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A NOTE ON THE PRICING OF AMERICAN OPTIONS

B naxHOIT cTaThe MBI BO3BpalllaeMcs K 3a/iade ONTHMAILHON OCTAHOBKU B
MPUMEHEHUH K ONpenesieHHIO LIeHbl aMEPUKAHCKMX OILIMOHOB ¢ 6€CKOHeYHBIM
BPEMEHHBIM TOPH30HTOM B GMHOMMAJILHON MOMENM C OVUCKPETHHIM BPEMEHEM.
Brruncniena GbyHxKuMs neHbl 01 CITy4as HeIPEePLIBHOIO MPOCTPAHCTBA COCTO-
SHII ¥ TPOM3BOJILHOIO HavyaJibHOro coctosiHus > 0. Iomyyennas dynxkuns
UEHbl CPDABHMBAETCS C HEIABHO OITy6IMKOBAHHBLIM pellIeHMeM IJIs HEKOTOpPOro
JOUCKPETHOI'O NMPOCTPAHCTBA COCTOSTHUI.

Karouesvie caoea u ¢pa3bz: aMepHUKaHCKNe ONUMOHBI, ONTUMaJIbHasl OCTa-
HOBKa.

1. Introduction. In this note we revisit the pricing of perpetual American options
in discrete time. The market model is a special case of the classical binomial model, in
which the return process takes only two values A and A™!. According to the no—arbltrage
approach to option pricing, the fair or rational price of an Amerlca.n option should be given
by the value of a certain optimal stopping problem. We calculate the value function on
the continuous state space E = (0, 00) by deriving a series of conditions the value function
must satisfy and which, taken together, fix it uniquely. It turns out that the value function
is piecewise linear. Its restriction to the discrete state space Ey = {)\ k € Z} is compared
with the solution obtained in [4] and [5].
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2. Problem formulation. We consider the market model laid down in [5], i.e., a
bank account B = (Bn)n>o0 and a stock S = (Sn)n>o evolving according to the dynamic
equations

Bn:(l-l-T)Bn_], By > 0, Sn=(,1+pn)5n_1, So > 0.

r > 0 is the nonrandom interest rate. The shocks p. are independent and identically
distributed (i.i.d.) random variables, defined on some basic probability space (2, #,P),
taking the two values A — 1 and A~! — 1 with probabilities p and ¢ = 1 — p, respectively,
with 0 < p < 1 and A > 1. Note that the latter condition ensures that S, is positive for
all n. Consider an American call or put option

fn=1(aB)"9(Sn), n>0,
where either g(z) = (z — 1)™ (call) or g(z) = (1 — z)* (put). The exerc1se price has been
normalized to 1 without restriction of generality. Here o = (1+47)~? is the discount factor,
and 0 < B < 1. Let 90T denote the class of all (&)-stopping times 7, 9 the subclass of

all a.s. finite 7 and 9n the further subclass of all 7 < N. The no-arbitrage approach to
option pricing then leads to the result that the fair or rational price of f = (fn) should be

Vi = sup E*(apB)’g(Sr) (2.1)
TEMN
for finite expiration time and
V = sup E*(a) g(S-) (2.2)

for the perpetual options, where in the latter problem 7 ranges over 9t or 9. In (2.1) and
(2.2), E* denotes expectation with respect to an equivalent martingale measure P*. That
is, P* is any probability measure on (€2, &) such that the pn are iid.and S* = (S;) with
Sy, =a"S, is a martmgale under P*. In other words, p* = P*{pn = A — 1} and ¢"
1-p" =P*{p, = A~ — 1} should satisfy 0 < p* < 1 and ¢" ()\ L) +p*(A=1) =1, ie,
x _ A—-« . Mar—1)
P=aoe—1y T 75—y
Note that the condition a\ > 1 must be satisfied in order to ensure that ¢* > 0 (p* > 0
is automatically satisfied since A > 1 > a). A nice exposition of the arguments support-
ing (2.1) and (2.2) can be found in [4].
It turns out convenient to parametrize the dynamic equation (2.1) by the starting value
So = x and thereby embed the problem in the setting of homogeneous Markov chains. We
then arrive at a family {P}: ¢ > 0} of probability measures such that, for all z > 0,

Pi{on=A—-1}=p", Pi{pn=A"'—-1}=q¢" and Pi{So=zx}=1
The corresponding wvalue functions for (2.1) and (2.2) (with E* replaced by E}) will be

denoted by Vn(z) and V(z), respectively.
As a consequence, S, allows the convenient representation
Sp =X TteN (2.4)
(under P3), where the e, are i.i.d. random =1-variables defined by e, = 1¢, -x-1} —
1(p,=x-1-1}. In particular, for starting value z, the «active» state space for the Markov
chain S is E; = {z)\*: k € Z}.

Since, from now on, we shall only work with the equivalent martingale measures P},
we shall drop the index *. In the rest of this section, we shall collect some basic results
from the theory of optimal stopping of homogeneous Markov chains. They will not be
presented in full generality, but rather in a form adapted to our setting. In particular,
nonnegativity of the process to be stopped obtains, so that we need not worry about lower
bounds. References for the results listed below are [2] and [3]. Introduce the transition

operator
Tf(z) = Exf(51) = pf(Ax) + ¢f (A" x).
Then the following is true.
(i) Vv "V asN oo
(i) V is the minimal solution of the stationary Bellman equation V(r) =
max{g(z),aBTV (z)}.

(2.3)
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(iii) The Vn and hence V are convex functions (if g is convex).

The sets C = {z: V(z) > g(z)} and D = {z: V() = g(z)} are called the continuation
region and the stopping region, respectively (for the infinite horizon problem).

(iv) Assume that

E; sgp(aﬂ)"g(sn) <o (2:5)

holds. Then the stopping time 7* = inf{n > 0: V(S,) = ¢(Sn)} (with inf & = o0) is
optimal for (2.2) (with E, instead of E*) in the class M: E;(a8)” g(S,+) = V(z), where,
on {7* = oo}, we define (aB)” g(Sr+) = liMn—oo(B)™ g(Sn) (actually, in our setting,
the lim will always be a proper lim). If 7* is a.s. finite, then it is optimal in class 1.

3. American calls. In the following we shall derive a list of properties the value
function must possess and which will finally determine it uniquely.
(i) V(z) <z forallz > 0.
This is an immediate consequence of (i) in Section 2 and the fact that Vn(z) < =z.
The latter property follows from the estimate
E:(af)"(S- —1)* <E;a" (S, - 1)" <E:a"S; =E. Sy =z,
which is valid for all bounded stopping times 7.
(ii) V(z) > 0 for all z > 0.
Proof Choose N insuch a way that ANz > 1. Then, making use of (2.4),
Ex(af)"(Sn —1)* = (aB)VE(@A1tter —1)*
> (@) "Wz -1)P{er+--+ev =N} =(af)V Az -1)p" > 0.
Consequence: V(z) > g(z) = (z — 1)* for all z < z*, for some z* > 1.
From now on, we work on the state space E, = {\*z: k € Z}.
(iii) There exists an y* € E; U {00}, y* > 1, such that V(y) > g(y) = (y — 1)* for all
y € Ez such that y < y*.
Consider now the stationary Bellman equation (cf. (ii) in Section 2):
V(y) = max{g(y), aBTV(y)}, yE€ Ea.
In our scenario, TV (y) is given by
1 Y
TV(y) = ————= (A=) V(A AMar=1)V[=Z]].
) = s [A - V0w +a@a -1 v ()]

If, for some y = A"z € E;, we have V(y) > g(y), i.e., the maximum is adopted at aTV (y),
then

I

V(\"z) aBTV (\"z)

- /\26— - (A=) V™) + Mad = ) V(" a)]

Xfi 1 [(’\ - a)VUny1 + AMaA — 1) Un-1]
<= Unt1 = @1Vn + 02Vn-1,

= Up =

where we have put

n _Ar- _ Mar-1)
VUn = ’Un(.’E) = V(/\ .’E), ay = 'B()\—_a—), az = Y o .
The general solution of this difference equation is given by
vp = Cypy +Copl, (3.1)

where 1+ = a1/2 + v/a?/4 + a2 = } [a1 £ \/a? + 4az ] are the roots of the characteristic
polynomial a(z) = 2% — a1z — a2. By elementary calculations (cf. [1] for details) it can be
checked that the discriminant D = a? +4as = 87 2(A—a) " 2[(A2=1)2 482 (A —a)(ar—1)]
is positive, 0 < p— < p4, p— = (@A—1)/(A—a) and p4 = Afor 8 =1, as well as, for § < 1,
s+ > Aand p- < 1.

Therefore the following is true.
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(iv) On any interval in E, on which V(y) > g(y), V(y) is of the form (3.1) for y = A"z.
On the initial interval (0, y*] (cf. (iii)), we have the boundary condition

(B1) limp——co vn = 0,
as well as a matching condition (B2) at the right end-point which will emerge below
(cf. (v)). (B1) is a direct consequence of (i).

Boundary condition (B1) implies that C_ = 0. Hence V is of the form

V(y) = Cu" for y=A"z<y" (3.2)
for some y* € E; U {oo} (with C = Cy,p = py).
(v) Assume 3 < 1. Then there is an y* € E; (finite), y* > 1, such that
cu® for y=A"z <y,
Viy) = { p y y

*

y—1 for y>y".

Proof Supposethat V(y) > (y— 1) for all y € E;. Then V is of the form (3.2)
for all y, with C > 0. But then

V) _C L (B
Jim =8 = 2 lim (§)" = oo
contradicting (i) which implies that limy—oo[V(y)/y] < 1. Let now n* be any index such
that y* = A" z > 1 and V(y*) = g(y") = y* — 1. Suppose that

V(ay") > g(Ay").

Since V must be convex (since the Vi are), all points (y,V(y)), y > y*, must lie above
the line through (y*, g(y*)) and (Ay", V(M\y")), whose slope is greater than 1. Hence

V) >g9(y)=y—1 foral y>y". (3.3)
As a consequence, V(y) = aBTV (y), y > y*, so that V is of the form
V(A\"y") = vp = Coplf + C_pl
on (y*,00) (cf. (iv)). Since (3.3) holds for arbitrarily large y, C4+ > 0. Since puy > A,

p- <1,

n—oo A"y"' y* n—roo

contradicting (i): limn— oo V(z)/z < 1. Hence, once V(y*) = y* — 1 for some y* > 1, then
V(y) =y — 1 for ally > y*, which completes the proof.

For 3 = 1, the argument used in the first part of the proof of (v) does not work (since
@ = A). In fact, V(y) > g(y) holds for ally € E;. To see this, suppose there is an y* such
that V(y*) = g(y") =y" —1 and V(y"/A) > g(y"/A). Then, since g(y"/}) > y"/A -1, a
simple calculation shows that aTV (y*) > y* — a (cf. [1] for details). On the other hand,
V(y") = 9(y") =y — 1 implies

oaTV(y*") <y" -1,
contradicting the strict inequality above. Hence, since p = A and p- < 1, the value
function must be of the form V(y) = CA™ for all y = A"z, and
n
1< tim YW gy O _C
y—oo g(y) noocoAfz—1
On the other hand, by virtue of (i), the limit must be < 1, so that C =z, V(y) = y.

The property (v) describes the general form of the value function. It reflects the
intuitive notion that one should exercise the call immediately once the stock price is high
enough while for low prices it is advantageous to wait. We are left with the task to
determine C and y*. As above, let y* = A" z denote the smallest y € E, for which

V(y) = g(y) = y — 1. Around y*, two matching conditions must be satisfied.
1) Aty =y"/X

aBTV (y—) - B [(A —a)(A"z —1) + AaX - 1)cp"‘-’]

A A2 -1

= V(yT) =Ccp™ P> AVl o1 (3.4)
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Equality of the 2-nd and the 4-th terms implies
Bl - @Oz~ 1)+ A@r-1) cm'-"-] =2 —1)opr !

or, equivalently, Cu™ ~![u(A? — 1) — BA(aX — 1)] = pB(A — a)(A™ & —1). But p(\2 — 1) -
BA(aX — 1) = Bu*(\ — a) (since p is a solution of the equation a(z) = 0). Hence
* 1
C n" -1 - =
H m
or Cp,"‘ = A"z — 1. This is the announced boundary condition (B2). Once n* is given,
this determines C:

A"z —1) (3.5)

-1
p
Note that C' depends on z. The inequality in (3.4) may then be written in the form

C = (3.6)

A —1> p(A™ "lg — 1) or, equivalently, (u— A\) A" "'z < p—1.
Hence n* must satisfy the condition
n* H— 1
A :c</\p_/\. 3.7
2) Aty = y*:

aBTV(y") = X"L—l [(,\ — o)Az —1) + A(ar — 1) cu"'-l] V(") ="z - 1.

Inserting the right-hand side of (3.5) for Cu™ ~', we obtain the following chain of equiv-
alences for the inequality:

ﬁ[(A —a)(A" 1z — 1) + MA@ — 1) i A"z — 1)] <A\ -1z -1)

= A"z [p(A? - 1) - BA(aA — 1) — BAu(A — a)]
> u(N* - 1) = BA(ar — 1) — Bu(A - a)

= A"z [B(A - o) = BAu(A — )] > Bu’(A — ) - Bu(A — )

S A o(p—AN)>p—-1.
Hence n* must satisfy the condition

s bl (3.8)
pm—A

Since the interval [(x— 1)/(p — A), A(p — 1)/(» — X)) contains ezactly one y = A"z, n* is

uniquely determined by (3.7) and (3.8). Putting v = (# —1)/(x — A), this may be written
in the form

v < 2V < Ay
or, with A =log, (y/z), A< n* < A+1,1ie,
n" = [A], (3.9)
with [A] denoting the smallest integer > A. Note that n* = n*(z).
Let us go back to the continuous state space E = (0,00) and derive a closed form

expression for the value function. To this end, recall (v) in this section, which states that,
for y = A",

C(z)p™ for n<n*(z),
Viy) = {y—lﬂ for n >n*(x),

where we have used the trivial equivalence y = A"z < y* = A"z <= n < n*(z).
In particular, for n = 0,

V) = Vi) = {

Consider now any state x € [/\k'y, )\k“'y). Then

C(z) for n*(z) >0,
-1 for n*
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1) n*(z) = —k (by (3.9)),
2) C(z) = u*(A~*z 1) (by (3.6)),
3)n*(z) >0 <=k <0.
Hence o~k
_Jur(Afz -1) for k<O,
Vie) {x—l for k>0.
Thus we have proved the first part of the following theorem.
Theorem 1. (i) For American calls with 8 < 1, the value function.is of the form
Vie) = {uk()\‘km -1) for Ay << XNFly with k < 0,
r—1 for z>7.
In particular, the stopping region is given by [y,00). If B =1, V(x) =
(ii) The stopping time 7* = inf{n > 0: Sn > v} satisfies
1 if T2y o0orA< A

P.{r" < oo} = A—a \MA (3.10)
{(,\(ak—l)) if z<vyand A > Ao,

where Ao = a~Y(1+ /1 — a2). In the first case, for 8 < 1, 7* is an optimal stopping time
in M (and hence also in M), in the second case it is optimal in M. For B = 1, no optimal
stopping time exists.

*

P roof. It remains to prove (ii). For z > v, 7* is trivially finite (= 0). Consider
therefore the case £ < 7. The condition A < As is equivalent to p > ¢. Put Z, =
€1+ -+ ¢€n. Then limn_,o0 Zn = 0o Ps-ass. if p > q. Therefore, using the representation
(2.4), limp—~oo Sn = 00 Pz-a.s., implying that 7* < oo Pg-a.s. If p < ¢, note that,
under Px,

=inf{n > 0: zA%" > 4} =inf{n > 0: Z, > A} = inf{n > 0: Z, = [4]}. (3.11)

Asis well known, P, {7* < oo} = (p/q)!). Inserting p and ¢ from (2.3) completes the proof
of (3.10). As to the optimality of 7*, we would like to apply property (iv) of Section 2. To
be able to do so, we have to check condition (2.5). To this end, note first that

E; sup(aB)"g(Sn) < Ezsup(aB)”Sn.

Next, (M:t%)ns0 with M, = (aB)™Sn is a positive supermartingale for § > 0 small
enough. This can be seen as follows. Since pA + gA\~* = a~!, the function f(8) =

(@B) e (pATT0 4 gA~(+9)) satisfies f(6) = B+ O(8) as & \, 0. In particular, for § > 0
small enough, f(d) <1 (since 8 < 1). But then

E.[M)*° | #F31] = M (aB) PPE N0 = M £(5) < ML

By the maximal inequality for positive supermartingales (cf. [2]),
146
_ 145 1+5 T
PI{SL:LpMn>m}—P¢{s:pMn }<mm(—n—1m, 1)
for all m € N. Hence

Z Pm{ sup M, > m} < 00,
m=1 n

which means that sup, M, and, a fortiori, sup, (B)"g(S») is integrable. In case g =1,
note that for every 7 € M, a"g(S,) < a”S- on {r < co}. Moreover, it follows from the
law of large numbers that

li’m a"g(Sn) = lim a"S, =0 P;-as.
(note that p < q for a = 1). Since S}, = ™S, is a positive martingale, E;S7 < z. Hence
E:a"g(S-) < E;Sy <z=V(z) if Pz{r <o} >0,
E:a"g(S;) = 0<V(z)==x if Pg{r =00} =1.
Hence there exists no optimal stopping time. Theorem 1 is proved.
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Let us compare the value function in Theorem 1 with the value function V* obtained
in [5] for state space Ey = {\*: k € Z}. For £ = A*, Theorem 1 yields
V(z) = {u;"' (A = 1)k for k<n,
A -1 for k>n",
with n* = n"(1) = [logy 7] (= smallest integer > log, 7). Note that n* > 1 (since v > 1).
For the Shiryaev et al. solution, one has to calculate
" _ Inp
y1—1 - 1np.—ln)\’

1 = log, u, z=

k = integer part of log, Z,

Bi=p "0 —1), By=p VN 1), C* = min(B, By).
Then _
k*:{_’g if B1<B2,
k+1 if By > Ba,
and, for z = Ak,
* _fjcruk for k<k*,
V(x)_{)\k—l for k> k"
In order to compare V and V*, the following observations are useful.
a) ¥ < ¥ < Ay (and hence k > 0).
This follows easily from the strict monotonicity of the functions (Inu)/(u — 1) (de-
creasing) and (u1np)/(p — 1) (increasing) for p > 1.
b) B: < (=, >, respectively) By <= k< (=, >, respectively) log, ~.
In particular, By = B: holds if and only if log, v is an integer. From a), it follows
that logy v < logy Z < logy v + 1 and hence

k=n"-1 or k=n" (3.12)
From b), if log, 7 is not an integer,
Bi<By<=kg<n -1, Bi>By<=k>n" (3.13)

Combining (3.12), (3.13) and the definition of k*, we find that
prodn -1 if Bi < Bs,
n*+1 if By > Bg,

and therefore, for z = A*,
V*(z) = pm (TR gk for k<n* -1,
AF -1 for k>n"-1,
in case B; < Bz and
« “THDONTH )k for k<nt 41
Viz)={H ( I :
(@) {)\"—1 for k>n*+1,
in case By > Bs. As a consequence, unless log,, « is an integer, V and V* will not coincide
and therefore, if one believes in the correctness of Theorem 1, V* cannot be the true value
function.
In order to see what may go wrong with V*, consider parameter constellations, where
n* = 1. Then, if B; < B,, it turns out that k¥* = 0 and hence
Vz)=0 for z=2) k<0,
whereas the true value function must be positive. If By > Bz, we have k* = 2 and
. A -1 -1
VA = 2 w= <A-1=g(N)
if A+ 1 < p, so that V*()\) does not majorize g(A) and therefore does not qualify for
the true value function. As an example of a parameter constellation of the above type,
consider the case a = 1, 3 = # (there is nothing peculiar about this choice, many others
will also do). Then, for A = 2 and A = 15, we find that n* = 1 (actually, n* = 1 for all }).
For A = 2, calculations yields p = 3.10610, B1 = 0.321946 > B; = 0.310948 and hence
k* =2 and V*(2) = 0.96584 < 1 = g(2). For A = 15, the corresponding values are B; = 0,
By = 0.72842, k* = 0 and hence V*(z) = 0 for z = A\*, k < 0.
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4. American puts. The approach is basically the same as for American calls. There-
fore we shall only indicate the modifications to be made in the analysis performed in
Section 3.

(i) V(z) < 1.

(ii) Remains the same (choose N such that ANz < 1).

(iii) There exists an y* € E; U {0}, ¥* < 1, such that V(y) > g(y) = (1 — y)* for all
y € E; such that y > y”.

(iv) Remains valid without a change.

The «good» root now is u = p— (since u+ > A is not compatible with (i) for large y).

(v) Assume a < 1 or 3 < 1. Then there is an y* € Ez, y* < 1, such that

11—y for y <y,
Vi) = {Cu" for y=A"z>y".
The proof runs along the same lines as that of (v) in Section 3 (cf. [1] for details).

Let y* = A" z < 1 denote the largest y € E such that V(y) = g(y) = 1 —y. The two
matching conditions to determine n* and C are now evaluated at y = A\y* and y = y".
Proceeding as in Section 3 (with some obvious modifications) we are lead to the following
conditions fixing C and n™:

Czl———/\—,—x, 'y</\"‘:c</\'y,
ﬂn
where now 7 is defined as v = (1 — u)/(A — p). (Note that yA < 1.) This means that, with
A defined as in Section 3, A < n* < A + 1, i.e.,, n* = largest integer < A + 1. In other
words, n* = [A] (as defined above) unless A is an integer, in which case n* = [A] + 1. In
particular, for \*"1v < z < AFy, n* = —k + 1. Hence n* < 0 <= k > 1. Note that
Ay <1
We then have the following result.

Theorem 2. (i) For American puts with a < 1 or 3 < 1, the value function is of the
form

V() = pk(1 — ARy for Xely <z < Ny with k> 1, (4.1)
l1-z for =< M.
In particular, the stopping region is given by (0,\y]. Ifa=p8=1,V(z)=1.
(i1) The stopping time 7* = inf{n > 0: S» < Ay} satisfies
1 if £ Ay orA2z A,
(4.2)

P {r" < o0} = A—a
()\(a/\— 1)

where Aa = (1 + V1 — a?) and {A} is the largest integer smaller than A. In the first
case, fora <1 or B < 1, 7* is an optimal stopping time in M (and hence also in M), in
the second case it is optimal in M. For a =B =1, 7* = oo is optimal in M and no finite
optimal stopping time exists.

P roof. Of(i), only the last statement remains to be proved. Ifa = 1, p = 1/(A+1),
g =A/(A+1). Hence Eze; = p — ¢ < 0 and, by the law of large numbers, Z, — —oo a.s.
as n — oo. Consequently, S, — 0 Pz-a.s. for all z > 0, so that (for 8 =1)

. o _ +_
Jim Beg(Sa) = lim Eg(1-5.)" =1

{A}+1
) if > M and A < Aa,

by bounded convergence. This at the same time shows that 7* = oo is optimal. As to (ii),
note that

™ =inf{n > 0: A% < My} = inf{n > 0: Z, < A+ 1} = inf{n > 0: Z, = {4} +1}.

(4.2) then is a standard result for random walks. Optimality of 7* is an immediate conse-
quence of (iv) in Section 2, since condition (2.5) is trivially satisfied for American puts.
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0-LOCALIZATION AND o-MARTINGALES

B crarbe BBonuTcs mousTtue o-ao0xasusayuu, 0606LIaKOMIEEe TIOHITHE JIO-
Kanu3aluy B oOIeil TeOpMM CIIy4YalHbIX HPOIECCOB. O-JIOKAIM3ALMOHHbIN
KJ1aCC, CBA3aHHBIN C MHOXECTBOM MapTHHIaJIOB, €CTh KJIacC 0-MapPTUHIAJIOB,
KOTOpBI UI'DaeT BaXXHYIO DOiib B (huHaHCOBOM MaTemaTuke. [lompo6Ho pac-
CMaTPUBAIOTCA 3TH IPOLECCH! M COOTBETCTBYIOLLME O -MAPMUH2AAbHbLE MEDDL.
0606111251 IOHATHE CTOXACTUYECKOIO MHTErpajia MO KOMIIEHCMDOBAHHBIM CITy-
YaiHbIM MepaM, Mbl BLIBOAMM KAHOHMYECKOE IPEICTaBJIEHHE LISl 0-MapTHH-
raJioB.

Kaouesbie caosa u ¢p0,3bl'. o-JIOKaJin3auusi, 0-MapTHUHI'aJl, CTOXaCTH-
YeCKN NHTEerpaJi, KAHOHU4YEeCKOoe NpencTaBJ/IeHne, o-MapTUHIaJIbHas Mepa.

1. Introduction. o-Martingales have been introduced by Chou [3] and were inves-
tigated further by Emery [6]. They play a key role in the general statement of the fun-
damental theorems of asset pricing in [5], [12], and [2]. o-Martingales can be interpreted
quite naturally as semimartingales with vanishing drift. Similar to local martingales,
the set of o-martingales may be obtained from the class of martingales by a localization
procedure, but here localization has to be understood in a broader sense than usually
(cf. [4, 1.1d]). This concept of o-localization is introduced in Section 2. The subsequent
section treats the set of o-martingales and their properties. By extending the stochastic
integral relative to compensated random measures, the canonical local martingale repre-
sentation X = Xo+ X°+ z * (u — v) is generalized to o-martingales in Section 4. Finally,
o-martingale measures are characterized in terms of semimartingale characteristics.

Throughout the paper, we use the notation of [4] and [9], [10]. In particular, we work
with a filtered probability space (2, &#, (Z£t)ier, ). The transposed of a vector x or

matrix is denoted by ' and its components by superscripts. Increasing processes are
identified with their corresponding Lebesgue-Stieltjes measure.
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