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A NOTE ON THE PRICING OF AMERICAN OPTIONS 

В данной статье мы возвращаемся к задаче оптимальной остановки в 
применении к определению цены американских опционов с бесконечным 
временным горизонтом в биномиальной модели с дискретным временем. 
Вычислена функция цены для случая непрерывного пространства состо
яний и произвольного начального состояния х > 0. Полученная функция 
цены сравнивается с недавно опубликованным решением для некоторого 
дискретного пространства состояний. 

Ключевые слова и фразы: американские опционы, оптимальная оста
новка. 

1 . I n t r o d u c t i o n . In this note we revisit the pricing of perpetual American options 
in discrete time. The market model is a special case of the classical binomial model, in 
which the return process takes only two values A and A - 1 . According to the no-arbitrage 
approach to option pricing, the fair or rational price of an American option should be given 
by the value of a certain optimal stopping problem. We calculate the value function on 
the continuous state space E = (0, oo) by deriving a series of conditions the value function 
must satisfy and which, taken together, fix it uniquely. I t turns out that the value function 
is piecewise linear. Its restriction to the discrete state space E\ = {\k\ к £ Z } is compared 
with the solution obtained in [4] and [5]. 
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2. Problem formulation. We consider the market model laid down in [5], i.e., a 
bank account В = (Bn)n^o and a stock S = (Sn)n^o evolving according to the dynamic 
equations 

Bn = (1 + r) Bn-i, Bo > 0, Sn = (Д + pn) Sn-iy So > 0. 
r > 0 is the nonrandom interest rate. The shocks pn are independent and identically 
distributed (i.i.d.) random variables, defined on some basic probability space ( £ } ,^ ,P) , 
taking the two values Л — 1 and A - 1 — 1 with probabilities p and q = 1 — p, respectively, 
with 0 < p < 1 and A > 1. Note that the latter condition ensures that Sn is positive for 
all n. Consider an American call or put option 

fn = (af3)ng(Sn), n ^ O , 
where either g(x) = (x — 1)+ (call) or g(x) = (1 — x)+ (put). The exercise price has been 
normalized to 1 without restriction of generality. Here a = (1 + r ) - 1 is the discount factor, 
and 0 < /3 < 1. Let Ш denote the class of all )-stopping times г, Ш the subclass of 
all a.s. finite r and the further subclass of all т ^ N. The no-arbitrage approach to 
option pricing then leads to the result that the fair or rational price of / = ( / n ) should be 

VN= sup E*(af3)Tg(Sr) (2.1) 

for finite expiration time and 
K = supE*(аруg(S T) (2.2) 

T 

for the perpetual options, where in the latter problem r ranges over ffl or ffl. In (2.1) and 
(2.2), E* denotes expectation with respect to an equivalent martingale measure P*. That 
is, P* is any probability measure on (П, such that the pn are i.i.d. and S* = (Sn) with 
Sn — anSn is a martingale under P*. In other words, p* — P*{pn = A — 1} and q* — 
1-p* = P * { P n = A" 1 - 1 } should satisfy 0 < < 1 and g*(A _ 1 - 1) -bp*(^ - 1) = r, i.e., 

A - a * A(aA - 1) 

Note that the condition aA > 1 must be satisfied in order to ensure that q* > 0 (p* > 0 
is automatically satisfied since A > 1 ^ a). A nice exposition of the arguments support
ing (2.1) and (2.2) can be found in [4]. 

It turns out convenient to parametrize the dynamic equation (2.1) by the starting value 
So — x and thereby embed the problem in the setting of homogeneous Markov chains. We 
then arrive at a family {PJ: x > 0} of probability measures such that, for all x > 0, 

P:{pn = A - l } = p \ P j { p n = A " 1 - ! } = <?* and Р : { 5 0 = ж} = 1. 
The corresponding value functions for (2.1) and (2.2) (with E* replaced by E*) will be 
denoted by VN(X) and V(x), respectively. 

As a consequence, Sn allows the convenient representation 
Sn = z A £ l + - + £ " (2.4) 

(under PJ), where the en are i.i.d. random ±l-variables defined by en — 1 { P t i = a - i } — 
1{ Р т г =л- 1 -1} - In particular, for starting value ж, the «active» state space for the Markov 
chain S is Ex = {x\k: к e Z } . 

Since, from now on, we shall only work with the equivalent martingale measures PJ, 
we shall drop the index *. In the rest of this section, we shall collect some basic results 
from the theory of optimal stopping of homogeneous Markov chains. They will not be 
presented in full generality, but rather in a form adapted to our setting. In particular, 
nonnegativity of the process to be stopped obtains, so that we need not worry about lower 
bounds. References for the results listed below are [2] and [3]. Introduce the transition 
operator 

Tf(x) = Bxf(Si) = pf(Xx) + qfi^x). 
Then the following is true. 

(i) / V as N / * oo. 
(ii) V is the minimal solution of the stationary Bellman equation V(x) = 

max{g(x),a(3TV(x)}. 
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(iii) The VN and hence V are convex functions (if g is convex). 
The sets С = {x: V(x) > g(x)} and D = {x: V(x) = g(x)} are called the continuation 

region and the stopping region, respectively (for the infinite horizon problem). 
(iv) Assume that 

Exsup(a(3)ng(Sn) < oo (2.5) 
n 

holds. Then the stopping time r* = inf{n ^ 0: V(Sn) = <7(£n)} (with inf 0 = oo) is 
optimal for (2.2) (with E x instead of E*) in the class Ш: F,x(a/3)r* g(ST*) = V(x), where, 
on {r* = oo}, we define (a(3)T g(ST+) = lim„->oo(afl)ng(Sn) (actually, in our setting, 
the lim will always be a proper lim). If r* is a.s. finite, then it is optimal in class ЗЯ. 

3 . American calls. In the following we shall derive a list of properties the value 
function must possess and which will finally determine it uniquely. 

(i) V(x) < x for all x > 0. 
This is an immediate consequence of (i) in Section 2 and the fact that VN(X) ̂  x. 

The latter property follows from the estimate 

Ex(a(3)T(ST - 1)+ <: E* a T ( S r - 1 ) + ^ E x aTST = EXS; = x, 
which is valid for all bounded stopping times r. 

(ii) V(x) > 0 for all x > 0. 
P r o o f . Choose N in such a way that XNx > 1. Then, making use of (2.4), 

Ex(ap)N(SN - 1 ) + - (a/3)NE(x\ei+'"+eN - 1 ) + 

> (a(3)N(XNx - 1) P{ei + • • • - } - €N — iV} = (a(3)N(XNx -l)pN> 0. 

Consequence: V(x) > g(x) = (x — 1 ) + for all x < x*, for some x* > 1. 
From now on, we work on the state space Ex = {Xkx: к G Z}. 
(iii) There exists an у* e Ex U {со}, y* > 1, such that V(y) > g(y) = (y - 1 ) + for all 

у £ Ex such that у < у*. 
Consider now the stationary Bellman equation (cf. (ii) in Section 2): 

V(y) = тах{рЫ, a0TV(y)}, у e Ex. 
In our scenario, TV(y) is given by 

- ^ [ ( A - a J ^ A y J + A t a A - D V ^ ) " . 

If, for some у = Xnx £ Ex,we have V(y) > i.e., the maximum is adopted at a/3TV(y), 
then 

V(Xnx) = a(3TV(Xnx) 

= д ^ Т [( Л - *) ^ ( A n + 1 x ) + Л(аЛ - 1) ViX^x)} 

vn = [(А - a) i;n+i + A(aA - 1) vn-i] 

Vn+i = aiVn + 0 2 V n - l , 

7V(i/) -

where we have put 

/ а т т п ч A2 - 1 A ( a A - l ) = v n ж = V(X x), ai = —тг г, a 2 = - • (3{X — a) A — a 
The general solution of this difference equation is given by 

v n = C + ^ + C - , £ , (3.1) 

where /i± = ai/2 ± \ A 2 / 4 + fl2 = I [ a i ^ V^ai + 4̂ 2 ] the roots of the characteristic 
polynomial a(z) = z2 — a\z — a2. By elementary calculations (cf. [1] for details) it can be 
checked that the discriminant D = а 2 -На 2 = / Г 2 ( А - а ) ~ 2 [ ( А 2 - 1 ) 2 - 4 f 3 2 X(X-a) (aX-1)} 
is positive, 0 < //_ < /х+, = (аА —1)/(A —a) and j/+ = A for /3 = 1, as well as, for /3 < 1, 
/x+ > A and fi- < 1. 

Therefore the following is true. 
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(iv) On any interval in Ex on which V(y) > g(y), V(y) is of the form (3.1) for у = Xnx. 
On the initial interval (0, y*] (cf. (iii)), we have the boundary condition 

(•Bl) l i n i n g _ o o vn = 0, 
as well as a matching condition (B2) at the right end-point which will emerge below 
(cf. (v)). (Bl) is a direct consequence of (i). 

Boundary condition (Bl) implies that C- = 0. Hence V is of the form 
V(y) = Ciin for y = \nx<y* (3.2) 

for some y* £ Ex U {oo} (with С = C+,[i = //+). 
(v) Assume F3 < 1. Then there is an y* £ Ex (finite), y* > 1, such that 

V(„\-fC^ f o r 2/ = А п х < г Л 
У У Ю \ y - l for y>y*. 

P r o o f . Suppose that V{y) > (y - l)+ for all у e Ex. Then V is of the form (3.2) 
for all y, with С > 0. But then 

1 1 т Ш = £ i i m m n = oo, 
y-+oo у X n—юо \ A / 

contradicting (i) which implies that l i m ^ o o [V(y)/y] ^ 1. Let now n* be any index such 
that y* = A n*x > 1 and V(t/*) = ^(y*) = у* - 1. Suppose that 

V(\y*)>g(\y*). 
Since V must be convex (since the VN are), all points (y, V(y)), у > y*, must lie above 
the line through (y*, #(y*)) and (Ay*, V(\y*))> whose slope is greater than 1. Hence 

V(y)>g(y) = y-1 for all у > y*. (3.3) 
As a consequence, V(y) — af3TV(y), у > у*, so that V is of the form 

V(AV) = Vn = C+/iJ+C-/i-
on (y*,oo) (cf. (iv)). Since (3.3) holds for arbitrarily large у, C+ > 0. Since д+ > A, 

n -»oo Any* у* n->oo \ А у 

contradicting (i): limn_>oo V(:r)/x ^ 1. Hence, once V(y*) = у* — 1 for some y* > 1, then 
V(y) — У — 1 for а// у > у*, which completes the proof. 

For / 5 = 1 , the argument used in the first part of the proof of (v) does not work (since 
fi = A). In fact, V(y) > g(y) holds for all у £ Ex. To see this, suppose there is an y* such 
that V(y*) = g(y*) = у* - 1 and V(y*/\) > g(ym/\). Then, since y(y*/A) ^ y*/A - 1, a 
simple calculation shows that aTV(y*) > y* — a (cf. [1] for details). On the other hand, 
V(y*) = g(y*) = у* - 1 implies 

aTV(y') ^ У* - 1, 
contradicting the strict inequality above. Hence, since \i — A and /x_ < 1, the value 
function must be of the form V(y) — СXх for all у = Апж, and 

1 ^ Ьт —т^- = hm = —. 
у->оо д(у) п-юо ЛпХ — 1 X 

On the other hand, by virtue of (i), the limit must be ^ 1, so that С = ж, V(y) = у. 
The property (v) describes the general form of the value function. It reflects the 

intuitive notion that one should exercise the call immediately once the stock price is high 
enough while for low prices it is advantageous to wait. We are left with the task to 
determine С and y*. As above, let у* = A n x denote the smallest у £ Ex for which 
V(y) — 9(У) — У — 1- Around y*, two matching conditions must be satisfied. 

1) At у - y*/A: 

aPTV^yp) = ^ ^ [ ( Л - а ) ( Л п * х - 1 ) + Л ( а А - 1 ) С м п * " 2 ] 

= V^j = С У 1 * ' 1 > A"*'1* - 1. (3.4) 
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Equality of the 2-nd and the 4-th terms implies 

P [(A - a)(Xn*x - 1) + A(aA - 1) С// 1 *" 2 ] = (A2 - 1) C / / 1 * " 1 

or, equivalents, C/xn* _ 1[/и(А 2 - 1) - f3\(a\ - 1)] = }i(3(X - а)(Ап*ж - 1). But /х(Л2 - 1) -
0Х(аХ — 1) = /Зр,2(Х — a) (since /i is a solution of the equation a(z) = 0). Hence 

C/i"""1 = - ( А п * ж - 1 ) (3.5) 
A4 

or C/xn = A n ж — 1. This is the announced boundary condition (B2). Once n* is given, 
this determines C: 

„ A n*x - 1 , ч 

(3.6) 

Note that С depends on x. The inequality in (3.4) may then be written in the form 

A n x — 1 > p(Xn ~xx — 1) or, equivalently, (/x — A) A n ~1x < p, — 1. 
Hence n* must satisfy the condition 

А п *ж< A ^ i . (3.7) 
ц — X v y 

2) Aty = y*: 

a(3TV(y*) = -JLj [(A - а)(А п * + 1 ж - 1) + А(аА - 1) С// 1 *" 1 ] ^ V(ym) = A n*x - 1. 

Inserting the right-hand side of (3.5) for Cp,n*~1

i we obtain the following chain of equiv
alences for the inequality: 

0 (A - а)(А п * + 1 ж - 1) + А(аА - 1) - (Ап*ж - 1) ^ (A2 - l)(A n x - 1) 

A n x [/x(A2 - 1) - f3X(aX - 1) - 0A/z(A - a)] 

> //(A2 - 1) - (3X(aX - 1) - £//(A - a) 

Ап*ж [0ц2 (X - a) - /3Xfi(X - a)] ^ £/z2(A - a) - 0/x(A - a) 

Ап*ж(/х - A) ^ p.- 1. 

Hence n* must satisfy the condition 

Xn*x> (3.8) 
fjj — Л 

Since the interval [(/i — l)/(/i — А), А(д — — X)) contains exactly one у = Xnx, n* is 
uniquely determined by (3.7) and (3.8). Putting 7 = (fx — l)/(fx — A), this may be written 
in the form 

7 ^ An* x < A7 
or, with A = \ogx(j/x), A ^ n* < A + 1, i.e., 

n* = [A], (3.9) 
with [A] denoting the smallest integer > A. Note that n* = п*(ж). 

Let us go back to the continuous state space E — (0, 00) and derive a closed form 
expression for the value function. To this end, recall (v) in this section, which states that, 
for у — Xr'x, 

_ / C(x)fAn for п<п*(ж), 
у \ У ) - \ у - 1 for n>n*(x), 

where we have used the trivial equivalence у = Xnx < у* = Xn x <=> n < n*(x). 
In particular, for n — 0, 

Consider now any state x G [Afc7, Xk+ Then 
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1) n*(x) = -k (by (3.9)), 
2) C(x) = Lih(\-kx-l) (by (3.6)), 
3) n*(x) > 0 k<0. 
Hence 

v ( x ) _ U k ( \ - k x - l ) for k<0, 
K ) \ x - l for k^O. 

Thus we have proved the first part of the following theorem. 
Theorem 1. (i) For American calls with (3 < 1, the value function.is of the form 

v , , = (fik(\~kx-l) for Xkj^x< A * + 1 7 withk<0, 
\ x — 1 for x ^ 7. 

In particular, the stopping region is given by [7,00). If /3 = 1, V(x) = x. 
(ii) The stopping time r* = inf{n ^ 0: Sn ^ 7 } satisfies 

{ 1 г/ x ^ 7 or Л ^ A a , 

(л^Йу)" ( 3 1 0 ) 

where A a = a *(1 -f л/l — a 2 ) , /n £/ie /irs£ case, for ft < 1, r* is an optimal stopping time 
in Ш (and hence also in 9Л), in the second case it is optimal in 2Я. For (3 — 1, no optimal 
stopping time exists. 

P r o o f . It remains to prove (ii). For x ^ 7, r* is trivially finite (= 0). Consider 
therefore the case x < 7. The condition A ^ A a is equivalent to p ^ q. Put Zn = 
£1 + • sn- Then l imn -^oo Z n = 00 P x -a.s. if p ^ q. Therefore, using the representation 
(2.4), lim n-+oo Sn = 00 P x -a.s. , implying that r* < 00 P x -a.s. If p < q, note that, 
under P x , 

т* = inf{n ^ 0: x\Zn > 7 } = inf{n > 0: Zn > A} = inf{n > 0: Z n = (3.11) 
As is well known, P x { r * < 00} = (p/q)^. Inserting p and 0/ from (2.3) completes the proof 
of (3.10). As to the optimality of r*, we would like to apply property (iv) of Section 2. To 
be able to do so, we have to check condition (2.5). To this end, note first that 

Exs\xp(a/3)ng(Sn) ^ E x sup(a/?) nS n. 
n n 

Next, (Mn+s)n^o with Mn = (a/3)nSn is a positive super martingale for S > 0 small 
enough. This can be seen as follows. Since pA -f a A - 1 = ct~1, the function f(5) — 
(af3)1+6(p\1+6 + q\-(1+s)) satisfies /((5) = (3 + 0(<J) as <5 \ 0. In particular, for S > 0 
small enough, /(6) < 1 (since /3 < 1). But then 

Е*[Л^ + г I J ^ ] = М ^ ( а / ? ) 1 + 5 Е , [ Л ( 1 + л ) £ " ] = M ^ / ( < 5 ) < J l f ^ ? . 

By the maximal inequality for positive super martingales (cf. [2]), 

P x j s u p M n ^ m) = P x { s u p M n

+ ( 5 ^ rn1+S\ <: min f-^J+J, Л 

for all m G N . Hence 
00 

P x | sup Mn ^ raj < 00, 
771= 1 П 

which means that supn Mn and, a fortiori, supn(a/3)ng(Sn) is integrable. In case /3 = 1, 
note that for every r G Ш, aTg(ST) < aTST on {r < 00}. Moreover, it follows from the 
law of large numbers that 

lim ang(Sn) = lim anSn = 0 P x -a.s. 
ТГ—ЮО ТГ—ЮО 

(note that p < q for a = 1). Since 5* = anSn is a positive martingale, EXS* ^ x. Hence 
E x org(ST) < EXS* ^x = V(x) if P x { r < 00} > 0, 
E x a T o(5 T ) - 0 < V(x) - x if P x { r = 00} = 1. 

Hence there exists no optimal stopping time. Theorem 1 is proved. 
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Let us compare the value function in Theorem 1 with the value function V* obtained 
in [5] for state space Ei = {Xk: к e Z } . For x = \ k , Theorem 1 yields 

W l u b " f t ' ( A n . - l ) / i f c for k<n\ 
W \ \ k -I for k>n\ 

with n* = n*(l) = [logA7J (= smallest integer ^ iogA7). Note that n* ^ 1 (since 7 > 1). 
For the Shiryaev et al. solution, one has to calculate 

, ~ 7 1 l n / 6 
7 1 = logA /X, x= = - — , 

7 1 — 1 In p, — In Л 

к = integer part of logA x, 

Bi - p-~k(\k - 1), B 2 = ,x -^ + 1 >(A* + 1 - 1), C* = min(Bi,B 2). 
Then 

= if B i < B 2 , 
if B i > B 2 , 

and, for ж = A fe, 
v*(T\-fC*p,k for /c<A;*, 

1 j ~ \ A f e - l for к 2 к*. 
In order to compare V and У *, the following observations are useful. 

a) 7 < x < A7 (and hence /с ^ 0). 
This follows easily from the strict monotonicity of the functions (ln/z)/(/x — 1) (de

creasing) and (//In//)/(// - 1) (increasing) for p, > 1. 
b) Б 1 < ( = , > , respectively) B2 к < ( = , > , respectively) log A 7. 
In particular, Bi = B2 holds if and only if logA7 is an integer. From a), it follows 

that logA 7 < logA x < logA 7 + I and hence 
к = n* - 1 or k = n*. (3.12) 

From b), if logA 7 is not an integer, 
Bi < B 2 <=> к ^ n - 1, Bi > B 2 £ > n*. (3.13) 

Combining (3.12), (3.13) and the definition of /с*, we find that 
< B 2 , 
> B 2 , 

and therefore, for ж = Afc, 

^ V x ) = / M " ( n * " 1 ) ( A n * - 1 - l ) / i f c for fc<n*-l, 
V ; \ \ k - 1 for > n* - 1, 

in case Bi < B 2 and 

, * = f n* - 1 if Bi 
C \ n * + l if Bi 

V ^ = / M - ( n * + 1 ) ( A ^ + 1 - l ) M f c 

V ' \ Afc - 1 
for fc < 71* + 1, 
for к ^ n* + 1, 

in case Bi > B2. As a consequence, unless logA 7 is an integer, V and V* will not coincide 
and therefore, if one believes in the correctness of Theorem 1, V* cannot be the true value 
function. 

In order to see what may go wrong with V*, consider parameter constellations, where 
n* = 1. Then, if Bi < B 2 , it turns out that к* = 0 and hence 

V*(x) = 0 for x = A*\ fc^O, 
whereas the true value function must be positive. If Bi > B 2 , we have k* = 2 and 

\2 1 A2 — 1 
V* (A) = : Ц - ± /х - - i < A - 1 = g(X) 

if A -I- 1 < /x, so that V* (A) does not majorize p(A) and therefore does not qualify for 
the true value function. As an example of a parameter constellation of the above type, 
consider the case a = 1, /3 — | (there is nothing peculiar about this choice, many others 
will also do). Then, for A = 2 and A = 15, we find that n — 1 (actually, n* = 1 for all A). 
For A = 2, calculations yields p. = 3.10610, Bi = 0.321946 > B2 = 0.310948 and hence 
k* = 2 and V*(2) = 0.96584 < 1 = g(2). For A = 15, the corresponding values are Bi = 0, 
B 2 = 0.72842, k* = 0 and hence V*(x) = 0 for x = Xk, к < 0. 



176 Christopeit N. 

4. American puts. The approach is basically the same as for American calls. There
fore we shall only indicate the modifications to be made in the analysis performed in 
Section 3. 

(i) V(x) < 1. 
(ii) Remains the same (choose N such that \Nx < 1). 
(iii) There exists an у* E Ex U {0}, y* < 1, such that V(y) > g(y) = (1 - y)+ for all 

у E Ex such that у > y*. 
(iv) Remains valid without a change. 
The «good» root now is p = p- (since p+ ^ Л is not compatible with (i) for large y). 
(v) Assume a < 1 or (3 < 1. Then there is an y* £ Ex, y* < 1, such that 

W ~ \ C / x n for y = \nx>y*. 

The proof runs along the same lines as that of (v) in Section 3 (cf. [1] for details). 
Let y* = \n* x < 1 denote the largest у € Ex such that V(y) = g(y) = 1 - y. The two 

matching conditions to determine n* and С are now evaluated at у = \y* and у = y*. 
Proceeding as in Section 3 (with some obvious modifications) we are lead to the following 
conditions fixing С and n*: 

C= * X, 7 < A n * ^ A 7 , 
pn 

where now 7 is defined as 7 = (1 - /i)/(A - /1). (Note that 7Л < 1.) This means that, with 
A defined as in Section 3, A < n* ^ A + 1, i.e., n* = largest integer ^ A + 1. In other 
words, n* = [A] (as defined above) unless A is an integer, in which case n* = [A] + 1. In 
particular, for A f c _ 1 7 < x ^ A f c7, n* = -fc -f 1. Hence n* < 0 A; > 1. Note that 
A7 < 1. 

We then have the following result. 
Theorem 2. (i) For American puts with a < 1 or /3 < 1, the value function is of the 

form 
v { x ) = {pk-1(l-\-k+1x) for Xk~1

1<x^\k

1 withk>l, 
У J {1-х for ж ^ A7. V ' ' 

In particular, the stopping region is given by (0, А7]. If a = /3 = 1, V(x) = 1. 
(ii) Т/ге stopping time r* = inf{n ^ 0: 5 n ^ A7} satisfies 

{ 1 i/ x ^ A7 or A ^ A a , 

(етП' . / - ^ — . <42) 

where A a = а - 1 ( 1 + \ / l — a 2 ) and {A} is the largest integer smaller than A. In the first 
case, for a < 1 or /3 < 1, r* is an optimal stopping time in Ш (and hence also in 9Я), in 
the second case it is optimal in 9Л. For a = /3=l,r*=oo is optimal in 9Л and no finite 
optimal stopping time exists. 

P r o o f . Of (i), only the last statement remains to be proved. If а = 1, p = 1/(A+1), 
q — A/(A -f-1). Hence Ex€i = p - q < 0 and, by the law of large numbers, Zn —У —oo a.s. 
as n - > 00. Consequently, Sn —> 0 Px-a.s. for all x > 0, so that (for /3=1) 

lim E x o ( 5 n ) = lim E x ( l - 5 n ) + - 1 
n—>oo n—too 

by bounded convergence. This at the same time shows that r* = 00 is optimal. As to (ii), 
note that 

r* = inf{n ^ 0: x\Zn <: A7} = inf{n ^ 0: Zn < A + 1} = inf{n > 0: Zn = {A} + 1}. 
(4.2) then is a standard result for random walks. Optimality of r* is an immediate conse
quence of (iv) in Section 2, since condition (2.5) is trivially satisfied for American puts. 
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сг-LOCALIZATION AND сг-MARTINGALES 

В статье вводится понятие сг-локализации, обобщающее понятие ло
кализации в общей теории случайных процессов, сг-локализационный 
класс, связанный с множеством мартингалов, есть класс сг-мартингалов, 
который играет важную роль в финансовой математике. Подробно рас
сматриваются эти процессы и соответствующие а-мартингалъные меры. 
Обобщая понятие стохастического интеграла по компенсированным слу
чайным мерам, мы выводим каноническое представление для сг-мартин
галов. 

Ключевые слова и фразы: а-локализация, сг-мартингал, стохасти
ческий интеграл, каноническое представление, сг-мартингальная мера. 

1. Introduction, сг-Martingales have been introduced by Chou [3] and were inves
tigated further by Emery [6]. They play a key role in the general statement of the fun
damental theorems of asset pricing in [5], [12], and [2]. a-Martingales can be interpreted 
quite naturally as semimartingales with vanishing drift. Similar to local martingales, 
the set of cr-martingales may be obtained from the class of martingales by a localization 
procedure, but here localization has to be understood in a broader sense than usually 
(cf. [4, Lid]). This concept of cr-localization is introduced in Section 2. The subsequent 
section treats the set of сг-martingales and their properties. By extending the stochastic 
integral relative to compensated random measures, the canonical local martingale repre
sentation X = X0 + Xе + x * (p - v) is generalized to cr-martingales in Section 4. Finally, 
<7-martingale measures are characterized in terms of semimartingale characteristics. 

Throughout the paper, we use the notation of [4] and [9], [10]. In particular, we work 
with a filtered probability space (П,^", ( ^ ) t 6 R + > ^ ) - The transposed of a vector x or 
matrix is denoted by xT and its components by superscripts. Increasing processes are 
identified with their corresponding Lebesgue-Stieltjes measure. 
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