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HILLE-WINTNER TYPE COMPARISON THEOREM FOR

SELFADJOINT FOURTH ORDER

LINEAR DIFFERENTIAL EQUATIONS

L. ERBE1

Abstract. The well-known Hille-Wintner Theorem for second order linear dif-

ferential equations is extended to fourth order selfadjoint equations.

1. Introduction. Consider the selfadjoint fourth order equations

(r(x)y")" + p(x)y = 0,       r(x) > 0,p(x) > 0, (1.1)

and

(r(x)y")" - p(x)y = 0,        r(x) > 0,p(x) > 0. (1.2)

The oscillation and nonoscillation properties of the solutions of equations (1.1) and

(1.2) were the subject of an extensive and systematic study in the fundamental

paper of Leighton and Nehari [9]. As noted there, the difference between the

oscillatory behavior of (1.1) and (1.2) is very profound: Either all solutions of (1.1)

are oscillatory or none are; however, (1.2) always has nonoscillatory solutions

regardless of whether or not there are any oscillatory solutions.

An equation of the form (1.1) or (1.2) is said to be disconjugate on an interval /

in case no nontrivial solution has more than three zeros on /, counting multiplici-

ties. In general, an nth order equation is disconjugate if no nontrivial solution has

more than n — 1 zeros, counting multiplicities. In this paper, we shall assume that

the coefficients r, p are continuous and positive on some half-line I = [a, + oo). A

solution of (1.1) or (1.2) is said to be oscillatory if it has an infinite number of zeros

in [a, +oo) and equation (1.1) or (1.2) is said to be oscillatory in case it has an

oscillatory solution. If (1.1) or (1.2) is not oscillatory (i.e., if all solutions have only

finitely many zeros), then the equation is disconjugate on some interval [a,, + oo),

ax> a ([9]; see also [3]).

The oscillation properties of (1.1) and (1.2) are intimately connected with the

conjugate and focal point theory as developed in [9], [3], [4], [5], [8]. In general, an

nth order linear differential equation is said to be (k, n — k) disconjugate on an

interval / in case no nontrivial solution has a zero of order k followed by a zero of

order n - k. In the case of equation (1.1), disconjugacy is equivalent to (3, 1)

disconjugacy (which, since (1.1) is selfadjoint, is also equivalent to (1, 3) discon-

jugacy), and for equation (1.2), disconjugacy is equivalent to (2, 2) disconjugacy
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([9]). Similar restrictions apply to the index of disfocality. That is, (1.1) or (1.2) is

said to be (k, 4 — k) disfocal on an interval I for some 1 < k < 3 in case there

does not exist a solution v with a zero of order k followed by a zero of yw of order

4 - k, where yw = y^, for/ = 0, 1, 2,yU) = (ry")v~2\j = 3, 4. Thus, in the case

of (1.1) the only type of focal points possible are (3, 1) and (1, 3) and for (1.2) the

only type possible is a (2, 2) focal point. (See [10], [5].)

2. Statement and proof of results. One of the most useful comparison theorems in

the study of the oscillatory behavior of the second order linear equations

(r(x)y')' + q(x)y = 0, (2.1)

(rx(x)y')' + qx(x)y = 0, (2.2)

aside from the Sturm Comparison Theorem, is the so called Hille-Wintner Com-

parison Theorem:

Theorem 2.1 ([6], [13]). Let r = rx = 1, q, qx £ C[a, + oo), and let

Q(x) m (°°q(t) dt,       Qx(x) m C qx(t) dt
J x J x

exists with 0 < Qx(x) < Q(x) for all x £ [a, + oo). Then if (2.1) is disconjugate on

[a, + oo) so also is (2.2).

Theorem 2.1 was recently extended to the more general equations (2.1) and (2.2)

by Butler [2] (who removed the boundedness assumption on r(x) required in [12])

as follows:

Theorem 2.2. Let r, rx, q, qx be continuous on [a, + oo) such that

Q(x) =  Cq(t) dt,        Qx(x) = /""%,(/) dt
JX J X

exist, and such that 0 < r(x) < rx(x), |öi(jc)| < Q(x) on [a, +oo). Then if (2.1) is

disconjugate on [a, + oo), so also is (2.2).

In contrast to the substantial number of comparison results which have been

developed for (2.1) and (2.2) (cf. [14]) relatively few results are known for equations

(1.1) and (1.2). It was shown in [9] that if 0 < r(x) < rx(x), 0 <px(x) < p(x), and if

(1.1) is disconjugate, then so also is

(rx(x)y")" + P,(x)y = 0. (2.3)

In fact, under the same assumptions on r, rx,p,px, it was also shown that if (1.2)

is disconjugate, then so also is

(rx(x)y")" - Px(x)y = 0. (2.4)

Various other comparison theorems were developed in [1], [7] and [9] and we

refer the reader to [11] for a discussion of these and related topics. However, none

of the results in the references cited deal with direct integral comparisons between

equations of the form (1.1) and (2.3) or (1.2) and (2.4). The following two theorems

provide these sorts of Hille-Wintner type comparisons.
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Theorem 2.3. Let r, rx,p,px E C[a, + oo) satisfy

0 < r(x) < rx(x),       p(x) > 0,p,(x) > 0, x > a, (2.5)

and assume equation (1.1) is disconjugate on [a, + oo). Then if

f°° rxx dt = + oo,   Px(x) =jMPx(t) dt < fp(t) dt s P(x),       x>a,    (2.6)

equation (2.3) is disconjugate on [a, + oo).

Theorem 2.4. r, rx,p,px E C[a, + oo) satisfy (2.5) and assume (2.6) no/<&. Fnen //

equation (1.2) is disconjugate on [a, + oo), //ten so also is equation (2.4).

Before beginning the proofs of the above theorems, we state the following two

results whose proofs may be found in [4, Lemmas 3 and 6]:

Lemma 2.5. Assume r, p > 0 and f°° r~x dt = + oo. Then equation (1.1) (or (1.2))

is (k, A — k) disfocal iff it is (k, A — k) disconjugate.

Lemma 2.6. Equation (1.1) (or (1.2)) is (k, A — k) disfocal in (a, b) iff there exists a

solution y which satisfies

/» > 0,      j = 0,l,...,k,

(-\y-ky0)>0, j = k+l,...,A,

where y0) = y°\j = 0, 1, 2,/°> - (ry")u~2\j - 3, 4.

As a consequence of Lemmas 2.5, 2.6, and the remarks in the introduction, we

note that if /°° r~x dx = + oo, then equation (1.1) is disconjugate iff there exists a

solution y satisfying

y > 0,        y' > 0,       y" < 0,        (ry")' > 0,        (ry")" < 0, (2.7)

and equation (1.2) is disconjugate iff there exists a solution y satisfying

y > 0,       y' > 0,        y" > 0,       (ry")' < 0,        (ry")" > 0. (2.8)

Proof of Theorem 2.3. In view of the above remarks, let v be a solution of (1.1)

satisfying (2.7). We make the change of variable

ux=y'/y,       u2 = ry"/y,       u, = (ry")'/y (2.9)

so that

u'2 = u3 — uxu2, (2.10)

1*3   ~    -P   -   UxUy

It is easy to see that by (2.7), ux -» 0, u2 -» 0, and u3 -» 0, as x -» + oo so that (2.10)

can be replaced by the equivalent integral system

("T - r~\) dt = I    gx(ux, u2) dt,
Jx

(uxu2 - u3) dt = j    g2(ux, u2, k3) dt,
Jx

*h(x) =/°°"i"3 dt + f°p dt=j^g3(ux, u3) dt + P(x). (2.11)
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Since the solution v satisfies (2.7), it follows that ux, Uj, u3 satisfy

ux > 0,       u2< 0,       u3 > 0. (2.12)

Notice also, for ux, u2, u3 in the range determined by (2.12), that gx(ux, u) = u\ —

r~xu2 is monotone increasing in ux and decreasing in u2, g2(ux, u2, u) = uxu2 — u3 is

decreasing in ux, increasing in u2, and decreasing in u3, and g3(ux, u) = uxu3 is

increasing in both ux and u3.

Consider now the system

/OO »00
(u2 - rxxv2) dt = j    gx(vx, v2) dt,

X J X

/OO »00
(vxv2 - v3) dt = I    g2(vx, v2, v3) dt,

J X

v3(x) = f°°vxv3 dt + fPxdt= Cg3(vx, v3) dt + P,(x), (2.13)
J X J X J X

corresponding to equation (2.3). We show that (2.13) has a solution obtainable by

successive approximations as follows: Define vxo(x) = ux(x), o20(x) = u2(x), Vy^x)

= u3(x) and for n > 0,

/oo
¿l(f !»(*)» »2n(s)) ds,

x

/oo
8i{Pln(')> »M, V3n(s)) OS,

x

/oo
&(©!,,(*). V3„(S)) OS + Px(x).

x

By induction we may show using the monotone properties of the integrands that

0 < »i»+i < «i« < "i>       0 > v2n+x > v2n > «2,       0 < ü3„+i < v3„ < u3

(2.14)

for all n > 0. The fact that |o)n| > 0, i = 1, 2, 3, follows from the fact that

px(x) ^ 0 for all large x. Hence, {vx„}, {v2n}, {v3n} converge monotonically and

uniformly on compact subintervals of [a, + oo) to a solution vx, v2, v3 of system

(2.13). It follows also that t5,(x) > 0, t32(x) < 0, t33(x) > 0, x > a so defining

z(x) = exp(/£ vx(s) ds), we see that z > 0, x > a, and z is a solution of (2.3) which

satisfies z > 0, z' > 0, z" < 0, (rxz")' > 0, (rxz")" < 0. Therefore, by Lemmas 2.5

and 2.6, we conclude that equation (2.3) is disconjugate. This completes the proof

of Theorem 2.3.

Proof of Theorem 2.4. Reflecting the change between the nature of the

solutions of (1.1) and (1.2) is the method of proof for Theorem 2.4 which is entirely

different from that for Theorem 2.3. We first need the following Lemma which

gives a necessary and sufficient condition for disconjugacy of (1.2) based on two

related second order equations.

Lemma 2.7. Equation (1.2) is disconjugate on [a, +oo) iff there exists a positive

function a £ C x[a, + oo) such that both of the equations

(ru')' + ou = 0,       (ov')' +pv = 0, (2.15)

are disconjugate in [a, + oo).
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Proof. If there exists o E C'[a, +00), a > 0, such that (2.15) is disconjugate,

then (1.2) is disconjugate (this is just Theorem 6.3 of [9]). On the other hand, if

equation (1.2) is disconjugate, then it is (2,2) disconjugate and hence by Lemmas

2.5 and 2.6 there exists a solution y which satisfies.

y > 0, y' > 0, y" > 0, (ry")' < 0, (ry")" > 0. (2.16)

Letting o = -(ry")'/y" we see that u = y' and v = y are positive solutions of (2.15)

and hence both equations are disconjugate in [a, + 00). This proves the Lemma.

Suppose now that r, rx,p,px satisfy (2.5) and assume (2.6) holds. If equation (1.2) is

disconjugate, then by Lemma 2.7, there exists a > 0, o E C'[a, + 00) such that

(ru')' + au = 0 and (at)')' + pv = 0 are both disconjugate. Now by the Sturm

Comparison Theorem, since 0 < r < rx, it follows that (rxu')' + ou = 0 is also

disconjugate. Moreover, since 0 < j™px dt < f™p dt, it follows by Theorem 2.2

that (at/)' + pxv = 0 is likewise disconjugate. Therefore, by Lemma 2.7 we con-

clude that (2.4) is disconjugate. This completes the proof of Theorem 2.4.

As applications and to demonstrate sharpness, we state the following two

corollaries:

Corollary 2.8. The equation

yw-px(x)y = 0,      p>0, (2.17)

is disconjugate in [a, + 00) if

^¡^pMdK—,       x>a. (2.18)

To prove this, we use the nonoscillatory Euler equation y^-9x~*y/16 = 0.

Similarly, using the nonoscillatory Euler equation y(4) + x~*y = 0, we establish

Corollary 2.9. The equation

yW+p,(x)y = 0,      p,>0, (2.19)

is disconjugate in [a, +00) if

x3J°°p,(0 dt<-,       x>a. (2.20)
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