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Using ray theory, we explore the effect an envelope function has on high-frequency, small-scale internal wave propagation through
a low-frequency, large-scale inertia wave. Two principal interactions, internal waves propagating through an infinite inertia
wavetrain and through an enveloped inertia wave, are investigated. For the first interaction, the total frequency of the high-
frequency wave is conserved but is not for the latter. This deviance is measured and results of waves propagating in the same
direction show the interaction with an inertia wave envelope results in a higher probability of reaching that Jones’ critical level and
a reduced probability of turning points, which is a better approximation of outcomes experienced by expected real atmospheric
interactions. In addition, an increase in wave action density and wave steepness is observed, relative to an interaction with an
infinite wavetrain, possibly leading to enhanced wave breaking.

1. Introduction

Internal gravity waves exist abundantly in uniformly, stably
stratified fluids, such as the ocean and atmosphere. Naturally
occurring perturbations such as flow over topography [1–5],
convective storms [6–11], and geostrophic adjustment [12–
15] in the atmosphere continuously create internal waves.
Observed internal waves have vertical wavelength scales from
meters to kilometers and horizontal wavelengths of tens of
meters to thousands of kilometers. These waves significantly
affect flow dynamics in the atmosphere. Mixing induced by
dissipating gravity waves in the atmosphere is important to
the vertical transport of chemicals, energy, and momentum
[16]. This momentum and energy transport plays a central
role in driving the mean meridional circulation [17]. Other
global circulation patterns in the middle atmosphere are
driven by the drag and diffusion caused by internal wave
breaking [18–21]. These include the quasibiennial oscillation
of the equatorial lower stratosphere [22] and the semiannual
oscillations of the equatorial upper stratosphere and meso-
sphere [23].

Several various mechanisms may lead to internal waves
shifting or refracting to higher frequency and steepen-
ing, eventually leading to wave breaking. These include
high-frequency wave-wave interactions [24, 25], high-low-
frequency wave interactions [26–31], wave-vortex interac-
tions [32], self-acceleration [33, 34], and wave steepening
due to propagation through a shear [35–37].

Multiple authors [37–42] have explored internal wave
propagation through a mean background wind in the form
of a steady shear leading to turning points or critical levels.
Turning points occur when the internal wave is propagating
opposite to the background wind and it is refracted to the
natural frequency of the fluid and then the wave must turn
back on itself. Critical levels occur when the internal wave
is propagating in the same direction as the background
wind and the wave is refracted until its horizontal phase
speed reaches the background wind speed. As the internal
waves approach smaller vertical wavelengths in the critical
level scenario, the low-amplitude waves are absorbed and
the larger-amplitude waves break yet some of their energy
may be transmitted above the critical level. Hines [43–46],
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Eckermann [28], Vanderhoff et al. [29, 30], Broutman and
Young [26], Bruhwiler and Kaper [27], and Sartelet [47,
48] included time-dependence and spatial variability of the
background wind, although still on long time scales and large
length scales, in the form of an inertia wave. The result was a
reduction in the probability of critical levels, which became
time-dependent, and an introduction of another type of
strong refraction, caustics.

Caustics occur when small-scale, high-frequency (short)
waves are propagating opposite to a large-scale, low-
frequency (inertia) wave (common in the ocean) and the
vertical group velocity of the short wave is equal to the
vertical phase speed of the inertia wave. When this strong
refraction occurs, the small waves experience quick changes
in wavenumber and group velocity resulting in spreading
the short wave wavenumbers and transferring energy with
the inertia wave [27, 29, 30, 47–49]. Although this type of
scenario is possible in the atmosphere, it is less common and
will not be discussed in depth here.

Small-scale waves propagating in the same direction as
an inertia wave have been observed in the atmosphere [13,
50, 51]. Upward propagating envelopes of inertia waves with
vertical wavelengths between 1 and 7 km, horizontal wave-
lengths on the scale of 1000 km, and maximum horizontal
velocities of 3 m/s were observed. Thompson [51] showed
that the source of inertia waves is generally near the earth’s
surface, propagating upward and thus inertia waves are
commonly found in the stratosphere. Since internal waves
are constantly being generated in the troposphere near the
earth’s surface, the interaction between upward propagating
internal waves and inertia waves is expected to be a regular
occurrence. Sato et al. [50] found that other background
winds in the vicinity of the inertia waves were relatively small
such that the shear due to the inertia wave dominates short
wave refraction.

Eckermann [28] found that small waves interacting with
an infinite inertia wavetrain propagating the same direction
did not encounter a critical level since the oscillations from
the background flow did not cause the relative frequency
of the small wave to decrease toward zero at any particular
location, but rather caused the small wave frequency to
oscillate as the wave propagated through phases of the
inertia wave. The small waves did, however, reach critical
wavenumbers. When the short wave vertical wavenumber
becomes large relative to the initial wavenumber or fluid
environment, waves are assumed to overturn and be dissi-
pated by turbulence. This is referred to as the Jones critical
level and was defined in Eckermann’s work as 12.5 meters.
The waves in a time-dependent shear were also less likely to
reach a turning point, compared with steady shear. Sartelet
[47, 48] showed that, with an infinite series of enveloped
inertia waves, correlating to Eckermann’s research, these
waves would all follow similar trajectories as Eckermann
found.

This paper will investigate the interaction between
small-scale, high-frequency internal wave packets and time-
dependent shear in the form of an inertia wave, which will
be confined to a single envelope. We predict the possibility
of critical levels and turning points based on the relative

initial short wave properties and inertia wave, with specific
interest in the effect the inertia wave envelope has on the
dynamics of the interaction. Comparisons to the interaction
between a short wave and infinite inertia wavetrain are
made. In addition, differences in wave amplitude and
steepness are discussed. Interactions will principally adopt
atmospheric conditions, where the buoyancy frequency is
constant throughout the interaction and both waves are
propagating in the same direction.

Section 2 describes the problem setup. Section 3
describes the methods used for analysis. Section 4 includes
results and discussion of wave propagation through a
series of background shear profiles. In Section 5, we make
conclusions and discuss the impact of these results.

2. Idealized Problem

2.1. Inertia Wave. The large-scale inertia gravity wave is
idealized as a sinusoidal wave that exists either as an infinite
wavetrain or as a finite wave contained within a Gaussian
envelope. The frequency of the wave is equal to the Coriolis
frequency ( f ), resulting in an infinite horizontal wavelength
and no vertical group speed. This assumption is supported
by observed scales of inertia wavelengths being three orders
of magnitude larger in the horizontal than vertical. In this
work, f = 0.0001 s−1 and is assumed constant. The phases of
the inertia waves propagate downward at a speed C = f /M,
where M is the vertical wavenumber of the wave and we keep
with standard internal-wave notation [52] such that when
M < 0 the phases are propagating downward. The horizontal
current resulting from the inertia wave, (U ,V , 0), is

U + iV = G(z)U0e
i(Mz− f t), (1)

where subscript “0” defines an initial value and the amplitude
U0 is constant. The coordinate system is (x, y, z) with z
positive upwards. G is unity for an infinite wavetrain, and
for a finite wave it is the envelope function:

G = e−z
2/L2

, (2)

where the envelope scale L is constant. Figure 1 shows
the difference between the vertical structure of an infinite
wavetrain and an enveloped inertia wave.

2.2. High-Frequency Internal Waves. The short waves are
modeled as energy concentrated at a single point moving
through space and time, along rays (discussed in next
section). Their wavenumber (k, 0,m) and intrinsic frequency
ω̂ are related by the internal wave dispersion relation:

ω̂ =
(

k2N2 + m2 f 2
)1/2

(k2 + m2)1/2 . (3)

Here, N = [(−g/ρ0)(dρ0/dz)]1/2 is the mean buoyancy fre-
quency, assumed constant at N = 0.02 s−1, with ρ0 as the
mean density and g as gravity. The vertical group speed of
the short wave is

cgz ≡ ∂ω̂

∂m
. (4)
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Figure 1: Inertia wave velocity profiles used in this study. The plotted variable is U(z, t = 0) of (1), plotted here in nondimensional units.
(a) G = 1. (b) G = e−z2/L2

.

In this paper, cgz is always positive. The short waves approach
the inertia wave envelope from below.

The frequency relative to the reference frame (x, y, z) is

ω = ω̂ + kU , (5)

and frequency relative to the inertia wave reference frame
(x, y, z − Ct) moving vertically at speed C is

Ω = ω̂ + kU − Cm . (6)

In the inertia wave reference frame, the inertia wave phase
ξ =Mz − f t is stationary and the change in Ω through time
is defined as

dΩ

dt
= GzU0Ck cos ξ. (7)

For an infinitely long inertia wavetrain (G = 1), U and V are
steady in the inertia wave reference frame, andΩ is, therefore,
constant following a short-wave ray [26]. However, when the
inertia wave is confined to an envelope as in (2), Ω is no
longer constant.

Here, we define a shift in apparent background velocity as
the difference between the actual local background velocity
and the predicted velocity assuming an infinite wavetrain
(such that Ω = constant),

Uzero = ΔΩ

k
, (8)

where ΔΩ = (dΩ/dt)Δt for small time steps. For simulations
involving an infinite wavetrain (Gz = 0) or a time-
independent background flow field (C = 0), this value
remains constant at Uzero = 0.

Wave breaking can be estimated to occur when isopycnals
are vertical, ζz ≥ 1 [47, 48], where ζ = ζ0 exp(i(kx + mz −
ω̂t)) is the vertical displacement of the short waves and ζz
is the wave steepness. The subscript z represents the partial
derivative with respect to z. Wave steepness can be calculated

using the dispersion relation and knowing the wave energy
density as a function of wave steepness [30]:

E = 1
2
ρ0ζ

2
0N

2

⎡

⎣1 +

(

f m

Nk

)2
⎤

⎦. (9)

Using the dispersion relations and (9) and recognizing from
the equation for steepness that |ζz| ≈ |mζ|, the wave
steepness can be calculated as

ζz = −m
∣

∣

∣

∣

∣

∣

(

2Aω̂
ρ0

)1/2

N−1

∣

∣

∣

∣

∣

∣

, (10)

where A = E/ω̂ is the wave action density. Since the total
wave action of an internal wave is constant, the wave action
density will vary inversely as the volume of a set of nearby
rays (ray tube) varies. However, since there are no changes
in the y-dimension, no change in k, and the inertia wave is
two-dimensional, the only dimension in which the ray tube
volume will change is z. Defining z0 as the initial dimension
of the ray tube in z, z/z0 = cgz/cgz0 and

A

A0
= cgz0

cgz
. (11)

3. Methods

3.1. Ray Theory. To use ray theory, internal wave propagation
must be of small amplitude (linear), and the Wentzel,
Kramer, Brillouin, Jeffreys (WKBJ) approximation (slowly
varying short wave parameters, and the large wave is
unaffected by the interaction) must hold, and the small
waves are defined by a single frequency (infinite wavetrain).
The ray-tracing results in this paper are obtained with the
following pair of ray equations, for the vertical position of
the ray path and the vertical wavenumber, respectively,

dx

dt
= cg + U ,

dm

dt
= −k ∂U

∂z
. (12)
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Here, d/dt = ∂/∂t+ cg ·∇. Because the expression (1) has
no dependence on x or y, the horizontal components (k, 0) of
the wavenumber of the short waves are conserved along the
ray. These equations are solved using a fourth-order Runge-
Kutta method.

Wave action density calculations are made using action
conservation techniques and incorporating ray tube volume
analysis. As the volume of the ray tube decreases, the wave
action density (and amplitude) increases proportionally.
Thus, an estimate of ray tube volumes furnishes the wave
amplitude. For further discussion of the theory, see Hayes
[53] and for implementation see Broutman [49].

3.2. Estimating Turning Points and Critical Levels. Turning
points occur where ω̂ = N . The velocity at this location
can be found by assuming ω and Ω are constant and
substituting ω̂ = N into (5) or (6) for steady and inertia wave
backgrounds, respectively,

Uts = ω0 −N

k
, (13)

Ut = ω0 −N − Cm0

k
. (14)

Critical levels occur where ω̂ = f . Again, the velocity
at this location can be found by substituting this condition
into (5) or (6) for steady and inertia wave backgrounds,
respectively. For the steady background, the velocity is

Ucs = ω0 − f

k
. (15)

For the inertia wave background, the horizontal velocity of
the inertia wave must approach infinity for ω̂ to approach
f . Thus, a different type of critical level is defined. It is
assumed that waves which reach a small wavelength are
probably approaching breaking. We will use the defined
wavelength, a typical critical value for the atmosphere, used
by Eckermann [28] (following [54]) of 12.5 meters. Thus,
mc = −2π/12.5 m−1 = 200μ, where μ is a scaling used for
convenience. The inertia wave vertical wavenumber is held
constant in throughout most of the study at M = 0.001 m−1.
The inertia wave velocity at this critical level can be estimated
as

Uc = 1
k

(

ω1/2
0 − ω1/2

c

)

+
f (mc −m0)

Mk
, (16)

where ωc is the frequency evaluated at the critical wavenum-
ber, mc.

4. Results

4.1. Interaction with an Infinite Inertia Wavetrain. Ecker-
mann [28] tested their theory of the accuracy of Doppler
spreading assumptions with small waves interacting with a
steady background shear, a steady background with a wave
form, and a propagating infinite inertia wavetrain. To remove
the effect of the inertia wave velocity on the small wave
initially, all small waves are initiated in regions where U = 0.

Short waves are initiated well below the inertia wave envelope
where U = 0 and envelopes of stationary shear and inertia
waves are both considered to distinguish between the effects
of enveloping and time dependence. In addition, an analysis
of wave stability is discussed.

For time-independent background shear, Eckermann
[28] showed that in addition to critical levels for certain
interactions, there exists a critical vertical wavenumber for
the small wave. This means that for a range of short waves,
with differing frequencies or wavenumbers, all waves with
a vertical wavelength smaller than a critical value would
encounter either a critical level or a turning point when
approaching the time-independent background wave of
specified amplitude. He confirmed that a critical level occurs
when the frequency of the small wave approaches the local
Coriolis frequency, and a turning point occurs when the
frequency approaches the local buoyancy frequency.

Using (13) and (15), the outcomes may be predicted for
an interaction between a small internal wave and a large
inertia wavetrain. Figure 2 shows the potential outcomes of
a wide range of waves interacting with inertia wavetrains
of various amplitudes. The format is similar to the plots
of Eckermann [28] and shows interactions with infinite
wavetrains of different maximum background velocities:
(a) 1.5 m/s, (b) 5.0 m/s, and (c) 8.3 m/s, respectively. The
horizontal and vertical axes define the nondimensional initial
short wave vertical wavenumber and frequency, respectively.
In all cases, f , N , and the vertical wavenumber of the inertia
wave, M = −0.001 m−1, were kept constant. Since k also will
remain constant throughout the interaction, lines of constant
k are displayed in Figure 2(a). The green triangles represent
interactions where the small wave will reach a turning
point, the red squares represent a critical level interaction
(based on a critical wavenumber), and the blue circles
represent either a critical level or a turning point depending
on whether the wave propagates first through positive or
negative background velocities. The other dots without
surrounding shapes represent regions of free propagation of
the small waves. It is clear that an increase in the inertia
wave amplitude increases the critical level and turning point
regions.

In Figure 2, the left vertical black line indicates where
the initial vertical wavelength of the short wave matches the
vertical wavelength of the inertia wave. Any simulations near
or to the left of this line are not scale-separated and the results
may not be completely accurate. The vertical black line on the
right indicates the value of the critical wavenumber, and any
data to the right of this line is initialized in the Jones critical
level. These waves are, therefore, assumed to become unsta-
ble due to any interaction with the background. Therefore,
only data between these lines should be considered valid for
these simulations.

To estimate changes in wave action density, (11) is used
in the frame of reference moving with the inertia wave phases
such that dz/dt = cgz −C, and it is found, in agreement with
[28],

A

A0
= cgz0 − C

cgz − C
. (17)
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Figure 2: Probability of short waves reaching a turning point (green triangles), critical level (red squares), or either (blue circles)
during propagation through an infinite inertia wavetrain. Lines on (a) represent constant k as labeled. Superimposed vertical lines depict
wavenumber limits as discussed in the text.

Equation (17) indicates that there is a maximum change
associated with an infinite velocity and therefore an infinite
vertical wavenumber. This is done by setting U = ∞ and sub-
sequently, cgz = 0. Percentage changes in wave action density
for two scenarios with different inertia wave amplitudes and
phase speeds are displayed in Figure 3, where the colors
represent the scale of the change as a function of the initial
frequency and wavenumber of the short wave. The waves that
will experience the largest change in wave action density are
those that have initial frequencies near N and initial vertical
wavenumbers between μ and 10μ. We have found the region
is bounded by limits inherent to the interaction, a steady
critical level estimate and the inertia wave phase speed, which
can be seen as the white lines in Figure 3. The lower limit
bounds the very low wavenumber waves, which would not
reach a critical level in a time-independent flow field with
the same velocity and thus do not have a significant change
in wave action density even when the background is time-
dependent. The upper limit bounds the short waves initially

propagating upward faster than the phases of the inertia wave
propagate.

The wave action density influences the probability of
wave breaking as the wave steepness is also a function of
the short wave amplitude. An increase in wave action density
results in an increase in wave steepness. Rearranging (10) and
normalizing by the initial value,

ζz
ζz0

=
(

Aω0

A0ω

)1/2

. (18)

Wave steepness depends on the frequency and action density,
with the maximum steepness occurring when the action
density is a maximum and the frequency is a minimum.
The maximum changes in wave frequency occur for waves
with the largest initial vertical wavenumbers and frequencies.
These waves are far enough from the critical level velocity
and Coriolis frequency to support significant changes in
frequency. For these interactions, the largest change in wave
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Figure 3: Contours of maximum change in wave action density for two scenarios with different background velocities and inertia phase
speeds. The white line to the left shows the critical level boundary for a stationary background, and the white line to the right shows the
value of the inertia wave phase speed.

action density and wave steepness both occurs where the
background velocity is at a maximum positive value.

The contours in Figure 4 show the maximum change in
wave steepness calculated using (18). The most severe change
in wave steepness in Figure 4 occurs for waves that have large
initial frequencies and initial vertical wavenumbers between
μ and 10μ, which corresponds to the wave action density
shape changes as well. This region increases for increasing
background velocities, as can be seen when comparing
Figures 4(a) and 4(b). When internal waves reach excessive
wave steepness, defined by a value of unity according to (10),
the waves become unstable and are likely to overturn, break,
and be dissipated by turbulence. Because wave steepness is
given as a relative change, it would be necessary to know an
initial steepness of the internal waves to predict whether they
would overturn due to excessive wave steepening.

It should be noted that for linear ray theory, the
amplitude, which affects the initial wave steepness, has no
effect on the probability of reaching a critical wavenumber
or reflection, so each potential outcome is independent of the
other. Figure 4 illustrates the change in wave steepness jointly
with the waves that will experience a critical level or turning
point for two different inertia wave amplitudes, showing
how the same waves may steepen without approaching a
critical level. In the regions where waves will experience large
changes in wave steepness, those waves may be otherwise
expected to freely propagate or become reflected.

As the phase speed of the inertia wave decreases, it
approaches a time-independent flow field. Thus, the prob-
ability of the Jones critical level increases. Incidentally, the
probability of turning points also increases. The alternate is
also true, in that if the inertia wave phase speed increases,
the probability of a critical level or turning point decreases.
As the phase speed of the inertia wave increases, the small
wave has less time to be affected by the interaction, ultimately
reducing the severity of the interaction.

4.2. Interaction with an Enveloped Inertia Wave. In the
previous scenarios, it was theoretically possible to determine
the wavenumbers, frequency, and wave action density of the
short waves for any given background velocity and initial
wave properties through the constancy of the total frequency.
This is not the case for an interaction with an enveloped
inertia wave (here, there are approximately six wavelengths
contained within the envelope). During the interaction, the
positively propagating short waves will spend less time in
negative background velocities and more time in positive
background velocity, due to the vertical group velocity of
the small waves growing in positive shear and decreasing in
negative shear.

During the first half of the interaction (bottom half of
envelope where Gz > 0), the background velocity magnitudes
are diminishing as they propagate downwards through the
inertia wave envelope (C < 0), and as such the total
frequency, Ω, of the short wave will decrease (7). Similarly,
as the wave propagates out of the envelope (top half of
envelope where Gz < 0), the total frequency increases
towards its original value prior to the interaction. Assuming
that a critical level or reflection do not occur, the short
waves propagate out of the inertia wave envelope with no
permanent changes.

Figures 5 and 6 show how m and ζ , respectively, change
with the local background velocity as the short wave propa-
gates. The short wave is initialized with m0/μ = 10 and k/μ =
−1 and the inertia wave has a maximum background velocity
of 5 m/s. Figures 5(a) and 6(a) are interactions with an
infinite wavetrain, and Figures 5(b) and 6(b) are interactions
with an inertia wave contained within a Gaussian envelope.
The small wave and inertia wave properties are identical
to those defined for Figure 2(b), with the only difference
being that Figure 5(b) involves an inertia wave envelope. The
oscillations of m with inertia wave velocity in Figure 5(a)
cannot be seen, as they lay directly on top of each other as
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Figure 5: Normalized vertical wavenumber of a short wave with m0/μ = 10 and k/μ = −1 as it propagates through an inertia wave with
U0 = 5 m/s.

the wave oscillates within the phases of the infinite wavetrain.
However, a shift is seen in Figure 5(b) as the line is followed
from m/m0 = 0, U = 0 along the lines until at largest spread
of velocity m/m0 is oscillating between approximately 0.3 and
8. At the beginning of the simulation, m only matches its
initial value with background velocities near zero. During the
interaction with the inertia wave envelope, m passes its initial
values with background velocities below zero. The largest
shift occurs at the center of the envelope, where m/m0 ranges
from approximately 0.3 to 8 instead of 0.15 to 5. The curves
in Figure 5(b) are nearly parallel to the curves in Figure 5(a),
only shifted along the horizontal axis. One can see near
the center of the envelope (region with largest oscillations),
where m/m0 = 0, U = −2.5 instead of zero. This is
what we designate as Uzero. Thus, the effective background
velocity ranges from −2.5 m/s to 7.5 m/s when comparing

to the theory of an infinite wavetrain. It will be shown that
this results in a higher probability for critical levels and a
lower probability for turning points. In addition, the waves
have a larger steepness (Figure 6) for a longer period of time
during the envelope. This may increase the possibility of wave
breaking.

The effective total background velocity, U + Uzero, can be
calculated using the m values determined through ray tracing
and (6) and (8) as follows:

ω̂0 − Cm0 + Uzerok = ω̂ + Uk − Cm. (19)

Rearranging,

Uzero = C(m0 −m) + (ω̂ − ω̂0)
k

+ U. (20)



8 International Journal of Geophysics

100

101

10−1

−5 0 5

U  (m/s)

ζ/
ζ 0

(a) Infinite inertia wavetrain

100

101

10−1

−5 0 5

U  (m/s)

ζ/
ζ 0

(b) Enveloped inertia wave

Figure 6: Normalized steepness of a short wave with m0/μ = 10 and k/μ = −1 as it propagates through an inertia wave with U0 = 5 m/s.

Using (7) and (8), changes in Uzero over time can be
calculated:

dUzero

dt
= GzU0C cos ξ. (21)

The value of Uzero can also be represented relative to the size
of the envelope, Ue = GU0,

dUzero

dUe
= C

cgz
cos ξ. (22)

Because cgz is a function of m in these scenarios, and
m is a function of both U and Uzero, the analytical solution
to this equation is nonlinear and difficult to display, though
the trend can be seen in Figures 7(b) and 7(d), where the
black lines oscillate as the short waves propagate through the
inertia wave.

Figures 7(a) and 7(c) show the evolution of the rays
through the inertia wave, where the shaded regions are
outlined by velocities at which the short wave would theo-
retically reach a critical level. Figures 7(b) and 7(d) display
the corresponding shift in horizontal velocity, Uzero for the
interaction. The small wave and inertia wave properties
are identical to those defined for Figure 2(b), with the
only difference being that Figure 7 involves an inertia wave
envelope. Figures 7(c) and 7(d)show the same short wave
propagating through an inertia wave with an envelope of
twice the size. The value of Uzero oscillates as the small waves
propagate through the phases of the inertia wave, indicated
by the black lines in (b, d), but the average change is nearly
hyperbolic and is not a function of the envelope length scale,
L. For a larger inertia wave envelope, the magnitude of the
oscillations of Uzero diminish because the inertia envelope
opens and closes more slowly. Because the magnitude of the
oscillations is inversely related to L, or rather the magnitude
is related to the shear due to the envelope, waves may
be slightly more likely to experience a critical level or

turning point sooner when interacting with inertia waves
with smaller envelope. For a Gaussian envelope, dUe/dz is
near zero at locations near the center of the envelope, and the
Uzero oscillations diminish in these regions, as indicated by
Figures 7(b) and 7(d). This indicates that the total probability
of small waves reaching a critical level or turning point does
not significantly change with different envelope scales.

Notice the largest shift occurs near the center of the
envelope. At this point, the wave no longer experiences back-
ground wind oscillations equal to the maximum velocities of
an infinite inertia wave, but rather the background velocities
offset by Uzero. In Figure 7, the short wave is propagating
through an inertia wave with maximum oscillations of 5 m/s,
and the short wave experiences a shift of −2.5 m/s; so the
short wave is experiencing oscillations of 7 to −2.5 m/s, as
discussed previously.

Figure 8 shows how Uzero will affect turning points
and critical levels during the interaction. For these simula-
tions, U0 = 5 m/s. The probability of turning points has
diminished, with no waves of initial frequency lower than
approximately 30 f reaching one. Other waves, which would
have required background velocities larger than 5 m/s to
reach a critical level interacting with an infinite wavetrain,
reached critical levels. For all the waves tested in this
interaction, the inertia envelope caused the number of waves
that reached a critical level to increase by 4% and the number
of reflections to decrease by 21%. The number of freely
propagating waves stayed constant at 60% of all waves tested.

In all these simulations, the inertia wave is contained
within a Gaussian envelope, yet the shape of the envelope is
not significant. Other scenarios were tested using triangular
and parabolic envelopes and the average values of Uzero

were identical. Only the oscillating values of Uzero, illustrated
in Figures 7(b) and 7(d), changed with the shape of the
envelope. For the opening and closing of the envelope, (21)
shows that a change in the envelope size corresponds to
a specific change in Uzero, and this governs the magnitude
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Figure 7: Estimate of Uzero along rays due to short wave propagation through an enveloped inertia wave. In (a), the shaded regions represent
horizontal velocities exceeding time-independent critical level velocity. In (b), the black lines show Uzero for each ray, one as each ray
propagates into the center of the envelope, and the other as each propagates out of the envelope. The line through the center of the oscillations
shows the average Uzero during propagation. It begins at zero and decreases toward the center of the envelope, then returns to zero as is exits
the envelope.

of the oscillations. It is expected that an integration over
the envelope function Gz would result in averaging out the
oscillations and merely the trend to maximum Uzero results.

Figure 9 illustrates the maximum Uzero that occurs with
numerous interactions with an inertia wave envelope with
a maximum background velocity of 5 m/s, and the vertical
wavenumber of the inertia wave envelope ranges from M =
−0.0008 to −0.003−1 (corresponding to vertical wavelengths
ranging from 2000 to 8000 m). Notice that the horizontal
axis is now normalized by the vertical wavenumber of the
inertia wave, M, and the colorbar is normalized by the initial
velocity, U0. The small waves may experience magnitudes of
Uzero up to 80% of the total amplitude, but this only occurs
for large initial vertical wavenumbers of both the inertia

and short waves and in the midfrequency region of the
short waves. Waves with small initial wavenumbers, where
m0 < M, experienced little or no offset. These waves also
had large initial group speeds and required large velocities
for reaching a critical level, so it is not expected that they
would experience large changes in Uzero. The region above
the upper black line in the figure and to the right of the
vertical line represents the areas without valid offset data. The
upper portion represents the region where the short waves
experience reflection before a maximum offset value can be
obtained, and the far right portion represents a region where
the small waves are initialized in the Jones critical level. The
general shape of the offset when accounting for these critical
lines is constant for varying M.
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5. Conclusion

The results of this paper examine the effects of enveloping an
infinite inertia wavetrain, through which higher-frequency
short waves propagate. Although the final effect of the
envelope on short waves propagating though the inertia
wave opposite to the phases should be minimal [29],
during the interaction the envelope effectively forces more
short waves toward critical levels, although these are now
time-dependent and do not follow conventional means of
approaching a steady critical level. In addition, turning
points are significantly diminished due to the enveloping
function. Thus in comparison with estimates of infinite
inertia wave interactions [28], when the inertia waves
are realistically enveloped, more high-frequency waves will
deposit their energy at a lower altitude and more energy will
continue to higher altitudes then will turn back downward.

The wave action density and wave steepness reach higher
values for longer periods of time when the inertia wave is
enveloped. These regions of increased amplitude were found
to be bounded within the inertia wave by the steady critical
level region and the inertia wave phase speed. These regions
are then expected to be more likely to contain breaking
waves.

When analyzing the effect of the envelope through a
velocity shift experienced by the short waves, the relative
shift is dependent on the relative vertical wavenumbers and
background velocity (22). However, we have found that the
shape and number of wavelengths within the envelope do not
affect the velocity shift, merely the presence of the envelope
causes the spatial dependence of the shear necessary for these
alterations.

If current internal wave and global models account
for this specific time-dependence and spatiality-dependence,
they will more accurately predict critical levels, turning point
locations, and wave amplitudes, improving estimations of
when and where internal wave energy and momentum is
transported and deposited in the atmosphere.
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through the internal wave field: an eikonal approach,” Journal
of Geophysical Research, vol. 91, pp. 8487–8495, 1986.

[40] A. Javam and L. G. Redekopp, “The transmission of spatially-
compact internal wave packets through a critical level,”
Dynamics of Atmospheres and Oceans, vol. 28, no. 3-4, pp. 127–
138, 1998.

[41] P. Müller, G. Holloway, F. Henyey, and N. Pomphrey, “Non-
linear interactions among internal gravity waves,” Reviews of
Geophysics, vol. 24, pp. 493–596, 1986.

[42] K. B. Winters and E. A. D’Asaro, “Three-dimensional wave
instability near a critical level,” Journal of Fluid Mechanics, vol.
272, pp. 255–284, 1994.

[43] C. O. Hines, “The saturation of gravity waves in the middle
atmosphere. Part II: development of Doppler-spread theory,”
Journal of the Atmospheric Sciences, vol. 48, no. 11, pp. 1360–
1379, 1991.

[44] C. O. Hines, “The saturation of gravity waves in the middle
atmosphere. Part IV: cutoff of the incident wave spectrum,”
Journal of the Atmospheric Sciences, vol. 50, no. 18, pp. 3045–
3060, 1993.

[45] C. O. Hines, “Nonlinearity of gravity wave saturated spectra in
the middle atmosphere,” Geophysical Research Letters, vol. 23,
no. 23, pp. 3309–3312, 1996.

[46] C. O. Hines, “Doppler-spread parameterization of gravity-
wave momentum deposition in the middle atmosphere. Part
1: basic formulation,” Journal of Atmospheric and Solar-
Terrestrial Physics, vol. 59, no. 4, pp. 371–386, 1997.

[47] K. N. Sartelet, “Wave propagation inside an inertia wave. Part
I: role of time dependence and scale separation,” Journal of the
Atmospheric Sciences, vol. 60, pp. 1433–1447, 2003.

[48] K. N. Sartelet, “Wave propagation inside an inertia wave. Part
II: wave breaking,” Journal of the Atmospheric Sciences, vol. 60,
pp. 1448–1455, 2003.

[49] D. Broutman, “On internal wave caustics,” Journal of Physical
Oceanography, vol. 16, pp. 1625–1635, 1986.

[50] K. Sato, D. J. O’Sullivan, and T. J. Dunkerton, “Low-frequency
inertia-gravity waves in the stratosphere revealed by three-
week continuous observation with the MU radar,” Geophysical
Research Letters, vol. 24, no. 14, pp. 1739–1742, 1997.

[51] R. O. R. Y. Thompson, “Observation of inertial waves in the
stratosphere,” Quarterly Journal of the Royal Meteorological
Society, vol. 104, pp. 691–698, 1978.

[52] A. Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982.
[53] W. D. Hayes, “Kinematic wave theory,” Proceedings of the Royal

Society of London, vol. 320, no. 1541, pp. 209–226, 1970.
[54] W. L. Jones, “Propagation of internal gravity wave in uids with

shear and rotation,” The Journal of Fluid Mechanics, vol. 30, pp.
439–448, 1967.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Climatology
Journal of

Ecology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Earthquakes
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Applied &
Environmental
Soil Science

Volume 2014

Mining

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal of

Geophysics

Oceanography
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

  Journal of 
 Computational 
Environmental Sciences
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of
Petroleum Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geochemistry
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Atmospheric Sciences
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oceanography
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mineralogy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Meteorology
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Paleontology Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geological Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geology  
Advances in


