provides a
fairly robust approximation for a wide range of distributions (Keefer, 1994).
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yields potential outcomes of $2k, 4k, and 6k ($/kW) with probabili-
ties 0.39, 0.44, and 0.17, respectively. For Generation III/I1I+ nuclear
reactors, the random variable can take the value of $2k, 4k, and 7k
($/kW) with probabilities 0.28, 0.55, and 0.17, respectively.

Public acceptance of COs storage: Although the technological, regu-
latory, and economic barriers to CCS development are considerable,
public acceptance of CCS technologies and large-scale storage may be
an equally daunting challenge, as public opposition has already been
a factor in cancellations of proposed storage projects (Van Noorden,
2010). The public acceptance uncertainty for COs storage in the model
uses probability estimates from a National Academies study (National
Research Council, 2007), which accounts for public opposition based
on risks from sequestration and siting. According to this study, the
probability of normal storage is 0.66, which implies a 0.34 probability
that storage is prohibited.

Natural gas combined cycle (NGCC) efficiency: In addition to uncer-
tainties about the economic and environmental impacts of gas develop-
ment, another relevant uncertainty is the performance of gas-turbine-
based technologies. This analysis uses expert elicitation results from
Bistline (2014a) to model uncertainty about the first-law efficiencies
of these technologies. Using the Extended Swanson-Megill approxima-
tion, the three-point discretization of this random variable can take
the value of 56, 63, and 72 percent with probabilities 0.3, 0.4, and 0.3,
respectively.

15



Table 1: Uncertainties included in capacity planning model runs.

Uncertainty Scenarios
CO, tax stringency
Natural gas price path
Coal price path
Upstream CH, emissions
Coal with CCS capital costs
Nuclear capital costs
Public acceptance of CO, storage
NGCC efficiency
Total

=~
gwwwwwwww

Each of these random parameters is assumed to be independent, which
gives rise to 7,290 scenarios (Table 1). The model uses a two-stage stochastic
programming approach and is programmed in the General Algebraic Model-
ing Software (GAMS) environment using the DECIS system (Infanger, 1999).
All uncertainties are assumed to resolve in 2025.

4. Results
4.1. Reference Results

Table 2 lists objective function values for the wait-and-see (z,;), stochas-
tic (2*), and expected-value (z4) solutions. The top rows list values when the
uncertainties are considered individually, and the bottom row shows results
for all eight uncertainties considered jointly.

The joint EVPI of $162 billion is considerably larger than the VSS of
$36 billion,® which indicates that resolving uncertainty is more valuable than
simply accounting for it in modeling efforts. Additionally, the EVPI and VSS
come primarily from two uncertainties: climate policy and natural gas prices.
The highest values correspond to the natural gas price uncertainty, which
underscores the significance of this factor in capacity-planning decisions.

8 All values are expressed in US 2010 dollars with a discount rate of five percent.
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Table 2: Comparison of discounted system costs (billion $) for the wait-and-see (zys),
stochastic (z*), and expected-value (z4) solutions when uncertainties are considered indi-
vidually and jointly. The EVPI and VSS metrics are shown in the rightmost columns.

Uncertainty Zws z* Z4 EVPI VSS
Stringency of abatement policy 4,114 4,171 4,185 57 15
Natural gas prices 4,096 4,168 4,204 72 36
Coal prices 4,278 4,279 4,279 2 0
Upstream CHy emissions 4,283 4,283 4,283 0 0
Capital costs (coal with CCS) 4283 4,283 4,283 0 0
Capital costs (nuclear) 4,283 4,283 4,283 0 0
Public acceptance of CO4 storage | 4,283 4,290 4,291 7 1
NGCC efficiency 4,283 4,283 4,283 0 0
Joint 3,884 4,047 4,083 162 36

To account for the relatively low VSS, it is instructive to compare first-
stage decisions under the stochastic and expected-value solutions. Table 3
lists capacity investments by generator type before uncertainty is resolved.”
The similarity between these two strategies accounts for the small VSS. Cap-
ital investments are concentrated primarily in wind and nuclear assets. This
result suggests that these technologies are candidates for near-term hedges
against a variety of uncertainties while allowing the power sector to keep
pace with increasing demand and retirements of existing assets. These tech-
nologies are attractive investments due to their low life-cycle greenhouse gas
emissions (which reduces exposure to the climate policy uncertainty) and to
their low fuel price volatility (relative to alternatives like natural gas), which
means that they are economical under a wider range of contingencies.

9Due to construction lead times, values in the table represent planned capacity but not
necessarily completed additions by 2025.

17



Table 3: Cumulative capacity investments (GW) by 2025 under the stochastic and
expected-value solutions.

Stochastic Expected Value
Biomass 3 3
Coal with CCS 0 61
Natural gas combined cycle 0 0
Nuclear 289 287
Wind 139 139
Total 431 490

The largest difference between these strategies is the large investment in
new capture-equipped coal generators under the expected-value solution. In
part, the stochastic strategy avoids near-term CCS investments due to the
possibility that these units would be mothballed or decommissioned if the
climate policy is too stringent or if public opposition prevents cost-effective
COs storage. The stochastic strategy delays capacity investments and instead
relies on increased generation from existing, underutilized (i.e., lower capacity
factor) gas units.!”

Apart from this stranded-cost effect, CCS additions are lower as a means
to avoid irrevocably committing resources to assets that may displace in-
vestments in more lucrative capacity in later periods. Second-stage capital
expenditures, made after more information is available, may profitably ad-
just deployment and dispatch to take advantage of unforeseen boons like
unexpectedly low gas prices. In this instance, the stochastic strategy avoids
investments in CCS-equipped units early on, which may entail sizable oppor-
tunity costs from foreclosed opportunities if built, and instead meets growing
demand by utilizing existing gas units. In contrast, the mean carbon tax of
$30/Mt-COy lies in the permissible policy range where coal with CCS is
lucrative, which means that the expected-value approach deploys this tech-
nology.

The profitability of delaying investment under uncertainty is effective in
the US context for three reasons. First, the stochastic strategy can increase
generation from underutilized gas capacity before uncertainty is revealed.

10Bistline (2014b) uses this model to explore policy-relevant insights about natural gas
in the electric power sector.
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Second, retirements due to plants exceeding their anticipated economic life-
times will not occur en masse for a couple decades. By that time, more
information will likely be available about long-term policy trajectories, fuel
prices, and technological characteristics. Finally, slower projections of elec-
tricity demand growth in the coming years will obviate the need for new
investments right away.

Much like the VSS, the EVPI of $162 billion is driven primarily by in-
formation for scenarios with less stringent carbon taxes and low gas prices.
Information has value in lax climate policy scenarios, since it would be opti-
mal to build fewer low-carbon units like wind and nuclear and instead wait
to build cheaper fossil-based capacity, especially if gas prices are low.

A considerable amount of variance for the cost advantage of the stochastic
strategy can be accounted for by two of the most important uncertainties
(i.e., climate policy and natural gas prices), as illustrated in Figure 4. The
decision not to build CCS capacity before uncertainties are resolved proves
to be valuable in scenarios with low gas prices and lenient climate policies.
In these scenarios, the first-best option is to build NGCC units during the
second stage once information is known about modest carbon and low gas
prices. However, for the expected-value approach, irreversible investments in
coal with CCS during the first stage would provide less flexibility for taking
advantage of these market opportunities.

One reason why explicitly accounting for uncertainty leads to decreased
near-term investments in low-carbon technologies relates to abatement cost
characteristics of the power sector. Total system costs (i.e., the objective
function in the optimization problem) are concave in carbon taxes, with
costs essentially plateauing around $20/Mt-CO,. This general trait is con-
sistent with a range of studies that find that a tax of $14-27/Mt-COy would
largely decarbonize new electricity generation (Weyant et al., 2006), which
means that more stringent taxes would not substantially impact costs to-
ward the second half of the modeling horizon. Consequently, if utilities plan
for the mean tax ($30/Mt-CO;) and the most stringent case obtains, higher
carbon taxes would not substantially impact second-stage costs. Thus, the
only method of achieving cost savings is for utilities to avoid irreversible in-
vestments early on and hope that the low tax and gas price scenarios are
realized so that second-stage investments are less costly.
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Figure 4: Cost advantage of the stochastic solution with different realized values of the
climate policy uncertainty (horizontal axis) and natural gas price uncertainty (colors).
Each circle represents one scenario of the 7,290 possible outcomes.

A parallel sensitivity considers the economic impact of limited CCS avail-
ability and suggests that the value of CCS readiness in the second stage is
$13.8 billion. This result illustrates that, although utilities have little near-
term incentive to build CCS-equipped capacity given climate policy uncer-
tainty, CCS technologies may be important components of the long-term
generation mix. More generally, the large losses under runs that exclude en-
tire groups of technologies speak to the importance of maintaining a diverse
portfolio of generation options that, if needed, are ready for deployment at
reasonable cost and performance levels.

If learning effects are important for enhancing CCS readiness in future
decades when greater abatement may be needed (IPCC, 2014), CCS deploy-
ment may require public-private partnerships for early pilot and demonstra-
tion projects as well as for R&D for capture systems with lower parasitic
losses. Rubin et al. (2007) show how historical experience curves for simi-
lar technologies like flue-gas desulfurization exhibited cost increases during
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initial stages of commercialization. These increases are primarily due to re-
liability and performance deficiencies in early designs, which are typically
not incorporated in long-run learning rates. Thus, capital cost increases for
early CCS units would be consistent with these observations and would be
important factors in cost trajectories for CCS.

In another experiment, utilities and generators plan based on a “best-
guess” assumption of no substantial climate policy instead of using the mean
value.!! Utilities may view climate policy as an endogenous uncertainty with
(partially) controllable outcomes, especially if climate risk is noisy and high
evidentiary standards for control can delay action. Even if a carbon tax
materializes, this scenario could represent the case where firms believe that
there is a high likelihood that carbon-intensive units built before policy is
enacted will be grandfathered into legislation.

If the VSS is computed assuming a no-policy baseline, the VSS increases
to $61 billion, which is much higher than the $36 billion using the expected-
value solution. In contrast to the baseline case, the no-policy solution builds
no nuclear capacity and instead constructs 107 GW of coal-fired units. These
investments would entail substantial adjustment costs if emissions restrictions
are later enacted or if gas prices are exceedingly low.

This experiment illustrates the importance of model assumptions about
a decision-maker’s expectations, why cancellations of planned coal additions
observed around 2007 initially occurred (i.e., due to expectations that a car-
bon price would materialize in the near future), and why few coal additions
have been proposed since (i.e., due to expectations that natural gas prices
will remain low). This expected-value solution only performs well under a
distribution that is compatible with the assumed no-policy prior, but the
strategy is vulnerable when it encounters a world with a dramatically differ-
ent distribution.

Overall, the results in this section suggest that uncertainty may provide
incentives for strategic delay. Deferring (partially) irreversible investments
can protect against downside losses while retaining the option value of waiting
until more information is available about lucrative market opportunities. The

1 This no-policy scenario can be interpreted in several ways: 1. Expectation of stalled
international negotiations and/or disagreement at the federal level; 2. Anticipation of
a discovery that climate change is not as threatening as expected; 3. Expectation of a
low-risk geoengineering solution or cheap ambient air capture to decouple emissions from
climate impacts.
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Australian carbon tax (repealed in 2014) illustrated this general approach of
avoiding investments and utilizing existing assets to achieve compliance, since
firms relied heavily on hydroelectric power from existing reservoirs given un-
certain future support for the policy. Extending the model to include three
decision stages could incorporate uncertainty about institutional credibility,
which could heighten disincentives for early investment and increase regu-
latory costs (Bosetti and Victor, 2011).'2 The VSS and EVPI values can
help to prioritize future research efforts and to influence IRP requirements
for scenario development and uncertainty analysis.

4.2. Outdated Distributions

The previous sections assume that utilities’ probability distributions are
based on the most up-to-date estimates of uncertainty; however, the decision-
maker’s beliefs may depart from the best-available information for a variety
of reasons. Overwhelmed by the number of interrelated factors that must
be taken into consideration, decision-makers may adopt more lax tools for
describing and dealing with risk in the planning process.

This section investigates the impact of using outdated distributions. Here,
beliefs about fuel prices are based on the best-available information from
2007, but the outcomes are based on the most up-to-date distributions. In
other words, first-stage decisions are made based on 2007 expectations for
future coal and natural gas prices, but the realizations of random variables
in the second stage come from the unexpected distributions discussed in
Section 3.

Values for the outdated fuel prices come from the Energy Information
Administration’s 2007 Annual Energy Outlook (DOE/EIA, 2007). At that
time, energy analysts were bullish on coal and only beginning to understand
the long-term, transformative impacts of unconventional natural gas. Ac-
cording to a National Energy Technology Laboratory report (NETL, 2007),
the resurgence of coal dominated the outlook for the electric power sector, as
145 GW of new coal capacity additions were planned by 2030. The 2007 An-
nual Energy Outlook uses a reference (mean) price of coal in 2030 of $1.87

12The most significant barrier in moving from a two-stage to a multi-stage stochastic
programming framework may be uncertainty quantification rather than the computational
complexity of the resulting problem. Experimental literature suggests that laypeople and
experts struggle with correlational structures (Morgan and Henrion, 1990), which would
be required for conditional probability assessments in multi-stage programs.
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per MMBtu (in 2010 dollars) with an implicit annual growth rate of -0.9
percent, which is more optimistic than the current mean of $2 (0 percent).
In contrast, the 2007 Annual Energy Outlook reference gas price for 2030 is
$7.07 per MMBtu with a growth rate of 1.7 percent, which is higher than
the current mean value of $6.10 (1 percent).

Even minor differences between expectations of fuel price spreads lead to
very different trajectories of capacity additions, generation, and emissions.
Under the reference (2013) distributions with no climate policy, much of the
retired coal capacity (and increasing demand) is replaced by highly efficient
NGCC units so that 63 percent of generation by 2050 comes from natural
gas. With expectations from 2007, new capacity investments come almost
exclusively from supercritical pulverized-coal units so that 64 percent of gen-
eration comes from coal by 2050.

Explicitly incorporating uncertainty is especially valuable given outdated
2007 expectations, as the VSS increases from $36 billion to $80 billion. Due
to its bullish forecast about coal, the expected-value solution builds more
coal with CCS in the first stage with 2007 priors (110 GW) compared with
the most up-to-date values (61 GW). As in Section 4.1, the VSS comes from
avoiding investments in CCS to take advantage of cheap natural gas if avail-
able and to avoid stranding these assets in the event that the carbon tax is
prohibitively high or low. This effect is more pronounced when utilities make
first-stage decisions assuming that no climate policy will materialize, which
has a VSS value of $243 billion.

Figure 5 illustrates the risk associated with adopting stochastic and expected-
value strategies under alternate assumptions about probability distributions.
Plotting the cumulative distribution functions (CDFs) of the stochastic (black
line) and expected-value (blue) strategies serves as an approximate visual-
ization of the VSS, which is the integral between the CDFs of these two
approaches.
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The stochastic solution not only protects against downside losses but also
opens up the possibility of upside gains from volatility. For instance, when
gas prices are lower than expected, delaying first-stage investments allows the
stochastic solution to build more gas-fired capacity, which can take advantage
of favorable market conditions. The antifragility (Taleb, 2012) of the stochas-
tic approach provides a strong hedge against uncertainty, reduces risk, and
presents simultaneous opportunities to adapt to evolving market conditions.
Thus, the stochastic strategy attenuates the adverse effects of downside risk
while retaining the option value of deferring irreversible commitments until
more information is available about potentially lucrative opportunities.
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5. Discussion

5.1. Optionality of Capital Investments

Why is the value of information gathering (i.e., the expected value of
perfect information) so much greater than the value of including uncertainty
(i.e., the value of the stochastic solution) in electric sector planning? As
shown in Figure 1, analyzing the EVPI and VSS involves comparing the
expected costs of the expected-value, stochastic, and perfect information
strategies.

The EVPI essentially measures the opportunity cost of delaying action.
If access to early information equips utilities to make different decisions,
the information has value. Otherwise, the EVPI is zero, and the decision-
maker can costlessly delay decisions until uncertainties are resolved. The
high EVPI found in this analysis suggests that there is a limited availability
and adequacy of the hedging options in the electric power sector.!?

These conclusions underscore and reframe the notion that there are no
silver bullet abatement technologies in the power sector. Evocations of this
no-silver-bullet mantra typically emphasize the notable dearth of technologies
that have the scale, wide applicability, cost characteristics, and technological
readiness to reduce emissions in the context of meeting a deterministic emis-
sions target. In this paper, the lack of silver bullet technologies is reflected
in the conspicuous absence of near-term hedges that are robust for all uncer-
tainties. Nuclear and low-cost wind are the only technologies with moderate
deployment under the stochastic hedging strategy, though many large-scale
nuclear builds may be costly in the next several years due to the increas-
ing competitiveness of electricity markets, commodity price escalation, and
utilities’ small market capitalizations.

The VSS measures the degree of asymmetry in the decision-maker’s loss
function and the extent to which suboptimal decisions impact the objective
function value. According to Morgan and Henrion (1990), the VSS is large
(i.e., the expected-value solution is a bad approximation for the stochastic
solution) when:

1. The optimization problem exhibits nonlinear or nonconvex behavior
2. Probability distributions on uncertain quantities are asymmetric (i.e.,
exhibit considerable skewness)

13This is another way of expressing the notion that there are no alternatives in the
electricity generation choice set that are robust across all uncertainties.
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3. Dependence exists between random variables
4. Random variables have large supports

The VSS is small here due to many factors. Regarding point (1), the capacity
planning problem is predominantly linear in nature, since cost nonlinearities
are not included in the decision-maker’s objective function given the framing
discussed in Section 2.1. As described in Section 3, the distributions used
in this analysis are largely symmetric, which means that (2) does not apply.
Also, the distributions were created to avoid any explicit dependence between
random variables (3) and to bypass large supports (4). Additionally, the VSS
would likely be larger on a percentage basis if the capacity planning problem
were examined from an individual firm’s perspective instead of the aggregated
utility and generator perspective examined here.

It is important to note that the EVPI and VSS are a small fraction of
the objective function value. The EVPI of $162 billion is 3.8 percent of the
objective function value of $4.3 trillion, and the VSS of $36 billion is 0.8
percent. Figure 6 shows that 64 percent of the total costs come through
dispatch and maintenance costs of capital (including fuel costs), whereas
capital investments comprise just 24 percent. As a result, if first-stage de-
cisions are suboptimal for the realized scenario ez post, total losses amount
to the stranded costs of assets, which are only a small fraction of total costs
across the time horizon. For instance, if the decision-maker builds too many
NGCC units only to learn that gas prices are higher than expected, then
the financial losses for a single power plant would only amount to perhaps
$1 billion of the $4,300 billion objective function value. Recourse decisions
that are made after information is revealed allow the system to adapt and
to avoid incurring increased operating costs in perpetuity if initial decisions
are wrong.
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This effect suggests that there are two relevant option values associated
with power plant investments. The most commonly discussed and modeled
value is the option of firms to invest in capital-intensive and essentially ir-
reversible generators that can be delayed (Tuthill, 2008), which is analogous
to a financial call option. This perpetual call option gives utilities the right,
but not the obligation, to pay a specified amount (i.e., the strike price of the
overnight capital cost) to receive an asset (i.e., a power plant) with uncertain
future cash flows due to stochastic processes like prices of emissions permits
and fuels. If and when the firm exercises this option to build the plant (i.e.,
when the asset’s value sufficiently exceeds the exercise price and the option
is “in the money”), the firm gives up the opportunity to wait for additional
information about the future values of unknown quantities.

The above analysis suggests that the second relevant concept is that of a
put option. After constructing a power plant, generators have the perpetual,
costless, and quasi-reversible put option to generate electricity. They have
the right, which they need not exercise, to pay the strike price (i.e., fuel
costs) to receive an asset (i.e., revenue from generating and selling electricity).
This perpetual put option allows generators to refuse to generate at a loss if
the capital investment is later revealed to be incompatible with the realized
scenario (e.g., if fuel prices or carbon taxes are too high).

The call option pertains to the initial capital investment decision, while
the put option is relevant to the operational decision by firms once a unit has
been constructed. Both options must be accounted for in the capacity plan-
ning problem. However, the choice of when and if to invest in the call option
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is essentially the capacity planning problem, which implicitly incorporates
the downstream put-option (recourse) decision.

Ultimately, the resiliency that makes such options possible in electric
sector planning comes through a variety of industry-specific sources—namely,
the ability to react and to make decisions after new information becomes
available, low opportunity costs associated with irreversible investments, and
quick construction lead times relative to operating lifetimes.

5.2. Policy Implications

The results in Section 4 can help to inform regulatory design and tim-
ing decisions. The results illustrate how policy uncertainty may discourage
precautionary capital investments in control equipment. Figure 5 shows that
the most substantial cost risks and expected losses occur when utilities and
generators make near-term decisions believing that the prospects of a low (or
nonexistent) climate policy are increasingly likely.'4

Given that this outcome would likely be socially suboptimal, a tiered ap-
proach to climate policy may be a more effective means of meeting many
simultaneous goals. A tiered approach would offer simultaneous incentives
for reducing emissions at federal, state, and local levels like carbon taxes,
research and development (R&D) investments, and technological standards.
Although the policy redundancy may make any given policy less efficient,
the potential co-benefits outside of reduced environmental damages may out-
weigh such deadweight losses (e.g., subsidized R&D can remedy innovation
externalities), especially if political economy constraints are binding.

A second policy implication is that sequential or staged approaches may
be useful in reducing greenhouse gas emissions even before comprehensive
legislation has been passed to put a price on carbon. The policy goal of re-
ducing carbon emissions may be more politically feasible and may induce
greater compliance if multiple policies are staged sequentially over time.
Again, this precautionary approach to avoiding irreversible investments in
carbon-intensive capital could be important if more-ambitious efforts to curb
emissions through direct emissions-pricing policies prove to be politically in-
feasible in the future. Uncertainty about political processes, for instance,

14Tn addition to the interpretations suggested in Section 4.1, decision-makers also could
be overly reliant on a single carbon policy scenario if their state public utility commission
dictates the carbon prices used in resource planning, which may be lower than the realized
carbon price (Barbose et al., 2008).
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may justify these complementary regulations.

The use of nested policy instruments with periodic reassessments is con-
sistent with an adaptive approach to managing climate risk. The objective
of adaptive management is to design policies, decision architectures, and in-
stitutions that encourage monitoring and active learning about systems and
allow for flexibility, adjustment, and adaptation as new information becomes
available. Sequential decision-making frameworks like the one used here are
ideally suited to provide insights and decision support for adaptive man-
agement. For instance, the ozone regime established through the Montreal
Protocol is a noteworthy example of an effective adaptive management frame-
work and the only major international environmental effort to date to adopt
such a system with repeated negotiations and dynamic ratchets that adjusted
controls, refined its scope, and developed new institutions and mandates over
time (Parson, 2003).

Adaptive management also improves upon some of the shortcomings of
a contingent agreement approach to dynamic policies in environments of
extreme complexity and uncertainty. Approaches based on contingent re-
sponses require the ex-ante specification and enumeration of all possible sce-
narios and optimal responses many years in advance, which neglect the po-
tential for unexpected sources of information and the possibility that such
information may generate greater uncertainty and novel questions.

6. Conclusions

This paper investigates the dynamics of capacity planning in the US elec-
tric power sector under a range of technological, economic, and policy-related
uncertainties. The objective is to determine the sensitivity of near-term de-
cisions to long-term uncertainties by developing stochastic strategies, which
account for possible costs of midcourse corrections and hedge against a va-
riety of upside and downside risks. The results suggest important insights
about near-term decision-making under uncertainty and the modeling efforts
that attempt to inform them.

Using a two-stage stochastic programming approach, model results sug-
gest that the two most critical risks in the near-term planning process are
natural gas prices and the stringency of climate policy. Stochastic strate-
gies indicate some hedging from lower-cost wind and nuclear will occur but
robustly demonstrate that delaying investment and waiting for more infor-
mation can be optimal under certain conditions to avoid stranding capital-
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intensive assets. In particular, the stochastic approach will avoid near-term
CCS investments due to the possibility that these assets would be decom-
missioned either if the climate policy too stringent or if public opposition
prevents cost-effective CO, storage. The stochastic strategy instead delays
investment in new capacity and relies on increased generation from existing,
underutilized (i.e., lower capacity factor) natural gas units. One interpre-
tation of the results is that decision-makers have compelling incentives to
pursue quasi-reversible alternatives that provide flexibility and avoid capital-
intensive, long-lived investments. Section 5 explains these dampening effects
of uncertainty in terms of the optionality of investments, leading to more
general insights about uncertainty, learning, and irreversibility in the electric
power sector.

It is important to note that the model results should not be interpreted as
an argument for a do-nothing near-term strategy. As Manne (1996) empha-
sizes, “Delay should not be confused with inaction.” The value of delaying
investment to wait for more information applies only to coal with CCS capac-
ity for the stochastic approach wvis-a-vis the expected-value approach. Both
approaches indicate that some near-term investments in wind and nuclear are
optimal under a robust range of future scenarios. Additionally, the assump-
tion that information will be received in 2025 hinges in part on the existence
of sustained R&D efforts in the interim.

Future work should prioritize nuclear power elicitations with careful de-
biasing to avoid overconfidence. The recommendations of nuclear as a near-
term hedging technology are based on comparatively optimistic cost elicita-
tions and should be tempered by the recognition of the systematic historical
overestimation of nuclear power deployment and underestimation of its as-
sociated costs (Griibler, 2010; Hultman et al., 2007; Koomey and Hultman,
2007; Cohen and Noll, 1991). Additionally, the model excludes potential
sociopolitical concerns and uncertainties surrounding nuclear power. These
factors (e.g., proliferation, waste disposal, safety) are inherently challenging
to quantify, especially since risk perceptions are shaped by a combination of
scientific risk assessments, cultural world-views, and psychological factors re-
lated to putative risk assessment (Kahan, 2012; Morgan et al., 2002; Douglas
and Wildavsky, 1982). Incorporating these features would add additional risk
to nuclear investments. Future work should also investigate how model rep-
resentations of operational constraints and renewable integration costs may
influence hedging decisions (Palmintier and Webster, 2014; Hirth, 2013).

The largest losses occur when decision-makers’ beliefs depart from the
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best-available information either by using outdated distributions for fuel
prices or by adopting optimistic beliefs about the ability to postpone compli-
ance costs associated with a carbon policy.!® These results of misestimation
stress the importance of using distributions that incorporate actual data in-
stead of stylized, ad-hoc distributions. The VSS comes from the tendency to
postpone investments in new generating capacity until more information is
available or uncertainty is resolved. Such hedging policies not only protect
against downside losses but also open up the possibility of upside gains from
volatility (e.g., when natural gas prices are lower than expected).

These results suggest that a sequential approach to climate policy could
incentivize preemptive and supererogatory abatement efforts until more com-
prehensive climate legislation is in place. These policies may be effective
instruments to reduce cost risks for utilities, to incentivize the development
of new technologies, to demonstrate the feasibility of emissions reductions
by beginning with relatively low-cost restrictions, and to lower the probabil-
ities of environmental hazards for society at large. The stochastic solution
is especially valuable if decision-makers do not sufficiently account for the
potential of climate constraints in future decades or if fuel price projections
are outdated.

The results of this research also suggest that probability distributions
from existing studies often exhibit overconfidence and do not reflect a full
range of possible outcomes, as illustrated in forecasts for natural gas prices.
Since the overconfidence effect narrows probability distributions, metrics
like the EVPI and VSS are consequently biased downward (Hammitt and
Shlyakhter, 1999). This pervasive bias suggests that existing analyses likely
underestimate the value of gathering information about unknown quantities
and of explicitly accounting for uncertainty in modeling efforts.

Given this context of overconfidence, decision-makers should expect (at
least in the near term) to observe an increase in uncertainty over time (Maslin
and Austin, 2013). As energy and environmental modeling communities con-
tinue to adopt formal methods of uncertainty quantification and analysis, the
use of frameworks and metrics like those in this paper can reduce the deleteri-
ous effects of overconfidence and surprise. Important information is contained

15These results are especially relevant given the limitations of existing approaches for
uncertainty analysis in utility resource planning, as described in Section 3 and in the
literature (Wilkerson et al., 2014; Barbose et al., 2008).
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in non-mean-valued analyses, particularly in contentious research areas, and
the results in Section 4 suggest that such uncertainty can materially influ-
ence near-term decisions. Future modeling efforts should carefully consider
the impacts of potential surprises (even though such surprises, by their very
nature, are elusive) and account for a broader range of uncertainties. The
strategic selection of a wider array of sensitivities, robustness metrics, and
probability distributions allows audiences to develop more complete insights
from modeling exercises while also requiring more rigorous diagnostic exper-
iments.
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Appendix A. Literature Review

This section reviews the literature on energy modeling applications of
stochastic programming with a focus on electric sector capacity planning.
The purposive sample of papers discussed here focuses on the central articles
only and is not an exhaustive survey of all relevant papers. Emphasis is
placed on work that relates to the research methods and applications in
this paper—namely, models with a bottom-up technological representation,
national scale, and expected-value decision criterion.

Capacity planning models have a long history in the power sector, but
uncertainty has only been included explicitly in recent decades. Long-range
capacity planning for meeting a least-cost objective subject to operational
constraints began in the 1950s alongside developments in mathematical pro-
gramming (Massé and Gibrat, 1957). Dapkus and Bowe (1984) present one
of the first applications of stochastic programming in this domain. The use
of stochastic programming in energy models more generally is summarized
in Wallace and Fleten (2003).

Tables A.4 and A.5 give a sense of the scope of stochastic programming
research related to electric sector capacity planning with technologically de-
tailed models. The tables include relevant details about the studies, including
the model, scope, aggregation, and uncertainties.
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Appendiz A.1. Cost-Minimization Models

Cost-minimization models find feasible solutions that minimize discounted
energy system costs. Compared with their optimal-growth counterparts,
cost-minimization models tend to have more detailed representations of en-
ergy technologies but do not capture macroeconomic interactions in as much
detail.

The stochastic variant of the MARKet ALlocation (MARKAL) model is
the most popular platform for the technology-detailed, policy-oriented stud-
ies in the literature.'® Kanudia and Loulou (1998) investigate how the uncer-
tainties of economic growth and mitigation can affect energy system planning
for Québec.!” A similar study by Kanudia and Shukla (1998) incorporates
the same uncertainties for the Indian energy system and adds elastic de-
mand. Heinrich et al. (2007) assess the impact of demand uncertainty on
near-term decisions in a South African context using multiple objectives. Hu
and Hobbs (2010) use stochastic MARKAL to calculate the EVPI, value of
the stochastic solution (VSS), and value of policy coordination given uncer-
tainties about multi-pollutant regulations in the United States (US), resource
costs, and electricity demand. Usher and Strachan (2012) discuss near-term
hedging strategies for long-term decarbonization pathways in the UK un-
der uncertainties about fuel prices and biomass import availability. Bistline
and Weyant (2013) demonstrate the utility of the stochastic programming
framework and accompanying metrics using technological and policy-related
uncertainties in the US electric sector as motivating examples. This paper
draws attention to the limitations of stochastic MARKAL and stresses the
need for new tools to better exploit the full range of benefits the stochastic
programming approach can provide. Recent papers have used the stochastic
TIMES model, which is an updated version of MARKAL, to examine uncer-
tainties about the climate sensitivity parameter and economic development
in multi-region, global settings (Labriet et al., 2010; Loulou et al., 2009).

The limitations of stochastic MARKAL are similar to other models em-
ploying stochastic programming in an energy policy context. Regardless of
database size, stochastic MARKAL restricts the number of stages to two
and the number of simultaneous scenarios to nine.'® The latter constraint

16 An overview of the model can be found in Hu and Hobbs (2010).

1"Loulou and Kanudia (1999) examine the same Québec system and compare results
with a modified MARKAL model that uses a minimax-regret criterion.

18 Although the TIMES model allows for a maximum of 64 states of the world, the
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considerably limits the number of uncertainties that can be considered si-
multaneously and their degree of detail. The limited types of parameters
that can be treated as random variables in MARKAL is also restrictive. The
formulation only allows parameters like environmental bounds and demand
to be treated stochastically (Kanudia and Loulou, 1999), which eliminates
from consideration classes of problems with uncertain objective function co-
efficients (e.g., capital costs). Additionally, with the exception of Kanudia
and Shukla (1998), the stochastic MARKAL studies do not include price-
responsive demand, which can be limiting when examining the capacity plan-
ning problem under an uncertain climate policy.

Outside of the stochastic MARKAL framework, Krukanont and Tezuka
(2007) analyze near-term investments and the EVPI in Japan under four
uncertain policy regimes with uncertainties about CO, taxes, demand, and
plant operating availability. Although the analysis considers more scenar-
ios than other studies, the model uses an extremely short time horizon of
12 years, which is shorter than the operating lifetimes of energy sector as-
sets. Thus, the Krukanont and Tezuka (2007) study offers limited actionable
insights about capacity planning decisions under uncertainty.

Finally, Keppo and van der Zwaan (2012) use the TIAM-ECN model to
examine the impact of climate policy and CO, storage potential. The results
suggest that, if a stringent climate policy is included, this possible scenario
dominates the near-term strategy and that the climate policy uncertainty
plays a more important role in mitigation timing than storage. Like the
MARKAL studies, Keppo and van der Zwaan (2012) only account for a lim-
ited range of possible uncertainties and do not focus on capacity deployment
decisions and the associated policy implications.

Appendiz A.2. Optimal-Growth Models

In addition to cost-minimization models, some papers use optimal eco-
nomic growth models with utility-maximization objectives.

Manne and Richels (1993) are among the first to quantify the impact of
uncertainty on energy decisions in the presence of climate change using a
sequential decision-making approach. Using the Global 2100 model and an
uncertain climate policy, their results show that the optimal near-term CO,

implementation is still based on directly solving the deterministic equivalent of the problem
(Loulou and Lehtila, 2012), which severely limits the degree of model detail.
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emissions path lies between the extreme cases and that abatement levels
are sensitive to the quality and timing of climate science research. Like
the cost-minimization studies, Manne and Richels (1993) only consider a
limited number of uncertainties and metrics for evaluation and instead focus
on emissions trajectories.

Peck and Teisberg (1993) use the Carbon Emissions Trajectory Assess-
ment (CETA) model to investigate uncertainty about the climate sensitivity
and damage function parameters. They find that information about these
uncertainties has a large value relative to existing research budgets and that
resolving uncertainty about impacts is almost as critical as learning about
the climate sensitivity parameter. The benefits of resolving uncertainty early
are considerably larger when suboptimal abatement is undertaken in the near
term, assuming that the climate policy could be adjusted once more infor-
mation is available. Again, the study’s restricted concentration on climate-
related uncertainty comes at the expense of insights related to technology-
specific deployment.

Birge (1995) considers how uncertainty on investment returns for energy
technologies affects economic output, consumption, and emissions under an-
nual CO, restrictions. Using the VSS metric with a modified version of the
Global 2100 model, the author finds that the optimal hedging strategy (i.e.,
instead of an expected-value strategy) increases economic output by approx-
imately 1.4 percent annually and also recommends higher optimal CO, taxes
in early periods. Although the paper exemplifies how the VSS metric can be
used for determining the impact of suboptimal planning on macroeconomic
variables, Birge (1995) considers a very limited number of uncertainties and
does not analyze how uncertainty affects technology-specific capacity instal-
lation and production decisions.

Bosetti and Tavoni (2009) analyze how innovation uncertainty may change
climate policy recommendations using a stochastic variant of the World In-
duced Technical Change Hybrid (WITCH) model with a no-carbon backstop
technology whose cost is a function of R&D spending. Results from an ana-
lytical model and WITCH conclude that accounting for uncertainty in R&D
effectiveness decreases climate policy costs and increases R&D investments.
However, the paper only considers a single cost-related uncertainty for a styl-
ized technology under a fixed and certain climate stabilization policy (with
an atmospheric COy concentration target).

Bosetti et al. (2009) use WITCH to investigate the cost of uncertainty for
global stabilization targets and quantify the economic costs associated with
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delayed abatement. The paper suggests that short-term inaction is the lead-
ing determinant of welfare losses and increased compliance costs for stringent
policies. These results indicate that a moderate near-term policy would be an
effective hedging strategy until new information about the long-term severity
of climate change arrives, which mirrors other conclusions in the literature
(Yohe et al., 2004). The precautionary abatement under the hedging strategy
is driven primarily by the stringent target of 450 ppmv (COs only), which
is explained by the convexity of marginal abatement costs. Overall, the pa-
per’s focus on the macroeconomic impacts of suboptimal strategies crowds
out investigations of technology deployment decisions and does not account
for the effect of other simultaneous uncertainties on utility-scale decisions.

De Cian and Tavoni (2012) also employ the stochastic programming vari-
ant of WITCH with uncertainties associated with CO, taxes and capital
costs for low-carbon technologies. Uncertainty about climate policy does
not materially impact the first-stage abatement level or generation but pri-
marily affects the portfolio of new capacity additions. The paper explores
how different levels of uncertainty influence low-carbon capacity investments
through mean-preserving spreads, which indicates that hedging in nuclear
and renewables increases in COy price uncertainty (and CCS investments
decrease). While the paper gives a more thorough portrait of how climate
policy uncertainty influences investments in individual technologies, the work
considers a limited number of potential policies, uncertainties, and metrics
to evaluate the importance of uncertainty in decision-making.

Durand-Lasserve et al. (2010) illustrate how uncertainties about abate-
ment targets (incorporated as annual CO, emissions caps) may impact near-
term technology deployment decisions and CO, prices using a modified ver-
sion of the MERGE model. The results show how this uncertainty can impact
near-term capacity decisions and energy-sector prices on regional and global
scales. Ultimately, the focus of the paper is on the relationship between
global policy uncertainty, CO, prices, and emissions trajectories and not on
capacity deployment decisions.

Appendiz A.3. Discussion and Contributions

A few common conclusions emerge from the studies in Table A.4. First,
sequential decision-making approaches offer novel insights that are not avail-
able through scenario analysis or Monte Carlo analysis. Stochastic program-
ming models can recommend strategies that differ from deterministic ones
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where random variables are replaced by their expected values.'® Second,

many studies point to the importance of climate policy uncertainties. Keppo
and van der Zwaan (2012) conclude that uncertain climate targets domi-
nate uncertainties about COy storage. When climate policy uncertainty is
included, it seems to impact the portfolio of deployed technologies more than
near-term abatement levels (De Cian and Tavoni, 2012).

Another takeaway is the low dimensionality of previous studies. As shown
in Table A.5, models typically consider a limited number of uncertainties
(with an average of 2.1 per study) and total scenarios (with an average of
4.7 per study).?’ The large number of decision variables and associated com-
putational burdens have limited previous analyses to simple scenario trees,
which prevent more than a couple uncertainties from being investigated si-
multaneously and restricts the possibility that uncertainties can influence
each other.

The limited number of scenarios capable of consideration is a consequence
of the solving strategy. For stochastic linear programs with discrete distri-
butions, the most common approach is to represent the problem as an equiv-
alent deterministic linear program and then to solve directly, which is com-
putationally costly for problems with many possible realizations. Two-stage
stochastic linear programs can take advantage of their special block struc-
tures through a variety of decomposition procedures (Birge and Louveaux,
2011). When the number of possible realizations of random parameters is
large, approximate solutions can be found through Monte Carlo sampling
with variance reduction techniques (Infanger, 1999).

Table A.6 shows that many studies in the literature do not take advantage
of metrics for assessing the relative importance of uncertainties. Metrics
like the VSS and EVPI have important implications for decision-makers and
modelers. However, the values in Table A.6 suggest that only 29 percent of
studies in the sample provide calculations for the VSS and 53 percent for the
EVPL

YFor instance, Usher and Strachan (2012) show that the stochastic hedging strategy
is different from any deterministic (wait-and-see) solution and is structurally dissimilar
from the average of the scenarios. Similar results are found in studies like Birge and Rosa
(1996); Kanudia and Shukla (1998); Durand-Lasserve et al. (2010).

20The sample mean excludes the Krukanont and Tezuka (2007) paper, which considers
notably more states of the world compared with other studies.
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Table A.6: Metrics used in the selected literature from Ta-

ble A 4.
Paper VSS EVPI
Birge and Rosa (1996) . .
Bistline and Weyant (2013) 3 o

Bosetti and Tavoni (2009)
Bosetti et al. (2009)

De Cian and Tavoni (2012)
Durand-Lasserve et al. (2010)
Heinrich et al. (2007)

Hu and Hobbs (2010)

Kanudia and Loulou (1999)
Kanudia and Shukla (1998)
Keppo and van der Zwaan (2012)
Krukanont and Tezuka (2007)
Labriet et al. (2010)

Loulou et al. (2009)

Manne and Richels (1993) o
Peck and Teisberg (1993) o
Usher and Strachan (2012) o

Notes: VSS = value of the stochastic solution; EVPI
= expected value of perfect information

Another shortcoming is the use of ad-hoc probability distributions instead
of values based on rigorous modeling efforts. Many studies assume a uniform
distribution over states of the world (i.e., invoking the Laplace criterion) to
express an uninformative prior (Bosetti et al., 2009; Heinrich et al., 2007).

This paper investigates many uncertainties simultaneously using the DE-
CIS system (Infanger, 1999), which is designed to use powerful decomposition
techniques to solve stochastic programs with many scenarios. This modeling
choice allows the research in Section 4 to incorporate a range of uncertainties
with many thousands of scenarios. This work also applies a range of com-
plementary metrics for quantifying the importance of uncertainty, which can
indicate the value of reducing uncertainty and of using stochastic hedging
approaches. These metrics provide a quantitative means of evaluating the
significance of using sequential decision-making approaches for energy mod-
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eling. A third contribution of this work is to offer rigorous quantifications
of distributions for technological, economic, and policy-related uncertainties
instead of using ad-hoc probabilities, as discussed in Section 3.

Appendix B. Detailed Capacity Planning Model Mathematics

The model assumes that capacity installation and electricity production
decisions are coordinated among utilities and generators.?! In the core deter-
ministic model, planners determine the path of investment and capital stock
that minimizes the sum of discounted energy system costs for all capacity
blocks during all periods while satisfying power system constraints.?? The
mathematical description of the model in this section uses the following sets
and corresponding index notation:

Sets and Indices

t €T time periods in the planning horizon

1 €1 generation technology types

j€J load segments (i.e., subperiods in the load duration curve)
s €S steps in the piecewise demand curve

The decision variables and parameters in the objective function are:*

Decision Variables

x!  new capacity investment of generation technology i at time ¢ (GW)

yfj dispatched capacity of type i during load segment j at time ¢ (GW)
w! installed capacity of type i available at time t (GW)
u’,  reduced demand from step s in the demand curve at time ¢ (GW)

21The model data and code are available online.

22The model uses a discount rate of five percent unless otherwise noted to represent the
market rate of return on capital.

23Decision variables for new capacity investments are continuous. The model does not
include lumpy investments (i.e., large, discrete investments that are typically restricted to
fixed sizes), which would require a mixed-integer formulation. The linear-programming
formulation also does not account for economies and diseconomies of scale, which can be
important in plant sizing decisions.
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Parameters

6" discount factor at time ¢

¢t capital cost for type i at time ¢ ($/kW)

A; construction delay for type ¢ (years)

fi total dispatch costs for type 7 at time ¢ ($/kWh)

7¢ duration of segment j at time ¢ (hours)

g maintenance costs for type i at time ¢ ($/kW), including grid integration
pl,  economic cost of reduced demand from step s at time ¢ ($/kW)

Given these variables and parameters, the linear cost-minimizing objec-
tive function (expressed in million §) for the deterministic capacity planning
problem is:

Z St (Z a8 4 Z Z Sty + Z giwt + Zpiu';) (B.1)
¢ i i g ; s

Thus, the four primary constituents of total costs are capital costs, dispatch
costs, maintenance costs, and costs associated with reduced demand.?* Data
for the model come from a variety of public sources, as shown in Table B.7.

Table B.7: Data sources for capacity planning model inputs.

Data Source
Capital and O&M costs EIA (DOE/EIA, 2011d)
Existing capacity Form EIA-860 (DOE/EIA, 2011c)
Availability /capacity factors EPA National MARKAL Database 2010
Fuel prices EIA Annual Energy Outlook (DOE/EIA, 2011a)
Load Based on Form EIA-860 (DOE/EIA, 2011c)

The model explicitly represents a broad range of electricity generation
technologies, including various generations of nuclear power, solar and wind
technologies, electricity from biomass, and multiple forms of fossil-based gen-
erating technologies with a variety of fuels and carbon capture options. Tech-

24Dispatch costs for preexisting and newly constructed generators are the sum of the
variable operation and maintenance costs, fuel costs, and pollutant taxes. For carbon
dioxide (COs3) transport and storage costs, a piecewise supply curve for COy storage is
incorporated into the model and calibrated using data from Dooley et al. (2004).
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nological cost and performance characteristics are exogenous inputs to the
model, since the capacity planning formulation does not incorporate endoge-
nous technical change. The model uses a vintaging structure to ensure that
technological assumptions for a given time apply only to new deployments
in that period and to create more realistic capital turnover and retirement
dynamics.

The model incorporates a wind supply curve with increasing costs in
deployed capacity. This curve accounts for the variable quality of wind re-
sources in different regions of the country, heterogeneity in siting costs and
availability, and transmission capacity constraints.?’> Note that the model
does not account for unit commitment constraints, which may overstate sys-
tem flexibility and undervalue fast-ramping capacity like combustion turbines
(Palmintier and Webster, 2014).

All model variants include the following constraints:

e Load balancing (market-clearing condition)

7 (Z Vij — C}) =7 (d§ - Zut) (1+a) vt,j  (B.2)

where C; represents net international exports during load segment j at
time ¢ (GW), d’ is the reference demand level (GW), and o' is a factor
that represents both transmission losses and a reserve buffer. This
constraint ensures that demand is met in each subperiod and assumes
that economical, grid-scale storage is not available.

e Dynamics of capital addition, turnover, and retirement

wl = w4 gl gl Vit i (B.3)

where L; is the lifetime of type .

e Production capacity bounds

25The curve is based on outputs from the Electric Power Research Institute’s US-
REGEN model, which endogenously determines transmission builds using detailed wind
resource data, an hourly dispatch model, and trade between regions through cross-border
transmission (EPRI, 2014).
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where a;?j represents the availability factor (i.e., ratio of the amount
of time a generator can produce electricity in a given period to the
period’s duration) for type ¢ during segment j at time ¢. This constraint
mathematically formalizes the notion that unit dispatch cannot exceed
the available capital stock.

e Demand reduction costs

1 S \:
ph= b (d) 7 (d) = Srdy) Vt, s (B.5)

where 7 is the maximum demand reduction (as a percentage of the
reference value), n is the total number of steps in the stepwise linear
representation of the aggregate demand curve, and ¢ is the own-price
elasticity of demand at the end-use level.¢

e Investment constraints

rt < 7t Vi, 1 (B.6)

where Z! represents the upper limit on new capacity investment of tech-
nology ¢ at time ¢. These upper bounds on expansion are based on cur-
rent pipeline or other technological constraints and signify real-world
frictions for new capacity installations. These expansion constraints
take the form of annual limits on investment in specific technologies
(e.g., carbon capture is assumed to be unavailable before 2020) but also
of cumulative bounds for technologies like wind, which has resource and
siting constraints.
e Non-negativity constraints

Yy, wh ul >0 Vi, j, s (B.7)

Since the electric power sector is characterized by long-lived and expen-
sive investments, many technical and economic factors can contribute to the
retirement of assets. Retirements occur in the model through three mech-
anisms. First, capacity may retire endogenously through economic drivers

26This stepwise linear formulation of price-sensitive demand represents only price-
induced energy conservation and efficiency, since autonomous conservation is implicitly
included in the baseline load growth forecast. For a more thorough explanation of this
approach, please refer to Kanudia and Shukla (1998).
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when maintenance costs for units exceed their anticipated economic benefits.
Second, units that are online at the beginning of the time horizon are likely to
be fully depreciated before the end. These exogenous lifetime constraints for
residual capacity are incorporated through an upper bound on the percent-
age of units of a particular type that are online in a given period. Finally, the
third mechanism for retirements occurs when new capacity reaches its oper-
ating lifetime during the time horizon of the model run, which also represents
an exogenous constraint based on unit lifetimes.
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