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Abstract

ML modules are a powerful language mechanism for decomposing programs into reusable

components. Unfortunately, they also have a reputation for being “complex” and requiring

fancy type theory that is mostly opaque to non-experts. While this reputation is certainly

understandable, given the many non-standard methodologies that have been developed in

the process of studying modules, we aim here to demonstrate that it is undeserved. To do so,

we present a novel formalization of ML modules, which defines their semantics directly by a

compositional “elaboration” translation into plain System Fω (the higher-order polymorphic

λ-calculus). To demonstrate the scalability of our “F-ing” semantics, we use it to define a

representative, higher-order ML-style module language, encompassing all the major features

of existing ML module dialects (except for recursive modules). We thereby show that ML

modules are merely a particular mode of use of System Fω .

To streamline the exposition, we present the semantics of our module language in stages.

We begin by defining a subset of the language supporting a Standard ML-like language

with second-class modules and generative functors. We then extend this sublanguage with

the ability to package modules as first-class values (a very simple extension, as it turns out)

and OCaml-style applicative functors (somewhat harder). Unlike previous work combining

both generative and applicative functors, we do not require two distinct forms of functor

or signature sealing. Instead, whether a functor is applicative or not depends only on the

computational purity of its body. In fact, we argue that applicative/generative is rather

incidental terminology for pure versus impure functors. This approach results in a semantics

that we feel is simpler and more natural than previous accounts, and moreover prohibits

breaches of abstraction safety that were possible under them.

1 Introduction

Modularity is essential to the development and maintenance of large programs.

Although most modern languages support modular programming and code reuse

in one form or another, the languages in the ML family employ a particularly

expressive style of module system. The key features shared by all the dialects of the
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530 A. Rossberg et al.

ML module system are their support for hierarchical namespace management (via

structures), a fine-grained variety of interfaces (via translucent signatures), client-side

data abstraction (via functors), implementor-side data abstraction (via sealing), and

a flexible form of signature matching (via structural subtyping).

Unfortunately, while the utility of ML modules is not in dispute, they have

nonetheless acquired a reputation for being “complex”. Simon Peyton Jones (2003),

in an oft-cited POPL keynote address, likened ML modules to a Porsche, due to

their “high power, but poor power/cost ratio”. (In contrast, he likened Haskell —

extended with various “sexy” type system extensions — to a Ford Cortina with alloy

wheels.) Although we disagree with Peyton Jones’ amusing analogy, it seems, based

on conversations with many others in the field, that the view that ML modules are

too complex for mere mortals to understand is sadly predominant.

Why is this so? Are ML modules really more difficult to program, implement,

or understand than other ambitious modularity mechanisms, such as GHC’s type

classes with type equality coercions (Sulzmann et al., 2007) or Java’s classes with

generics and wildcards (Torgersen et al., 2005)? We think not — although this

is obviously a fundamentally subjective question. One can certainly engage in a

constructive debate about whether the mechanisms that comprise the ML module

system are put together in the ideal way, and in fact the first and third authors

have recently done precisely that (Rossberg & Dreyer, 2013). But we do not believe

that the design of the ML module system is the primary source of the “complexity”

complaint.

Rather, we believe the problem is that the literature on the semantics of ML-

style module systems is so vast and fragmented that, to an outsider, it must surely

be bewildering. Many non-standard type-theoretic (Harper et al., 1990; Harper

& Lillibridge, 1994; Leroy, 1994; Leroy, 1995; Russo, 1998; Shao, 1999; Dreyer

et al., 2003), as well as several ad hoc, non-type-theoretic (MacQueen & Tofte, 1994;

Biswas, 1995; Milner et al., 1997) methodologies have been developed for explaining,

defining, studying, and evolving the ML module systems, most with subtle semantic

differences that are not spelled out clearly and are known only to experts. As a

rich type theory has developed around a number of these methodologies — e.g., the

beautiful meta-theory of singleton kinds (Stone & Harper, 2006) — it is perfectly

understandable for someone encountering a paper on module systems for the first

time to feel intimidated by the apparent depth and breadth of knowledge required

to understand module typechecking, let alone module compilation.

In response to this problem, Dreyer et al. (2003) developed a unifying type theory,

in which previous systems could be understood as sublanguages that selectively

include different combinations of features. Although formally and conceptually

elegant, their unifying account — which relies on singleton kinds, dependent types,

and a subtle effect system — still gives one the impression that ML module

typechecking requires sophisticated type theory.

In this article, we take a different approach. Our goal is to show once and for

all that, contrary to popular belief (even among experts in the field!), the semantics

of ML modules is immediately accessible to anyone familiar with System Fω , the

higher-order polymorphic λ-calculus. How do we achieve this goal?
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First, instead of defining the semantics of modules — as most prior work has done

— via a bespoke module type system (Dreyer et al., 2003) or a non-type-theoretic

formalization (Milner et al., 1997), we employ an elaboration semantics, in which

the meaning of module expressions is defined by a compositional, syntax-directed

translation into plain System Fω . Through this elaboration, we show that

ML modules are merely a particular mode of use of System Fω .

A structure is just a record of existential type ∃α.{l : τ}, where the type variables α

represent the abstract types defined in the structure. A functor is just a function of

polymorphic type ∀α.τ → τ′, parameterized over the abstract types α in its module

argument. No dependent types of any form are required. However, as is often the case

for common programming idioms, it is extremely helpful to have built-in language

support for inference and automation where possible. In our “F-ing” elaboration

semantics, this amounts to inserting the right introduction and elimination forms for

universal and existential types in the right places, e.g., using “signature matching” to

infer the appropriate type arguments when a functor is applied or when a structure

is sealed with a signature.

Our approach thus synthesizes elements of two alternative definitions of Standard

ML modules given by Harper & Stone (2000) and Russo (1998). Like Harper &

Stone (2000), we define our semantics by elaboration; but whereas Harper & Stone

elaborated ML modules into yet another (dependently-typed) module type system —

a variant of Harper & Lillibridge (1994) — we elaborate them into Fω , which is

a significantly simpler system. Like Russo (1998), we classify ML modules — and

interpret ML signatures — directly using the types of System Fω; but whereas Russo

only presented a static semantics, our elaboration effectively provides an evidence

translation for a simplified and streamlined variant of his definition, thus equipping

it with a dynamic semantics and type soundness proof.

Second, we demonstrate the broad applicability of our F-ing elaboration semantics

by using it to define a richly-featured — and, we argue, representative — ML-

style module language. By “representative”, we mean that the language we define

encompasses all the major features of existing ML module dialects except for

recursive modules.1 While other researchers have given translations from dialects

of ML modules into versions of System Fω before (Shan, 2004; Shao, 1999), we

are, to our knowledge, the first to define the semantics of a full-fledged ML-style

module language directly in terms of System Fω . By “directly”, we mean that there

is no other high-level static semantics involved — Fω types are enough to classify

modules and understand their semantics.

In contrast, most previous work on modules has focused on bespoke module

calculi that are (a) defined independently of Fω and (b) somewhat idealized, relying

on a separate non-trivial stage of pre-elaboration to handle certain features, and

often glossing over essential aspects of a real module language, such as shadowing

1 A proper handling of type abstraction in the presence of recursive modules seems to require both a
more sophisticated underlying type theory (Dreyer, 2007a), as well as a more radical departure from
the linking mechanisms of the ML module system (Rossberg & Dreyer, 2013).
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between declarations, local or shadowed types (and the so-called avoidance problem

that they induce), or composition constructs like open, include and where/with, all

of which add — in some cases quite substantial — complexity.

To ease the presentation, we present the semantics of our module language in

stages. In the first part of the article (Sections 2–5), we show how to typecheck

and implement a subset of our language that roughly corresponds to the Standard

ML module language extended with higher-order functors. This subset supports

only second-class modules, not first-class modules (Harper & Lillibridge, 1994;

Russo, 2000), and only SML-style generative functors, not OCaml-style applicative

functors (Leroy, 1995). We start with this SML-style language because its F-ing

semantics is relatively simple and direct.

In the second part of the article (Sections 6–9), we extend the language of the first

part with both modules-as-first-class-values (Section 6, easy) and applicative functors

(Sections 7–9, harder). For the extension to applicative functors, we have taken

the opportunity to address some overly complex and/or semantically problematic

aspects of previous approaches. In particular, unlike earlier unifying accounts of

ML modules (Romanenko et al., 2000; Dreyer et al., 2003; Russo, 2003), we do not

require two distinct forms of functor declaration (or two different forms of module

sealing). Instead, our type system deems a functor to be applicative iff the body

of the functor is computationally pure, and generative otherwise. We believe this is

about as simple a characterization of the applicative/generative distinction as one

could hope for.

That said, the semantics we give for applicative functors is definitely not as simple

as the elaboration semantics for generative functors given in the first part of the

article. We believe the relative complexity of our applicative functor semantics is

not a weakness of our approach, but rather a reflection of the inescapable fact

that the applicative semantics for functors is inherently subtler (and harder to

get right!) than the generative semantics. We substantiate this claim by showing

that no previous account of applicative functors has properly guaranteed abstraction

safety — i.e., the ability to locally establish representation invariants for abstract

types.2 To avoid this problem, we revive the long-lost notion of structure sharing from

Standard ML’90 (Milner et al., 1990), in the form of more fine-grained value sharing.

Although previous work on module type systems has disparaged this form of sharing

as type-theoretically questionable, we observe that it is in fact necessary in order to

ensure abstraction safety in the presence of applicative functors. Furthermore, it is

easy to account for in a type-theoretic manner using “phantom types” as “stamps”.

2 As further evidence of the relative complexity of applicative functors, we note that the F-ing semantics
for applicative functors fundamentally requires Fω ’s higher kinds, while the generative functor semantics
presented in the first part of the article does not. Higher kinds are of course needed if the underlying
core language (on top of which the module system is built) supports type constructors — as is the
case in ML. However, setting the core language aside, the elaboration semantics we give in the first
part of the article does not itself rely on higher-kinded type abstraction, and indeed, for a simpler
core language with just type (but not type constructor) definitions, that language can be elaborated
to plain System F. By contrast, the applicative functor extension presented in the second part of the
article relies on higher kinds in an essential way.
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In general, we have tried to give this article the flavor of a brisk tutorial, assuming

of the reader no prior knowledge concerning the typechecking and implementation

of ML modules. However, this is not (intended to be) a tutorial on programming

with ML modules, nor is it a tutorial on the design considerations that influenced

the development of ML modules. For the former, there are numerous sources to

choose from, such as Harper’s draft book on SML (Harper, 2012) and Paulson’s

book (1996). For the latter, we refer the reader to Harper & Pierce (2005), as well

as the early chapters of the second and third authors’ PhD theses (Russo, 1998;

Dreyer, 2005).

The F-ing approach has of course not fallen from the sky. It naturally builds

on many ideas from previous work. As mentioned above, the central insight of

viewing the seemingly dependent type system of ML modules through the lens of

System F types is due to Russo (1998; 1999), and many of the ideas for translating

module terms are already present in prior work by Harper et al. (1990), Harper

& Stone (2000), and Dreyer (2007b). Our technical development of applicative

functors is directly influenced by the work of Biswas (1995), Russo (1998; 2003),

and Shan (2004), and more indirectly by Shao (1999) and Dreyer et al. (2003). But

instead of frontloading this article with a survey of the literature, we will point to

the origins of some key ideas as we come to them. A more comprehensive discussion

can be found in Section 11.

To summarize our contributions, we present the first formalization of ML modules

that

1. explains the static and dynamic semantics of a full-fledged module system,

directly in terms of System Fω terms, types and environments,

requiring only plain Fω to do so, and

2. characterizes applicativity/generativity of functors as a matter of purity,

and supports applicative functors in a way that is abstraction-safe,

by relying crucially on a novel account of value sharing.

For those familiar with an earlier version of this article that was published in

the TLDI workshop (Rossberg et al., 2010), we note that the major difference in

the present version is contribution #2, that is, the novel account of applicative

functors in Sections 7–9 (the workshop version only treated generative functors).

We now also offer expanded discussions of first-class modules (Section 6), our Coq

mechanization (Section 10), and related work (Section 11), as well as more details

of the meta-theory (Section 5).

2 The module language

Figure 1 presents the syntax of our module language. We assume a core language

consisting of syntax for kinds, types, and expressions, whose details do not matter

for our development. Binding constructs for types and values are provided as part
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(identifiers) X

(kinds) K ::= . . .

(types) T ::= . . . | P
(expressions) E ::= . . . | P
(paths) P ::= M

(modules) M ::= X

| {B} | M.X

| fun X:S ⇒M | X X

| X:>S

(bindings) B ::= val X=E

| type X=T

| module X=M

| signature X=S

| include M

| ε

| B;B

(signatures) S ::= P

| {D}
| (X:S ) → S

| S where type X=T

(declarations) D ::= val X:T

| type X=T | type X:K

| module X:S

| signature X=S

| include S

| ε

| D;D

Fig. 1. Syntax of the module language.

of the module language. For simplicity, we assume that all language entities share a

single identifier syntax.3

The module language is very similar to that of Standard ML, except that functors

are higher-order, and signature declarations may be nested inside structures. The

syntax contains all the features one would expect to find: bindings and declarations

of values, types, modules, and signatures (where, as in SML, we implicitly allow

omitting the separating “;” between the bindings/declarations in a sequence);

hierarchical structures with projection via the dot notation; structure/signature

inheritance with include; functors and functor signatures; and sealing (a.k.a. opaque

signature ascription). In the grammar for the “where type” construct we abuse

the notation X to denote an identifier followed by a (possibly empty) sequence of

projections, e.g., X or X.Y .Z .

In some cases, the syntax restricts module expressions in certain positions (e.g.,

the components of a functor application) to be identifiers X. This is merely to make

the semantics of the language that we define in Section 4 as simple as possible.

Fully general variants of these constructs are definable as straightforward derived

forms, as shown in Figure 2. The same figure also defines other constructs that

are available in various dialects of ML modules, such as “let”-expressions on all

syntactic levels (including types and signatures), “local” bindings/declarations,4 and

parameterized signatures.5 Using some of these derived forms, Figure 3 shows the

implementation of a standard Set functor.

3 For an ML-like core language, this is meant to include type variables ´a, and we do not impose any
restrictions on where type variables from the context can appear in type and signature expressions.

4 The module-level include M is spelled open M in Standard ML. OCaml’s version of open M can be
expressed as local include M in . . . in our system.

5 Parameterized signatures may be less familiar to many readers, given that only a few ML dialects
support them. A signature declared via signature A (X : B) = . . . takes a module parameter, and
is instantiated with an application A M in a signature expression. Such a parameterized signature
definition simply desugars to a functor definition wherein the result contains a single (ordinary)
signature component under the fixed (but otherwise arbitrary) name S.
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(types) let B in T := {B; type X=T}.X
(expressions) let B in E := {B; val X=E}.X
(signatures) let B in S := {B; signature X=S}.X

P M := (P M).S

(modules) let B in M := {B; module X=M}.X
M1 M2 := let module X1=M1; module X2=M2 in X1 X2

M:>S := let module X=M in X:>S

M:S := (fun X:S ⇒X)M

(declarations) local B in D := include (let B in {D})
signature X(X ′:S ′)=S := module X : (X ′:S ′) → {signature S=S}

(bindings) local B in B′ := include (let B in {B′})
signature X(X ′:S ′)=S := module X = fun X ′:S ′ ⇒ {signature S=S}

Fig. 2. Derived forms.

One point of note is the notion of paths. A path P is the mechanism by which

types, values, and signatures may be projected out of modules. In SML and OCaml,

paths are syntactically restricted module expressions, such as an identifier X followed

by a series of projections. The reason for the syntactic restriction is essentially that

not all projections from modules are sensible. For example, consider a module

(M :> {type t; val v:t}) that defines both an abstract type t and a value v of type

t. Then (M :> {type t; val v:t}).t is not a valid path, because it denotes a fresh

abstract type that is not well defined outside of the module. Put another way,

projecting t does not make sense because the sealing in the definition of the module

should prevent one from tying the identity of its t component back to the module

expression itself. Likewise, (M :> {type t; val v:t}).v is not valid because it cannot

be given a type that makes sense outside of the module. (We will explain the issue

with paths in more detail in Section 4.)

Here, instead of restricting the syntax of paths P , we instead restrict their

semantics. That is, paths are syntactically just arbitrary module expressions, but

with a separate typing rule. This rule will impose additional restrictions on P ’s

signature, to make sure that no locally defined abstract types escape their scope.

In a similar manner, our module-level projection construct M.X is also more

permissive than in actual SML, in that M is allowed to be an arbitrary module

expression. It is worth noting that this, together with our more permissive notion

of path, allows us to define very general forms of local module bindings simply as

derived syntax (Figure 2).

3 System Fω

Our goal in this article is to define the semantics of the module language by

translation into System Fω . To differentiate external (module) and internal (Fω)

language, we use lowercase letters to range over phrases of the latter. Figure 4 gives

the syntax of the variant of System Fω that we use as the target of our elaboration.

It includes record types (where we assume that labels are always disjoint), but is

otherwise completely standard.
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signature EQ =

{
type t

val eq : t × t → bool

}

signature ORD =

{
include EQ

val less : t × t → bool

}

signature SET =

{
type set

type elem

val empty : set

val add : elem × set → set

val mem : elem × set → bool

}

module Set = fun Elem : ORD ⇒
{

type elem = Elem.t

type set = list elem

val empty = []

val add (x, s) = case s of
| [] ⇒ [x]

| y :: s’ ⇒ if Elem.eq (x, y) then s else if Elem.less (x, y) then x :: s else y :: add (x, s’)

val mem (x, s) = case s of
| [] ⇒ false

| y :: s’ ⇒ Elem.eq (y, x) or (Elem.less (y, x) and mem (x, s’))

} :> SET where type elem = Elem.t

module IntSet = Set {type t = int; val eq = Int.eq; val less = Int.less}
Fig. 3. Example: a functor for sets.

We note in passing that we are using the usual impredicative definition of Fω

in this article. Up to the introduction of first-class modules in Section 6 we could

actually restrict ourselves to a predicative variant. Likewise, as mentioned earlier,

up to the introduction of applicative functors in Section 7, the elaboration does

not actually require higher kinds (unless used by the core language); second-order

System F would suffice. But for simplicity, we have chosen to use just one version

of the target language throughout the article.

In the grammar, and elsewhere, we liberally use the meta-notation A to stand for

zero or more iterations of an object or formula A. (We will also sometimes abuse

the notation A to actually denote the unordered set {A}.)
We write fv(τ) for the free variables of τ.

Semantics. The full static semantics is given in Figure 5. Type equivalence is defined

as βη-equivalence. The only other point of note is that, unlike in most presentations,
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(kinds) κ ::= Ω | κ → κ

(types) τ ::= α | τ → τ | {l:τ} | ∀α:κ.τ | ∃α:κ.τ | λα:κ.τ | τ τ
(terms) e ::= x | λx:τ.e | e e | {l=e} | e.l | λα:κ.e | e τ | pack 〈τ, e〉τ | unpack 〈α, x〉=e in e

(values) v ::= λx:τ.e | {l=v} | λα:κ.e | pack 〈τ, v〉τ
(environ’s) Γ ::= · | Γ, α:κ | Γ, x:τ

Fig. 4. Syntax of Fω .

our typing environments Γ permit shadowing of bindings for value variables x (but

not for type variables α). Thus, we take the notation Γ(x) to denote the rightmost

binding of x in Γ. Allowing shadowing turns out to be convenient for our purposes

(see Section 4).

We assume a standard left-to-right call-by-value dynamic semantics, which is

defined in Figure 6. However, other choices of evaluation order are possible as well,

and would not affect our development.

Properties. The calculus as defined here enjoys the standard soundness properties:

Theorem 3.1 (Preservation)

If · 
 e : τ and e ↪→ e′, then · 
 e′ : τ.

Theorem 3.2 (Progress)

If · 
 e : τ and e �= v for any v, then e ↪→ e′ for some e′.

The proofs are entirely standard, and thus omitted.

The calculus also has the usual technical properties, the most relevant for our

purposes being the following:

Lemma 3.3 (Validity)

1. If Γ 
 τ : Ω, then Γ 
 �.

2. If Γ 
 e : τ, then Γ 
 τ : Ω.

Lemma 3.4 (Weakening)

Let Γ′ ⊇ Γ with Γ′ 
 �.

1. If Γ 
 τ : κ, then Γ′ 
 τ : κ.

2. If Γ 
 e : τ, then Γ′ 
 e : τ.

Lemma 3.5 (Strengthening)

Let Γ′ ⊆ Γ with Γ′ 
 � and D = dom(Γ) \ dom(Γ′).

1. If Γ 
 τ : κ and fv(τ) ∩ D = ∅, then Γ′ 
 τ : κ.

2. If Γ 
 e : τ and fv(e) ∩ D = ∅, then Γ′ 
 e : τ.

Theorem 3.6 (Uniqueness of types and kinds)

Assume Γ 
 �.

1. If Γ 
 τ : κ1 and Γ 
 τ : κ2, then κ1 = κ2.

2. If Γ 
 e : τ1 and Γ 
 e : τ2, then τ1 ≡ τ2.

Finally, all judgments of the Fω type system are decidable:
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Environments Γ 
 �

· 
 �
Γ 
 � α /∈ dom(Γ)

Γ, α:κ 
 �
Γ 
 τ : Ω

Γ, x:τ 
 �

Types Γ 
 τ : κ

Γ 
 τ1 : Ω Γ 
 τ2 : Ω

Γ 
 τ1 → τ2 : Ω

Γ 
 τ : Ω Γ 
 �
Γ 
 {l:τ} : Ω

Γ 
 �
Γ 
 α : Γ(α)

Γ, α:κ 
 τ : Ω

Γ 
 ∀α:κ.τ : Ω

Γ, α:κ 
 τ : Ω

Γ 
 ∃α:κ.τ : Ω

Γ, α:κ 
 τ : κ′

Γ 
 λα:κ.τ : κ → κ′
Γ 
 τ1 : κ′ → κ Γ 
 τ2 : κ′

Γ 
 τ1 τ2 : κ

Terms Γ 
 e : τ

Γ 
 �
Γ 
 x : Γ(x)

Γ 
 e : τ′ τ′ ≡ τ Γ 
 τ : Ω

Γ 
 e : τ

Γ, x:τ 
 e : τ′

Γ 
 λx:τ.e : τ → τ′
Γ 
 e1 : τ′ → τ Γ 
 e2 : τ′

Γ 
 e1 e2 : τ

Γ 
 e : τ Γ 
 �
Γ 
 {l=e} : {l:τ}

Γ 
 e : {l:τ, l′:τ′}
Γ 
 e.l : τ

Γ, α:κ 
 e : τ

Γ 
 λα:κ.e : ∀α:κ.τ
Γ 
 e : ∀α:κ.τ′ Γ 
 τ : κ

Γ 
 e τ : τ′[τ/α]

Γ 
 τ : κ Γ 
 e : τ′[τ/α] Γ 
 ∃α:κ.τ′ : Ω

Γ 
 pack 〈τ, e〉∃α:κ.τ′ : ∃α:κ.τ′

Γ 
 e1 : ∃α:κ.τ′ Γ, α:κ, x:τ′ 
 e2 : τ Γ 
 τ : Ω

Γ 
 unpack 〈α, x〉=e1 in e2 : τ

Type equivalence τ ≡ τ′

τ ≡ τ

τ′ ≡ τ

τ ≡ τ′
τ ≡ τ′ τ′ ≡ τ′′

τ ≡ τ′′

τ1 ≡ τ′
1 τ2 ≡ τ′

2

τ1 → τ2 ≡ τ′
1 → τ′

2

τ ≡ τ′

{l:τ} ≡ {l:τ′}

τ ≡ τ′

∀α:κ.τ ≡ ∀α:κ.τ′
τ ≡ τ′

∃α:κ.τ ≡ ∃α:κ.τ′

τ ≡ τ′

λα:κ.τ ≡ λα:κ.τ′
τ1 ≡ τ′

1 τ2 ≡ τ′
2

τ1 τ2 ≡ τ′
1 τ

′
2

(λα:κ.τ1) τ2 ≡ τ1[τ2/α]

α /∈ fv(τ)

(λα:κ.τ α) ≡ τ

Fig. 5. Fω typing.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796814000264
Downloaded from https://www.cambridge.org/core. IP address: 207.241.231.82, on 24 Jul 2018 at 19:29:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796814000264
https://www.cambridge.org/core


F-ing modules 539

Reduction e ↪→ e′

(λx:τ.e) v ↪→ e[v/x]

{l1=v1, l=v, l2=v2}.l ↪→ v

(λα:κ.e) τ ↪→ e[τ/α]

unpack 〈α, x〉 = pack 〈τ, v〉τ′ in e ↪→ e[τ/α][v/x]

C[e] ↪→ C[e′] if e ↪→ e′

C ::= [] | C e | v C | {l1=v, l=C, l2=e} | C.l | C τ | pack 〈τ, C〉τ | unpack 〈α, x〉=C in e

Fig. 6. Fω reduction.

Theorem 3.7 (Decidability)

1. It is decidable whether Γ 
 �.

2. It is decidable whether Γ 
 τ : κ.

3. It is decidable whether Γ 
 e : τ.

4. If Γ 
 τ1 : κ and Γ 
 τ2 : κ, it is decidable whether τ1 ≡ τ2.

Note that τ1 ≡ τ2 is defined over raw (i.e., not necessarily well-kinded) types; in

particular, even if τ1 and τ2 are well-kinded, their equivalence may be established

by transitively connecting them through some intermediate types that are ill-kinded.

However, as long as τ1 and τ2 are well-kinded, and they have the same kind, one can

test for their equality by βη-reducing them to normal forms (a process which must

terminate due to strong normalization of βη-reduction) and then comparing the

normal forms for α-equivalence. The proof that this algorithm is complete requires

only a straightforward extension of the corresponding proof for the simply-typed

λ-calculus (Geuvers, 1992), of which Fω ’s type language is but a minor generalization.

From here on, we will usually silently assume all these standard properties as

given and omit any explicit reference to the above lemmas and theorems.

Parallel substitution. We will also make use of parallel type substitutions on Fω

types and terms. We write them as [τ/α] and implicitly assume that τ and α are

vectors with the same arity. Furthermore, the following definitions and lemmas will

come in handy in dealing with parallel type substitutions in proofs.

Definition 3.8 (Typing of type substitutions)

We write Γ′ 
 [τ/α] : Γ if and only if

1. Γ′ 
 �,

2. α ⊆ dom(Γ),

3. for all α ∈ dom(Γ), Γ′ 
 α[τ/α] : Γ(α),

4. for all x ∈ dom(Γ), Γ′ 
 x : Γ(x)[τ/α].

Lemma 3.9 (Type substitution)

Let Γ′ 
 [τ/α] : Γ. Then:

1. If Γ 
 τ′ : κ, then Γ′ 
 τ′[τ/α] : κ.

2. If Γ 
 e : τ′, then Γ′ 
 e[τ/α] : τ′[τ/α].
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∃ε.τ := τ

∃α.τ := ∃α1.∃α′.τ

pack 〈ε, e〉∃ε.τ0 := e

pack 〈τ, e〉∃α.τ0 := pack 〈τ1, pack 〈τ′, e〉∃α′ .τ0[τ1/α1]〉∃α.τ0
unpack 〈ε, x:τ〉 = e1 in e2 := let x:τ = e1 in e2

unpack 〈α, x:τ〉 = e1 in e2 := unpack 〈α1, x1〉 = e1 in unpack 〈α′, x:τ〉 = x1 in e2

let x:τ = e1 in e2 := (λx:τ.e2) e1

(where τ = τ1τ
′ and α = α1α

′)

Fig. 7. Notational abbreviations for Fω .

Abbreviations. Figure 7 defines some syntactic sugar for n-ary pack’s and unpack’s

that introduce/eliminate existential types ∃α.τ quantifying over several type variables

at once. We will use n-ary forms of other constructs (e.g., application of a type λ),

defined in all instances in the obvious way.

To ease notation in the elaboration rules that follow, we will typically omit kind

annotations on type variables in the environment and on binders. Where needed, we

use the notation κα to refer to the kind implicitly associated with α. For brevity, we

will also usually drop the type annotations from let, pack, and unpack when they

are clear from context.

4 Elaboration

We will now define the semantics of the module language by elaboration into System

Fω . That is, we will give (syntax-directed) translation rules that interpret signatures

as Fω types, and modules as Fω terms. Our elaboration translation builds on a

number of ideas for representing modules that originate in previous work (see

Section 11 for a detailed discussion), but we do not assume that the reader is

familiar with any of these ideas and thus explain them all from first principles.

Identifiers. In order to treat identifier bindings in as simple manner as possible, we

make several assumptions. First, we assume that identifiers X of the module language

can be injectively mapped to variables x of Fω . To streamline the presentation, we

assume that this mapping is applied implicitly, and thus we use module-language

identifiers as if they were Fω variables.

Second, we assume that there is an injective embedding of Fω variables into Fω

labels. That is, for every (free) variable x there is a unique label lx from which x can

be reconstructed. Together with the first assumption this means that, wherever we

write lX (with X being a module-language identifier), we take this to mean that X

has been embedded into the set of Fω variables, which in turn has been embedded

into the set of labels. Since both embeddings are injective, X uniquely determines lX
and vice versa.

For simplicity, we assume here that all entities of the language share a single

identifier namespace. Obviously, this could be refined by using different injection

functions for the different namespaces, with disjoint images.

Finally, we deal with shadowing of module-language identifiers simply via shad-

owing in the Fω environment (see Section 3). Consequently, we need not make any
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(kind elaboration) Γ 
 K � κ

(type elaboration) Γ 
 T : κ� τ such that Γ 
 τ : κ

(expression elaboration) Γ 
 E : τ� e such that Γ 
 e : τ

(path elaboration) Γ 
 P : Σ� e such that Γ 
 e : Σ

(module elaboration) Γ 
 M : Ξ� e such that Γ 
 e : Ξ

(binding elaboration) Γ 
 B : Ξ� e such that Γ 
 e : Ξ

(signature elaboration) Γ 
 S � Ξ such that Γ 
 Ξ : Ω

(declaration elaboration) Γ 
 D � Ξ such that Γ 
 Ξ : Ω

(signature subtyping) Γ 
 Ξ � Ξ′ � f such that Γ 
 f : Ξ → Ξ′

(signature matching) Γ 
 Σ � Ξ′ ↑ τ� f such that Γ 
 f : Σ → Σ′[τ/α]

(where Ξ′ = ∃α.Σ′)

Fig. 8. Elaboration judgments.

specific provision for variable shadowing in our rules. Only when identifiers are

turned into labels (e.g., as structure fields) do we need to explicitly avoid duplicates.

Judgments. The judgments comprising our elaboration semantics are listed in

Figure 8. Most of these are translation judgments, one for each syntactic class

of the module language, which translate module-language entities into Fω entities

of the corresponding variety. (Strictly speaking, we ambiguously overload the same

notation for module and path judgments, since P syntactically expands to M. But

it will always be clear from context which judgment is referenced.) The last two are

auxiliary judgments for signature subtyping and matching, which we will explain a

bit later.

For each judgment, the figure also shows the corresponding elaboration invariant.

We will prove that these invariants hold (and that the translation thereby is sound)

later, in Section 5.1. To prove them, we assume that elaboration starts out with a

well-formed context Γ. In fact, elaboration will maintain much stronger invariants

for Γ, which are important in the proof of decidability of typechecking, but we leave

discussion of the details until later (see the “Module elaboration” section below, as

well as Section 5.2).

In places where we do not care about evidence terms, we will often write judgments

without the “� e” or “� f” part. In addition, we use Γ 
 Ξ �� Ξ′ as a shorthand

for mutual subtyping Γ 
 Ξ � Ξ′ ∧ Γ 
 Ξ′ � Ξ.

A number of the elaboration judgments concern semantic signatures Σ or Ξ.

Semantic signatures are just a subclass of Fω types that serve as the semantic

interpretations of syntactic (i.e., module language) signatures S , as well as the

classifiers of modules M. Since semantic signatures are so central to elaboration, we

will start by explaining how they work.

Semantic signatures. The syntax of semantic signatures is given in Figure 9. (And

no, this is not an oxymoron, for in our setting the “semantic objects” we are using

to model modules are merely pieces of Fω syntax.)
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(abstract signatures) Ξ ::= ∃α.Σ
(concrete signatures) Σ ::= [τ] | [= τ : κ] | [= Ξ] | {lX : Σ} | ∀α.Σ → Ξ

(meta-projection) Σ.ε := Σ

{l : Σ, l′ : Σ′}.l.l := Σ.l

Fig. 9. Semantic signatures.

Following Mitchell & Plotkin (1988), the basic idea behind semantic signatures is

to view a signature as an existential type, with the existential serving as a binder for

all the abstract types declared in the signature. In particular, an abstract semantic

signature Ξ has the form ∃α.Σ, where α names all the abstract types declared in the

signature, and where Σ is a concrete version of the signature. Σ is concrete in the

sense that each (formerly) abstract type declaration is made transparently equal to

the corresponding existentially-bound variable among the α. (We will see an example

of this below.) The splitting of an abstract signature ∃α.Σ into these two components

— the abstract types α and the concrete signature Σ — plays a key role in the

elaboration of module binding (as we explain in the “Module elaboration” section

below).

A concrete signature Σ, in turn, can be either an atomic signature ([τ], [= τ : κ],

or [= Ξ], each denoting a single anonymous value, type, or signature declaration,

respectively), a structure signature (represented as a record type {lX : Σ}), or a

functor signature (represented by the polymorphic function type ∀α.Σ → Ξ).

Instead of adding atomic signatures as primitive constructs to the type system of

the internal language (like in previous work, e.g., Dreyer et al. (2003)), we simply

encode them as syntactic sugar for Fω types of a certain form. Their encodings

are shown in Figure 10, along with corresponding term forms (which we will use

in the translation of modules), and associated typing rules that are admissible in

System Fω . The encodings refer to special labels val, typ, and sig, which we assume

are disjoint from the set of labels lX corresponding to module-language identifiers.

Of particular note are the encodings for type and signature declarations, which may

seem slightly odd because they both appear to declare a value of the same type as

the identity function. This is merely a coding trick: type and signature declarations

are only relevant at compile time, and thus the actual values that inhabit these

atomic signatures are irrelevant. The important point is that (1) they are inhabited,

and (2) the signatures [= τ : κ] and [= Ξ] are injective, i.e., uniquely (up to Fω type

equivalence) determine τ and Ξ, respectively. The encoding for [= τ : κ] is chosen

such that it supports arbitrary κ. Beyond these properties the “implementation

details” of the encodings are immaterial to the rest of our development, and the

reader should simply view them as abstractions.

In the remainder of this article, we will assume implicitly that all semantic types

and signatures are reduced to βη-normal form. Likewise, we assume that all uses

of substitution are followed by an implicit normalization step. This is convenient

as a way of determinizing elaboration, as well as ensuring that types produced by
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(types) [τ] := {val : τ}
[= τ : κ] := {typ : ∀α : (κ → Ω). α τ → α τ}
[= Ξ] := {sig : Ξ → Ξ}

(terms) [e] := {val = e}
[τ : κ] := {typ = λα : (κ → Ω). λx : α τ. x}
[Ξ] := {sig = λx : Ξ. x}

Types Γ 
 τ : κΓ 
 τ : Ω

Γ 
 [τ] : Ω

Γ 
 τ : κ

Γ 
 [= τ : κ] : Ω

Γ 
 Ξ : Ω

Γ 
 [= Ξ] : Ω

Terms Γ 
 e : τΓ 
 e : τ

Γ 
 [e] : [τ]

Γ 
 τ : κ

Γ 
 [τ : κ] : [= τ : κ]

Γ 
 Ξ : Ω

Γ 
 [Ξ] : [= Ξ]

Type equivalence τ ≡ τ′
τ ≡ τ′

[= τ : κ] ≡ [= τ′ : κ]

Ξ ≡ Ξ′

[= Ξ] ≡ [= Ξ′]

Fig. 10. Fω encodings of atomic signatures and admissible typing rules.

elaboration mention the minimal set of free type variables relevant to their identity

(cf. “path elaboration” below).

Signature elaboration. The elaboration of signatures (Figure 11) is not difficult. The

only significant difference between a syntactic module-language signature and its

semantic interpretation is that, in the latter, all the abstract types declared in the

signature are collected together, hoisted out (notably, in rule D-mod), and bound

existentially at the outermost level of the signature.

For example, consider the following syntactic signature:

{module A : {type t; val v : t};
signature S = {val f : A.t → int}}

This signature declares one abstract type (A.t), so the semantic Fω interpretation of

the signature will bind one abstract type α:

∃α.{ lA : {lt : [= α : Ω], lv : [α]}, lS : [= {lf : [α → int]}] }

For legibility, in the sequel we’ll finesse the injections (lX) from source identifiers

into labels, instead writing this signature as:

∃α.{ A : {t : [= α : Ω], v : [α]}, S : [= {f : [α → int]}] }

The signature is modeled as a record type with two fields, A and S. The A field

has two subfields — t and v — the first of which has an atomic signature denoting

that t is a type component equal to α, the second of which has an atomic signature

denoting that v is a value component of type α (i.e., t). The S field has an atomic

signature denoting that S is a signature component whose definition is the semantic

signature {f : [α → int]}.
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Signatures Γ 
 S � Ξ

Γ 
 P : [= Ξ]� e

Γ 
 P � Ξ
S-path

Γ 
 D � Ξ

Γ 
 {D}� Ξ
S-struct

Γ 
 S1 � ∃α.Σ Γ, α, X:Σ 
 S2 � Ξ

Γ 
 (X:S1) → S2 � ∀α.Σ → Ξ
S-funct

Γ 
 S � ∃α1αα2.Σ Σ.lX = [= α : κ] Γ 
 T : κ� τ

Γ 
 S where type X=T � ∃α1α2.Σ[τ/α]
S-where-typ

Declarations Γ 
 D � Ξ

Γ 
 T : Ω� τ

Γ 
 val X:T � {lX : [τ]} D-val

Γ 
 T : κ� τ

Γ 
 type X=T � {lX : [= τ : κ]} D-typ-eq
Γ 
 K � κα

Γ 
 type X:K � ∃α.{lX : [= α : κα]}
D-typ

Γ 
 S � ∃α.Σ
Γ 
 module X:S � ∃α.{lX : Σ} D-mod

Γ 
 S � Ξ

Γ 
 signature X=S � {lX : [= Ξ]} D-sig-eq

Γ 
 S � ∃α.{lX : Σ}
Γ 
 include S � ∃α.{lX : Σ}

D-incl

Γ 
 ε� {} D-emt

Γ 
 D1 � ∃α1.{lX1
: Σ1}

Γ, α1, X1:Σ1 
 D2 � ∃α2.{lX2
: Σ2} lX1

∩ lX2
= ∅

Γ 
 D1;D2 � ∃α1α2.{lX1
: Σ1, lX2

: Σ2}
D-seq

Fig. 11. Signature elaboration.

Note that, by hoisting the binding for the abstract type α to the outermost scope

of the signature, we have made the apparent dependency between the declaration of

signature S and the declaration of module A — i.e., the reference in S’s declaration

to the type A.t — disappear! Moreover, whereas in the original syntactic signature

the abstract type was referred to as t in one place and as A.t in another, in the

semantic signature all references to the same abstract type component use the

same name (here, α). These simplifications (1) make clear that you do not need

dependent types in order to model ML signatures, and (2) allow us to avoid any

“signature strengthening” (aka “selfification”) machinery, of the sort one finds in all
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SET � ∃α1α2.{set : [= α1 : Ω],

elem : [= α2 : Ω],

empty : [α1],

add : [α2 × α1 → α1],

mem : [α2 × α1 → bool]}

(Elem : ORD) → (SET where type elem = Elem.t)

� ∀α.{t : [= α : Ω],

eq : [α × α → bool],

less : [α × α → bool]}
→ ∃β.{set : [= β : Ω],

elem : [= α : Ω],

empty : [β],

add : [α × β → β],

mem : [α × β → bool]}
Fig. 12. Example: signature elaboration.

the “syntactic” type systems for modules (Harper & Lillibridge, 1994; Leroy, 1994;

Leroy, 1995; Shao, 1999; Dreyer et al., 2003).

The only semantic signature form not exhibited in the above example is the

functor signature ∀α.Σ → Ξ. The important point about this signature is that the α

are universally quantified, which enables them to be mentioned in both the argument

signature Σ and the result signature Ξ. If functor signatures were instead represented

as Ξ → Ξ′, then the result signature Ξ′ would not be able to depend on any abstract

types declared in the argument.

An example of a functor signature can be seen in Figure 12. It gives the translation

of the signature SET from the example in Figure 3, along with the translation of the

signature

(Elem : ORD) → (SET where type elem = Elem.t)

which classifies the Set functor itself.

Given our informal explanation, the formal rules in Figure 11 should now be very

easy to follow. A few points of note, though.

The rule S-where-typ for where type employs a convenient bit of shorthand

notation defined in Figure 9, namely: Σ.lX denotes the signature of the lX component

of Σ. This is used to check that the type component being refined is in fact an abstract

type component (i.e., equivalent to one of the α bound existentially by the signature).

In the rule D-seq, for sequences of declarations D1;D2, the side condition that

the label sets lX1
and lX2

are disjoint is imposed because signatures may not declare

two components with the same name. Also, note that the identifiers X1, implicitly

embedded as Fω variables, may shadow other bindings in Γ. This is one place where

it is convenient to rely on shadowing being permissible in the Fω environments.

Finally, the rule S-path for signature paths P refers in its premise to the path

elaboration judgment (which we will discuss later, see Figure 17) solely in order to

look up the semantic signature Ξ that P should expand to. As noted above in the

discussion of atomic signatures, the actual term e inhabiting the atomic signature

[= Ξ] is irrelevant.
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Matching Γ 
 Σ � Ξ ↑ τ� f

Γ 
 τ : κα Γ 
 Σ � Σ′[τ/α]� f

Γ 
 Σ � ∃α.Σ′ ↑ τ� f
U-match

Subtyping Γ 
 Ξ � Ξ′ � f

Γ 
 τ � τ′ � f

Γ 
 [τ] � [τ′]� λx:[τ].[f(x.val)]
U-val

τ = τ′

Γ 
 [= τ : κ] � [= τ′ : κ]� λx:[= τ : κ].x
U-typ

Γ 
 Ξ � Ξ′ � f Γ 
 Ξ′ � Ξ� f′

Γ 
 [= Ξ] � [= Ξ′]� λx:[= Ξ]. [Ξ′]
U-sig

Γ 
 Σ1 � Σ′
1 � f

Γ 
 {l1 : Σ1, l2 : Σ2} � {l1 : Σ′
1}� λx:{l1 : Σ1, l2 : Σ2}.{l1 = f (x.l1)}

U-struct

Γ, α′ 
 Σ′ � ∃α.Σ ↑ τ� f1 Γ, α′ 
 Ξ[τ/α] � Ξ′ � f2

Γ 
 (∀α.Σ → Ξ) � (∀α′.Σ′ → Ξ′)� λf:(∀α.Σ → Ξ). λα′. λx:Σ′. f2 (f τ (f1 x))
U-funct

Γ, α 
 Σ � ∃α′.Σ′ ↑ τ� f

Γ 
 ∃α.Σ � ∃α′.Σ′ � λx:(∃α.Σ). unpack 〈α, y〉 = x in pack 〈τ, f y〉
U-abs

Fig. 13. Signature matching and subtyping.

Signature matching and subtyping. Signature matching (Figure 13) is a key element

of the ML module system. For sealed module expressions, we must check that

the signature of the module being sealed matches the sealing signature. At functor

applications, we must check that the signature of the actual argument matches the

formal argument signature of the functor.

What happens during signature matching is really quite simple. First of all, in all

places where signature matching occurs, the source signature — i.e., the signature

of the module being matched — is expressible as a concrete semantic signature Σ.

(To see why, skip ahead to module elaboration.) The target signature — i.e., the

signature being matched against — on the other hand is abstract. To match against

an abstract signature ∃α.Σ′, we must solve for the α. That is, we must find some τ

such that the source signature matches Σ′[τ/α]. (Fortunately, if such a τ exists, it

is unique, and there is an easy way of finding it by inspecting Σ — the details are

in Section 5.2.) Then, the problem of signature matching reduces to the question of

whether Σ is a subtype of Σ′[τ/α], which can be determined by a straightforward

structural analysis of the two concrete signatures.

As a simple example, consider matching

{ A : {t : [= int : Ω], u : [int], v : [int]}, S : [= {f : [int → int]}] }
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against the abstract signature

∃α.{ A : {t : [= α : Ω], v : [α]}, S : [= {f : [α → int]}] }

from our signature elaboration example (above). The τ returned by the matching

judgment would here be simply int, and the subtyping check would determine that

the first signature is a structural (width and depth) subtype of the second after

substituting int for α.

The signature matching judgment has the form Γ 
 Σ � Ξ ↑ τ � f. It matches

a concrete Σ against an abstract Ξ of the form ∃α.Σ′ as described above, non-

deterministically synthesizing the solution τ for α, as well as the coercion f from Σ

to Σ′[τ/α] (rule U-match).

While the purpose of signature matching is to relate concrete to abstract signatures,

signature subtyping, Γ 
 Ξ � Ξ′ � f, only relates signatures within the same class

and synthesizes a respective coercion. Consequently, subtyping is defined by cases

on Ξ and Ξ′.

For value declarations (rule U-val), signature subtyping appeals to an assumed

subtyping judgment for the core language, Γ 
 τ � τ′ � f. For a core language

with no subtyping the premise would degenerate to “τ = τ′”. For an ML-like core

language, subtyping serves to specialize a more general polymorphic type scheme to

a less general one. To take a concrete example, the empty field of the Set functor

in Figure 3 would, in ML, receive polymorphic scheme ∀β.list β, but when the

functor body is matched against the sealing signature (SET where type . . . ), the

type of empty would be coerced to the monomorphic type list α (where α represents

Elem.t).

For type declarations (rule U-typ), we require type equivalence, so subtyping just

produces an identity coercion.

For signature declarations (rule U-sig), we do not require that they are equal

(as types), but merely mutual subtypes, because type equivalence would be too

fine-grained. In particular, signatures that differ syntactically only in the order of

their declarations will elaborate to semantic signatures that differ only in the order

in which their existential type variables are bound. Such differences should be

inconsequential in the source program. And indeed, the order of quantifiers does not

matter anywhere in our rules, because they are only used for matching, and pushed

around en bloc in all other places. (Ordering of quantifiers will, however, matter

for modules as first-class values — see the discussion of signature normalization in

Section 6.)

For structure signatures, we allow both width and depth subtyping (rule U-struct).

For functor signatures, ∀α.Σ → Ξ and ∀α′.Σ′ → Ξ′, subtyping proceeds in the usual

contra- and co-variant manner (rule U-funct): after introducing α′, we match the

domains contravariantly to determine an instantiation τ for α such that Σ′ � Σ[τ/α];

then, we (covariantly) check that the (instantiated) co-domain Ξ[τ/α] subtypes Ξ′.

This allows for polymorphic specialization, i.e., a more polymorphic functor signature

may subtype a less polymorphic one.
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Dually, for abstract semantic signatures ∃α.Σ and ∃α′.Σ′, subtyping recursively

reduces to eliminating ∃α.Σ, then matching Σ against Σ′ to determine witness types τ

for α′; thus, a less abstract signature may subtype a more abstract one (rule U-abs).

The coercion terms f synthesized by the subtyping rules are straightforward —

given the required invariant, Γ 
 f : Ξ → Ξ′, they practically write themselves. This

invariant also determines the elided type annotation on the pack expression in the

U-abs rule.

We assume βη-equivalence for System Fω types, which is important to make

certain examples work as expected. Consider the following two signatures6:

signature A = {type t : � → �; type u = fun a ⇒ t a}
signature B = {type u : � → �; type t = fun a ⇒ u a}

Semantically, they are represented as:

A = ∃β1 : Ω → Ω.{t : [= β1 : Ω → Ω], u : [= λα.β1 α : Ω → Ω]}
B = ∃β2 : Ω → Ω.{u : [= β2 : Ω → Ω], t : [= λα.β2 α : Ω → Ω]}

Intuitively, A � B is expected to hold (and vice versa). According to rules U-abs

and U-match, this boils down to finding a type τ : Ω → Ω such that

{t : [= β1 : Ω → Ω], u : [= λα.β1 α : Ω → Ω]}
� {u : [= τ : Ω → Ω], t : [= λα.τ α : Ω → Ω]}

By rule U-typ, the following equivalences need to hold for a suitable choice of τ:

β1 = λα.τ α (via t)

λα.β1 α = τ (via u)

Substituting the solution for τ, given by the second equation, into the first reveals

that the following will have to hold:

β1 = λα.(λα.β1 α) α

Clearly, this is only the case under a combination of both β- and η-equivalence.

Module elaboration. The module elaboration judgment (Figure 14), which has the

form Γ 
 M : Ξ � e, assigns module M the semantic signature Ξ and additionally

translates M to an Fω term e of type Ξ. (The invariant, Γ 
 e : Ξ, determines elided

pack annotations.) As in signature elaboration, the basic idea in module elaboration

is to assign M an abstract signature ∃α.Σ such that α represent all the abstract types

that M defines. The difference here is that we must also construct the term e that

has this signature — i.e., the evidence.

One way to understand the evidence construction is to think of the existential

type ∃α.Σ as a monad that encapsulates the “effect” of defining abstract types. When

we want to use a module of this abstract (think: monadic) signature, we must

first unpack it (think: the bind operation for the monad), obtaining some fresh

6 In this and later examples, we use the syntax fun X ⇒ T to denote a type function in our imaginary
Core language.
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Modules Γ 
 M : Ξ� e

Γ(X) = Σ

Γ 
 X : Σ� X
M-var

Γ 
 B : Ξ� e

Γ 
 {B} : Ξ� e
M-struct

Γ 
 M : ∃α.{lX : Σ, lX′ : Σ′}� e

Γ 
 M.X : ∃α.Σ� unpack 〈α, y〉 = e in pack 〈α, y.lX〉 M-dot

Γ 
 S � ∃α.Σ Γ, α, X:Σ 
 M : Ξ� e

Γ 
 fun X:S ⇒M : ∀α.Σ → Ξ� λα.λX:Σ.e
M-funct

Γ(X1) = ∀α.Σ′ → Ξ Γ(X2) = Σ Γ 
 Σ � ∃α.Σ′ ↑ τ� f

Γ 
 X1 X2 : Ξ[τ/α]� X1 τ (f X2)
M-app

Γ(X) = Σ Γ 
 S � Ξ Γ 
 Σ � Ξ ↑ τ� f

Γ 
 X:>S : Ξ� pack 〈τ, f X〉 M-seal

Bindings Γ 
 B : Ξ� e

Γ 
 E : τ� e

Γ 
 val X=E : {lX : [τ]}� {lX = [e]} B-val

Γ 
 T : κ� τ

Γ 
 type X=T : {lX : [= τ : κ]}� {lX = [τ : κ]} B-typ

Γ 
 M : ∃α.Σ� e Σ not atomic

Γ 
 module X=M : ∃α.{lX : Σ}� unpack 〈α, x〉 = e in pack 〈α, {lX = x}〉
B-mod

Γ 
 S � Ξ

Γ 
 signature X=S : {lX : [= Ξ]}� {lX = [Ξ]} B-sig

Γ 
 M : ∃α.{lX : Σ}� e

Γ 
 include M : ∃α.{lX : Σ}� e
B-incl

Γ 
 ε : {}� {} B-emt

Γ 
 B1 : ∃α1.{lX1
: Σ1}� e1 l′X1

= lX1
− lX2

Γ, α1, X1 : Σ1 
 B2 : ∃α2.{lX2
: Σ2}� e2 l′X1

:Σ′
1 ⊆ lX1

:Σ1

Γ 
 B1;B2 : ∃α1α2.{l′X1
: Σ′

1, lX2
: Σ2}� unpack 〈α1, y1〉 = e1 in

unpack 〈α2, y2〉 = (let X1 = y1.lX1
in e2) in

pack 〈α1α2, {l′X1
= y1.l

′
X1
, lX2

= y2.lX2
}〉

B-seq

Fig. 14. Module elaboration.
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abstract types α and a variable x of concrete (think: pure) signature Σ. We can then

do whatever we want with x, ultimately producing another module of (monadic)

signature ∃α′.Σ′. Of course, Σ′ may have free references to the α, so at the end we

must repack the result with the α to form a module of signature ∃α α′.Σ′. Thus,

the abstract types α defined by M propagate monadically into the set of abstract

types defined by any module that uses M. As many researchers have pointed

out (MacQueen, 1986; Cardelli & Leroy, 1990), this monadic unpack/repack style

of existential programming would be annoying to program manually. Fortunately,

it is easy for module elaboration to perform it automatically.

Figure 14 shows the rules for elaborating modules and bindings. The rules for

projections (M-dot), module bindings (B-mod), and binding sequences (B-seq) show

the unpack/repack idiom in action. The last of these is somewhat involved, but only

because ML modules allow bindings to be shadowed — a practical complication,

incidentally, that is glossed over in most module type systems in the literature (with

the exception of Harper & Stone (2000), who account for full Standard ML).7 It is

here primarily that we rely on the fact that the Fω version from Section 3 allows

shadowing in Γ, in order to avoid having to map external identifiers to fresh internal

variables. (In fact, we have already relied on this for rule S-funct, and do so again

for rule M-funct.)

The rule M-funct for functors is completely analogous to rule S-funct for functor

signatures (cf. Figure 11). Note that this rule and the sequence rule B-seq are the

only two that extend the environment Γ, and that in both cases the new variable X

is bound with a concrete signature Σ. As a result, when we look up an identifier X

in the environment (rule M-var), we may assume it has a concrete signature. This

is a key invariant of elaboration.

The rules for functor applications (M-app) and sealed modules (M-seal) both

appeal to the signature matching judgment. In the former, the τ represent the type

components of the actual functor argument corresponding to the abstract types α

declared in the formal argument signature. For instance, in the functor application

in Figure 3, τ would be simply int, since that is how the argument module defines

the abstract type t declared in the argument signature ORD. This information is

then propagated to the result of the functor application by substituting τ for α in

the result signature Ξ. The sealing rule works similarly, except that τ is not used to

eliminate a universal type, but dually, to introduce an existential type. Hence, τ is

not propagated to the signature of the sealed module, but rather hidden within the

existential. This makes sense because, of course, the point of sealing is to hide the

identity of the abstract types α.

Note that both M-app and M-seal are made simpler by our language’s restriction

of functor applications and sealing to module identifiers (X1 X2 and X:>S), which

enables us to exploit the elaboration invariant that those identifiers (the X’s) already

have concrete signatures and need not be unpacked. As the let-binding encodings

7 Of course, a realistic implementation of modules would want to optimize the construction of structure
representations and avoid the repeated record concatenation. Such an optimization is fairly easy; it
essentially boils down to partially evaluating the expressions generated by our sequencing rule.
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Set �
λα.λElem : {t : [= α : Ω],

eq : [α × α → bool],

less : [α × α → bool]}.
pack 〈list α,

f (let y1 = {elem = [α : Ω]} in

let y2 =

let elem = y1.elem in

let y21 = {set = [list α : Ω]} in

let y22 =

let set = y21.set in

. . .

in {elem = y1.elem,

set = y2.set,

empty = y2.empty,

add = y2.add,

mem = y2.mem})
〉∃β.{set:[=β:Ω], elem:[=α:Ω], empty:[β], add:[α×β→β], mem:[α×β→bool]}

{module IS = Set Int; val s = IS.add (7, IS.empty)} �
unpack 〈β, y1〉 = {IS = Set int (f′ Int)} in

let y2 = (let IS = y1.IS in {s = [IS .add 〈7, IS .empty〉]}) in

pack 〈β, {IS = y1.IS, s = y2.s}〉∃β.{IS:{... },s:[β]}

Fig. 15. Example: module elaboration.

of the more general forms M1 M2 and M:>S in Figure 2 suggest, elaboration of

those forms just involves monadically unpacking the M’s to X’s first before applying

M-app or M-seal, and then repacking afterward.

As an example of the module elaboration translation, Figure 15 sketches the result

of elaborating the Set functor from Figure 3. It also shows the Fω representation

of a simple program involving the application of this functor. We assume that there

is a suitable library module Int that matches signature ORD, whose t component is

transparently equal to int , and whose Fω representation is Int . In order to avoid

too much clutter, we do not spell out the respective coercions f and f′ occurring in

both examples.

To make the essence of the translation a bit more apparent, Figure 16 shows

simplified versions of the same translations with all intermediate redexes (in par-

ticular, intermediate structures) removed, via straightforward βη-transformations

of let-bindings and records. In particular, once we eliminate the administrative

overhead of rule B-seq, a structure simply becomes a sequence of let-bindings for

the declarations in its body, feeding into a record that collects all bound variables

as fields.

Generativity. Functors in Standard ML are said to behave generatively, meaning

that every application of a functor F will have the effect of generating fresh

abstract types corresponding to whichever types are declared abstractly in F ’s result
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Set �
λα.λElem : {t : [= α : Ω],

eq : [α × α → bool],

less : [α × α → bool]}.
pack 〈list α,

f (let elem = [α : Ω] in

let set = [list α : Ω] in

let empty = [nil] in

let add = [. . .Elem .eq . . .Elem .less . . . ] in

let mem = [. . .Elem .eq . . .Elem .less . . . ] in

{elem = elem , set = set , empty = empty , add = add , mem = mem})
〉∃β.{set:[=β:Ω], elem:[=α:Ω], empty:[β], add:[α×β→β], mem:[α×β→bool]}

{module IS = Set Int; val s = IS.add (7, IS.empty)} �
unpack 〈β, IS 〉 = Set int (f′ Int) in

let s = [IS .add 〈7, IS .empty〉] in

pack 〈β, {IS = IS , s = s}〉∃β.{IS:{... },s:[β]}

Fig. 16. Example: module elaboration, simplified.

signature. With the existential interpretation of type abstraction that we employ

here, this generativity comes for free. Applying a functor produces a module with

an existential type of the form ∃α.Σ. Thus, if a functor is applied twice (say, to the

same argument) and the results are bound to two different identifiers X1 and X2,

then the binding sequence rule will ensure that two separate copies of the α will

be added to the environment Γ — call them α1 and α2 — along with the bindings

X1 : Σ[α1/α] and X2 : Σ[α2/α]. In this way, the abstract type components of X1 and

X2 will be made distinct.

In Section 7, we will explore an alternative semantics, where functors can be

applicative, i.e., applying such a functor twice (to the same argument) will only

produce one copy of the abstract types it defines.

Path elaboration. Figure 17 displays the last three rules of elaboration, concerning

the elaboration of paths. (The elaboration rule for signature paths appeared in

Figure 11.)

Paths are the means by which value, type, and signature components are projected

out of modules. As explained in Section 2, in order for paths to make sense, the

values, types, or signatures that they project out must be well-formed in the ambient

environment Γ. In other words, paths P need to elaborate to a concrete signature Σ,

because (unlike for module constructs) existential quantifiers cannot be “extruded”

further in the contexts where paths occur. To ensure this, the path elaboration

judgment, Γ 
 P : Σ� e, uses the ordinary module elaboration judgment, Γ 
 M :

Ξ� e, in its premise (with M = P ) to synthesize P ’s semantic signature ∃α.Σ, which

still allows “local” abstract types α to occur. It then checks that Σ does not actually

depend on any of these α that P may have defined (note that we assume all types

normalized, so any spurious dependencies are implicitly eliminated). The rules for
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Paths Γ 
 P : Σ� e

Γ 
 P : ∃α.Σ� e Γ 
 Σ : Ω

Γ 
 P : Σ� unpack 〈α, x〉 = e in x
P-mod

Types Γ 
 T : κ� τ
Γ 
 P : [= τ : κ]� e

Γ 
 P : κ� τ
T-path

Expressions Γ 
 E : τ� e
Γ 
 P : [τ]� e

Γ 
 P : τ� e.val
E-path

Fig. 17. Path elaboration.

type, expression, and signature paths use the path elaboration judgment to check

the well-formedness of the path, and then project the component out accordingly.

For instance, consider the example from Section 2 of an ill-formed path. Let M

be the module expression

{type t = int; val v = 3} :> {type t; val v : t}

The semantic signature that module elaboration assigns to M is:

∃α.{t : [= α : Ω], v : [α]}

Thus, if we were to try to project either t or v from M directly, the resulting type

or expression would not be well-formed, since both [= α : Ω] and [α] refer to the

local abstract type α that is not going to be bound in the environment Γ. If, on

the other hand, we were to first bind M to an identifier X, and then subsequently

project out X.t or X.v, the paths would be well-formed. The reason is that the

binding sequence rule would extend the ambient environment with a fresh α, as well

as X : {t : [= α : Ω], v : [α]}. Under such an extended environment, X.t would simply

elaborate to α, and X.v would elaborate to X.v.val of type α, both of which are

well-formed since α is now bound in the environment. In general, since identifiers

have concrete signatures, any well-formed module of the form X.lY will also be a

well-formed path.

If one views existential types as a monad, as we have suggested, then the path

elaboration rule may seem superficially odd because it allows one to “escape” the

monad by going from ∃α.Σ to Σ. However, the point is that one can only do this

if the “effects” encapsulated by the monad — i.e., the abstract types α defined by

the path — are strictly local. This is similar conceptually to the hiding of “benign”

(or “encapsulated”) effects by Haskell’s runST mechanism (Launchbury & Peyton

Jones, 1995).

5 Meta-theoretic properties

Having defined the semantics of ML modules by elaboration into System Fω , it is

time to prove it (a) sound, and (b) decidable.
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Some theorems about the module language depend on the assumption that

respective properties can be proved for core language elaboration (i.e., the first three

judgments listed in Figure 8). However, because both language layers are mutually

recursive through the syntax of paths (and after Section 6, also through modules

as first-class values), these proofs are typically not independent — they need to be

performed by simultaneous induction on the derivations for both language layers.

We hence state all properties that we assume about the core language as part of

the respective theorems below. The theorems then hold provided that the inductive

argument can also be shown for all additional cases not specified by our grammar

for types T and expressions E.

5.1 Soundness

Proving soundness of a language specified by an elaboration semantics consists of

two steps:

1. Showing that elaboration only produces well-typed terms of the target lan-

guage.

2. Showing that the type system of the target language is sound.

Fortunately, in our case, since the target language is the very well-studied System

Fω , we can simply borrow the second part from the literature. It thus remains to

be shown that the elaboration rules produce well-formed Fω expressions. Of course,

since our development is parametric in the concrete choice of a core language,

the result only holds relative to suitable assumptions about the soundness of the

elaboration rules for the core language.

Formally, we state the following theorem, which collects the elaboration invariants

already stated in Figure 8:

Theorem 5.1 (Soundness of elaboration)

Provided Γ 
 � we have:

1. If Γ 
 T : κ� τ, then Γ 
 τ : κ.

2. If Γ 
 E : τ� e, then Γ 
 e : τ.

3. If Γ 
 τ � τ′ � f and Γ 
 τ : Ω and Γ 
 τ′ : Ω, then Γ 
 f : τ → τ′.

4. If Γ 
 S/D � Ξ, then Γ 
 Ξ : Ω.

5. If Γ 
 P/M/B : Ξ� e, then Γ 
 e : Ξ.

6. If Γ 
 Ξ � Ξ′ � f and Γ 
 Ξ : Ω and Γ 
 Ξ′ : Ω, then Γ 
 f : Ξ → Ξ′.

7. If Γ 
 Σ � ∃α.Σ′ ↑ τ� f and Γ 
 Σ : Ω and Γ, α 
 Σ′ : Ω,

then Γ 
 τ : κα and Γ 
 f : Σ → Σ′[τ/α].

Proof

The proof is by relatively straightforward simultaneous induction on derivations.

The arguments for properties 1–3 clearly depend on the core language, and we

assume that it can be proved for all additional cases not specified in our grammar.

We have performed the entire proof in Coq (Section 10), and transliterate only two

representative cases here:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796814000264
Downloaded from https://www.cambridge.org/core. IP address: 207.241.231.82, on 24 Jul 2018 at 19:29:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796814000264
https://www.cambridge.org/core


F-ing modules 555

• Case M-app: By induction we know that (1) Γ 
 τ : κα and (2) Γ 
 f : Σ →
Σ′[τ/α]. From (1) we can derive that Γ 
 X1 τ : (Σ′ → Ξ)[τ/α]. From (2) it

follows that Γ 
 f X2 : Σ′[τ/α]. Thus, we can conclude Γ 
 X1 τ (f X2) : Ξ[τ/α]

by the typing rule for application.

• Case B-seq: By induction on the first premise we know (1) Γ 
 e1 :

∃α1.{lX1
: Σ1}. Let Γ1 = Γ, α1, X1:Σ1. By validity and inversion, from (1) we de-

rive Γ, α1 
 Σ1 : Ω, so Γ1 
 �. By induction on the second premise, (2) Γ1 
 e2 :

∃α1.{lX2
: Σ2}. It is easy to show Γ, α1, y1:{lX1

: Σ1} 
 y1.lX1
: Σ1. By convention,

y1 and y2 are fresh, and so it follows that Γ, α1, y1:{lX1
: Σ1}, α2, y2:{lX2

: Σ2} 

{l′X1

= y1.l
′
X1
, lX2

= y2.lX2
} : {l′X1

: Σ′
1, lX2

: Σ2} from the typing rules. From (1)

and weakening (2), the overall goal follows by inner induction on the lengths

of α1, α2, and lX1
, and expanding the n-ary versions of pack, unpack and

let. �

If the reader finds the proof cases shown here to be boring and straightforward,

that is because they are! The remaining cases are even more boring. In other words,

there is nothing tricky going on in our elaboration — which substantiates our claim

that it is simple.

5.2 Decidability

All our elaboration rules are syntax-directed, and they can be interpreted directly as

a deterministic algorithm. Provided core elaboration is terminating, this algorithm

clearly terminates as well.

There is one niggle, though: the signature matching rule requires a non-

deterministic guess of suitable instantiating types τ. To prove elaboration decidable,

we must provide a sound and complete algorithm for finding these types. It’s

not obvious that such an algorithm should exist at all. For example, consider the

following matching problem (Dreyer et al., 2003):

∀α.[= α : κ] → [= τ1 : κ′] � ∃β.([= β : κ] → [= τ2 : κ′])

The matching rule must find an instantiation type τ : κ for β such that the left

signature is a subtype of [= τ : κ] → [= τ2[τ/β] : κ′], which in turn will only hold

if τ1[τ/α] = τ2[τ/β]. Since κ may be a higher kind, this amounts to a higher-order

unification problem, which is undecidable in general (Goldfarb, 1981).

Validity. Fortunately, under minimal assumptions about the initial environment, we

can show that such problematic cases never arise during elaboration. More precisely,

we can show that, whenever we invoke Σ � ∃α.Σ′, the target signature Σ′ has the

property that each abstract type variable α ∈ α actually occurs explicitly in Σ′ in the

form of an embedded type field [= α : κα]. We say that α is rooted in Σ′ in this case.

An abstract signature in which all quantified variables are rooted is called explicit.

Intuitively, the reason we can expect the target signature ∃α.Σ′ to be explicit is that

(1) the only signatures we ever match against during elaboration are themselves the

result of elaborating some ML signature S , and (2) all of such a signature’s abstract

types α must originate in some opaque type specification appearing in S .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796814000264
Downloaded from https://www.cambridge.org/core. IP address: 207.241.231.82, on 24 Jul 2018 at 19:29:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796814000264
https://www.cambridge.org/core


556 A. Rossberg et al.

α rooted in Σ :⇔ α rooted in Σ

α rooted in [= τ : κ] (at ε) :⇔ α = τ

α rooted in {l : Σ} (at l.l′) :⇔ α rooted in {l : Σ}.l (at l′)

[τ] explicit (always)

[= τ : κ] explicit (always)

[= Ξ] explicit :⇔ Ξ explicit

{l : Σ} explicit :⇔ Σ explicit

∀α.Σ → Ξ explicit :⇔ ∃α.Σ explicit ∧ Ξ explicit

∃α.Σ explicit :⇔ α rooted in Σ ∧ Σ explicit

Γ 
 Ξ : Ω explicit :⇔ Γ 
 Ξ : Ω ∧ Ξ explicit

[τ] valid (always)

[= τ : κ] valid (always)

[= Ξ] valid :⇔ Ξ explicit

{l : Σ} valid :⇔ Σ valid

∀α.Σ → Ξ valid :⇔ ∃α.Σ explicit ∧ Ξ valid

∃α.Σ valid :⇔ Σ valid

Γ 
 Ξ : Ω valid :⇔ Γ 
 Ξ : Ω ∧ Ξ valid

Γ valid :⇔ ∀(X:Σ) ∈ Γ, Σ valid

Fig. 18. Signature explicitness and validity.

Figure 18 gives an inductive definition of these properties. (We typically drop

the explicit path description “(at l)” from the rootedness judgment — the only

place where we actually need it will be the definition of signature normalization in

Section 6.)

However, this is not all. While it is necessary (in general) that a signature Ξ is

explicit to decide matching Σ � Ξ, it is not sufficient. Subtyping is contra-variant in

functor arguments, so we also need to ensure that, whenever we invoke subtyping

to determine whether Σ � Σ′ and Σ is a functor signature, its argument signature is

explicit as well. Unfortunately, we cannot require all of Σ to be explicit, because not

all module expressions (as opposed to signature expressions) yield explicit signatures.

For example,

let module A = {type t = int; val v = 5; val f x = x}
:> {type t; val v : t; val f : t → int}

in {val f = A.f; val v = A.v}

defines a module with the non-explicit signature ∃α.{f : [α → int], v : [α]}.
Figure 18 hence defines the second notion of a valid signature that captures

the relevant property — that is, a signature is valid if all contained functor

arguments are explicit (but other constituent signatures need not be). Intuitively, it is

expected that modules have valid signatures, because the language requires explicit

signature annotations on all functor arguments. The notion of validity is extended

to environments, and we require all signatures and environments used in elaboration

to be valid.8 Note that validity of environments only cares about variables bound to

concrete signatures Σ because of the elaboration invariant (discussed in Section 4,

“Module elaboration”) that all modules of signature ∃α.Σ are unpacked into α and

X : Σ before being added to the context.

8 The notions of explicit and valid signatures are also called analysis and synthesis signatures in the
literature (Dreyer et al., 2003; Rossberg & Dreyer, 2013); Russo (1998) used the terms solvable and
ground.
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lookupα(Σ,Σ
′) ↑ τ if lookupα(Σ,Σ

′) ↑ τ

lookupα([= τ : κ], [= τ′ : κ]) ↑ τ if τ′ = α

lookupα({l : Σ}, {l′ : Σ′}) ↑ τ if ∃l ∈ l ∩ l′. lookupα({l : Σ}.l, {l′ : Σ′}.l) ↑ τ

Fig. 19. Algorithmic type lookup.

With a little auxiliary lemma, we can show that our elaboration establishes and

maintains explicit signatures for signature expressions, and valid signatures for

module expressions:

Lemma 5.2 (Simple properties of validity)

1. If Ξ explicit, then Ξ valid.

2. If Ξ explicit/valid, then Ξ[τ/α] explicit/valid.

Lemma 5.3 (Signature validity)

Assume Γ valid.

1. If Γ 
 S/D � Ξ, then Ξ explicit.

2. If Γ 
 P/M/B : Ξ� e, then Ξ valid.

Type lookup. If the ∃α.Σ′ in the matching rule U-match is explicit, then the

instantiation of each α can be found by a simple pre-pass on Σ and Σ′, thanks

to the following observation: if the subsequent subtyping check is ever going to

succeed, then Σ must feature an atomic type signature [= τ : κα] at the same

location where α is rooted in Σ′. Moreover, α must be instantiated with a type

equivalent to τ.

Consequently, the definition of lookup in Figure 19 implements a suitable

algorithm for finding the types τ in rule U-match, through a straightforward parallel

traversal of the two signatures involved. There is a twist, though: an abstract type

variable may actually have multiple roots in a signature. For example, the external

signature {type t; type u = t} elaborates to ∃α.{t : [= α : Ω], u : [= α : Ω]}. The

lookup algorithm, as given in the figure, is non-deterministic in that it can pick

any suitable root — specifically, the choice of l in the last clause is not necessarily

unique. This formulation simplifies the proof of completeness below. Intuitively, it

does not matter which one we pick, they all have to be equivalent. The soundness

theorem proves that, but first we need a little technical lemma:

Lemma 5.4 (Simple properties of type lookup)

1. If lookupα(Σ,Σ
′) ↑ τ, then fv(τ) ⊆ fv(Σ).

2. If lookupα(Σ,Σ
′) ↑ τ and α ∩ α′ = ∅, then lookupα(Σ,Σ

′[τ′/α′]) ↑ τ

(and both derivations have the same size).

3. If lookupα(Σ,Σ
′) ↑ τ and Γ 
 Σ : Ω, then Γ 
 τ : κ.

Theorem 5.5 (Soundness of type lookup)

1. Let Γ 
 Σ : Ω and Γ, α 
 Σ′ : Ω. If lookupα(Σ,Σ
′) ↑ τ1, then Γ 
 τ1 : κα.

Furthermore, if Γ 
 Σ � Σ′[τ2/α] for Γ 
 τ2 : κα, then τ1 = τ2.

2. Let Γ 
 Σ : Ω and Γ, α 
 Σ′ : Ω. If lookupα(Σ,Σ
′) ↑ τ1, then Γ 
 τ1 : κα.

Furthermore, if Γ 
 Σ � ∃α.Σ′ ↑ τ2, then τ1 = τ2.
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Proof

Part 1 is by easy induction on the size of the derivation of the lookup. Part 2

follows by induction on the length of α. When α is empty, then there is nothing

to show. Otherwise, α = α, α′ and τ1 = τ1, τ
′
1, such that lookupα(Σ,Σ

′) ↑ τ1 and

lookupα(Σ,Σ
′) ↑ τ′

1. Let Γ′ = Γ, α′. With weakening, respectively reordering, Γ′ 
 Σ :

Ω and Γ′, α 
 Σ′ : Ω. By part 1, we then know Γ′ 
 τ1 : κα. Lemma 5.4 implies

fv(τ1) ⊆ fv(Σ), and because Σ is well-formed under Γ, it follows that fv(τ1) ⊆ dom(Γ),

so that we can strengthen to Γ 
 τ1 : κα. Substitution yields Γ′ 
 Σ′[τ1/α] : Ω, and

from Lemma 5.4 we get lookupα′ (Σ,Σ′[τ1/α]) ↑ τ′
1, such that we can apply the

induction hypothesis to conclude Γ 
 τ′
1 : κα′ .

Furthermore, in order to prove the type equivalence, we first invert U-match to

reveal Γ 
 Σ � Σ′[τ2/α] and Γ 
 τ2 : κα. Consequently, τ2 = τ2, τ
′
2 and fv(τ2) ⊆

dom(Γ), i.e., α ∩ fv(τ2) = ∅ by the usual conventions. The latter implies Σ′[τ2/α] =

Σ′[τ2/α][τ
′
2/α

′] = Σ′[τ′
2/α

′][τ2/α]. Similar to before, Lemma 5.4 gets us

lookupα(Σ,Σ
′[τ′

2/α
′]) ↑ τ1, and substitution Γ, α 
 Σ′[τ′

2/α
′] : Ω. By part 1, τ1 = τ2

then. To invoke the induction hypothesis for concluding τ′
1 = τ′

2 as well, we first

note that by substitution, Γ′ 
 Σ′[τ2/α] : Ω, and second, by Lemma 5.4 again,

lookupα′(Σ,Σ′[τ2/α]) ↑ τ′
1. Third, since Σ′[τ2/α] = Σ′[τ′

2/α
′][τ2/α], we can construct a

derivation for Γ 
 Σ � ∃α′.Σ′[τ2/α] ↑ τ′
2 with rule U-match. �

According to soundness, if there is any type at all that makes a match succeed,

then lookup can only deliver a well-formed, equivalent type. Despite being non-

deterministic, the result of lookup hence is unique:

Corollary 5.6 (Uniqueness of type lookup)

Let Γ 
 Σ : Ω and Γ 
 ∃α.Σ′ : Ω and Γ 
 Σ � ∃α.Σ′ ↑ τ. If lookupα(Σ,Σ
′) ↑ τ1 and

lookupα(Σ,Σ
′) ↑ τ2, then τ1 = τ2.

Because of this result, we can implement lookup as a deterministic algorithm by

simply choosing the “first” root we encounter for each type variable, in any signature

traversal order of our liking.

For explicit signatures, our definition of type lookup is also a complete algorithm

for finding instantiations in the matching judgment:

Theorem 5.7 (Completeness of type lookup)

Assume ∃α.Σ′ explicit.

1. If Γ 
 Σ � Σ′[τ/α] and α ∈ α, then lookupα(Σ,Σ
′) ↑ α[τ/α].

2. If Γ 
 Σ � ∃α.Σ′ ↑ τ, then lookupα(Σ,Σ
′) ↑ τ.

Proof

Explicitness of ∃α.Σ′ implies α rooted in Σ′, which in turn implies α rooted in Σ′.

Part 1 is then proved by simple induction on the derivation of α rooted in Σ′. Part

2 follows as a straightforward corollary. �

Note that this proof relies on the ability of the lookup algorithm to non-

deterministically pick the root at the same path that was used in the respective

derivation of α rooted in Σ′. Combined with uniqueness we know that any other

path — and thus a deterministic choice — would work as well. Which gives us:
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Corollary 5.8 (Decidability of matching)

Assume that Γ is valid and well-formed, and Γ 
 τ � τ′ � f is decidable for types

well-formed under Γ. If Σ valid and Ξ explicit, and both are well-formed under

Γ, then Γ 
 Σ � Ξ ↑ τ � f is decidable (and does not actually require checking

well-formedness of types).

This result follows directly, because subtyping and matching is defined by induction

on the structure of the semantic signatures, and this structure remains fixed under

type substitution, as performed in rules U-match and U-funct. (We do not need

to check the well-formedness of τ in U-match because via Lemma 5.4, it is a

consequence of looking up the types in the well-formed signature Σ.)

From there, decidability of elaboration follows because, up to matching, elabora-

tion is syntax-directed:

Corollary 5.9 (Decidability of elaboration)

Under valid and well-formed Γ, provided we can (simultaneously) show that core

elaboration is decidable, all judgments of module elaboration are decidable as well.

5.3 Declarative properties of signature matching

Finally, we want to show that signature matching has the declarative properties

that you would expect from a subtype relation, namely that it is a preorder.

These properties are not actually relevant for soundness or decidability of the basic

language, but they provide a sanity check that the language we are defining actually

makes sense. They are also relevant to our translation of modules as first-class

values (Section 6), and for the meta-theory of applicative functors (Section 9).

One complication in stating the following properties is that subtyping is defined

in terms of the core language subtyping judgment Γ 
 τ � τ′ � e. Most of the

properties only hold if we assume that the analogous property can be shown for

that judgment. To avoid clumsy repetition, we leave this assumption implicit in the

theorem statements.

First, we need a couple of technical lemmas stating that subtyping is stable under

weakening and substitution:

Lemma 5.10 (Subtyping under weakening)

Let Γ′ ⊇ Γ and Γ′ 
 �.

1. If Γ 
 Ξ � Ξ′ � f, then Γ′ 
 Ξ � Ξ′ � f.

2. If Γ 
 Σ � Ξ ↑ τ� f, then Γ′ 
 Σ � Ξ ↑ τ� f.

(Moreover, the derivations have the same size, up to core language judgments.)

Lemma 5.11 (Subtyping under substitution)

Let Γ 
 τ : κα.

1. If Γ, α 
 Ξ � Ξ′ � f, then Γ 
 Ξ[τ/α] � Ξ′[τ/α]� f[τ/α].

2. If Γ, α 
 Σ � Ξ ↑ τ′ � f, then Γ 
 Σ[τ/α] � Ξ[τ/α] ↑ τ′[τ/α]� f[τ/α].

(Moreover, the derivations have the same size, up to core language judgments.)
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Now for the actual theorems:

Theorem 5.12 (Reflexivity of subtyping and matching)

1. If Γ 
 Ξ : Ω, then Γ 
 Ξ � Ξ� f.

2. If Γ, α 
 Σ : Ω, then Γ, α 
 Σ � ∃α.Σ ↑ α� f.

Proof

By simultaneous induction on the structure of Ξ and Σ, respectively. �

Theorem 5.13 (Transitivity of subtyping and matching)

1. If Γ 
 Ξ : Ω and Γ 
 Ξ′ : Ω and Γ 
 Ξ′′ : Ω and Γ 
 Ξ � Ξ′ � f′ and

Γ 
 Ξ′ � Ξ′′ � f′′, then Γ 
 Ξ � Ξ′′ � f.

2. If Γ 
 Σ : Ω and Γ 
 ∃α′.Σ′ : Ω and Γ 
 ∃α′′.Σ′′ : Ω, and Γ 
 Σ � ∃α′.Σ′ ↑ τ′ �
f′ and Γ, α′ 
 Σ′ � ∃α′′.Σ′′ ↑ τ′′ � f′′, then Γ 
 Σ � ∃α′′.Σ′′ ↑ τ� f.

Proof

Since matching is syntax-directed, the proofs are a relatively straightforward simul-

taneous induction on the cumulative size of the subtyping/matching derivations

(up to core language rules). In part (2), we need to apply the above substitution

lemma. �

A further property one might expect from a subtyping relation is anti-symmetry,

i.e., if Ξ � Ξ′ and Ξ′ � Ξ (which we will abbreviate as Ξ �� Ξ′), then Ξ = Ξ′. This

does not hold directly in our system, because the ordering of quantified variables

might differ. We defer discussion of anti-symmetry to the next section, where we will

prove it in a slight variation.

6 Modules as first-class values

ML modules exhibit a strict stratification between module and core language,

turning modules into second-class entities. Consequently, the kinds of computations

that are possible on the module level are quite restricted. Extending the module

system to make modules first-class leads to undecidable typechecking (Lillibridge,

1997). However, it is straightforward to allow modules to be used as first-class core

values after explicit injection into a core type of packaged modules (Russo, 2000).

In fact, in our setting, the extension is almost trivial.

Syntax. Figure 20 summarizes the syntax added to the external language. We add

package types of the form pack S to the core language. These are inhabited

by packaged modules of signature S . Correspondingly, there is a core language

expression form pack M:S that produces values of this type. To unpack such

a module, the inverse form unpack E:S is introduced as an additional module

expression. It expects E to be a package of type pack S and extracts the constituent

module of signature S . (This is more liberal than the closed-scope open expression

of Russo (2000).)

Why all the signature annotations? To avoid running into the same problems

as caused by first-class modules, we do not assume any form of subtyping on

package types (even if the core language had subtyping). That is, package types
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(types) T ::= . . . | pack S

(expressions) E ::= . . . | pack M:S

(modules) M ::= . . . | unpack E:S

Fig. 20. Extension with modules as first-class values.

Types Γ 
 T : κ� τ

Γ 
 S � Ξ

Γ 
 pack S : Ω� norm(Ξ)
T-pack

Expressions Γ 
 E : τ� e

Γ 
 M : Ξ′ � e Γ 
 S � Ξ Γ 
 Ξ′ � norm(Ξ)� f

Γ 
 pack M:S : norm(Ξ)� f e
E-pack

Modules Γ 
 M : Ξ� e

Γ 
 S � Ξ Γ 
 E : norm(Ξ)� e

Γ 
 unpack E:S : norm(Ξ)� e
M-unpack

Fig. 21. Elaboration of modules as first-class values.

are only compatible if they consist of equivalent signatures. The type annotation

for pack ensures that packaged modules still have principal types under these

circumstances, so that core typechecking is not compromised. For unpack, the

annotation determines the type of E — which is necessary if we want to support

ML-style type inference in the core language (but could be omitted otherwise).

Elaboration. Figure 21 gives the corresponding elaboration rules. Let us ignore the

use of signature normalization norm(Ξ) in these rules for a minute and think of it

as the identity function (which, morally, it is). Then a module M and its packaged

version have essentially the same Fω representation, as a term of existential type.

Consequently, elaboration becomes almost trivial. A package type simply elaborates

to the very existential type that represents the constituent signature. Packing has

to check that the module’s signature actually matches the annotation and coerce it

accordingly. Unpacking is a real no-op: there is no subtyping on package types, so

the type of E has to coincide exactly with the annotated signature. No coercion is

necessary.

Signature normalization. So what is the business with normalization? Unfortunately,

were we to just use an unadulterated signature to directly represent its corresponding

package type, the typing of packaged modules would become overly restrictive.

Consider the following example:
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signature A = {type t; type u}
signature B = {type u; type t}
val f = fun p : (pack A) ⇒ . . .

val g = fun p : (pack B) ⇒ f p

Intuitively, the signatures A and B are equivalent, and in fact, their semantic

representations are mutual subtypes. But these representations will not actually be

equivalent System Fω types — A elaborates to ∃α1α2.{t : [= α1 : Ω], u : [= α2 : Ω]}
and B to ∃α2α1.{t : [= α1 : Ω], u : [= α2 : Ω]} according to our rules (cf. Figure 11).

In the module language this is no problem: whenever we have to check a signature

against another, we are using coercive matching, which is oblivious to the internal

ordering of quantifiers. But in the core language no signature matching is performed;

package types really have to be equivalent Fω types in order to be compatible. In

that case, the order matters. So the definition of g above would not typecheck.

To compensate, our elaboration must ensure that two package types pack S1 and

pack S2 translate to equivalent Fω types whenever S1 and S2 are mutual subtypes.

Toward this end, we employ the normalization function defined in Figure 22. All this

function does is put the quantifiers of a semantic signature into a canonical order.

For example, for a signature ∃α.Σ, normalization will sort the variables α according

to their (first) appearance as a root in a left-to-right depth-first traversal of Σ. In

order to make this well defined, we impose a fixed but arbitrary total ordering on

the set of labels l, which we extend to a lexicographical order on lists l of labels.

Further, we assume a meta-function sort � which sorts its argument vector according

to the given (total) order �. We instantiate it with an ordering α1 �Σ α2 on type

variables (also defined in Figure 22) according to their “first” occurrence as a root

in Σ — expressed by reference to the “(at l)” part of the rootedness judgment.

Note that normalization is defined only for explicit signatures (Section 5.2), where

every variable is rooted. However, that is fine because we only need to normalize

the representations of signatures appearing as annotations on pack or unpack. In

the base case of atomic value signatures [τ], we assume that a similar normalization

function normcore(τ) exists for normalizing core-level types according to core-level

subtyping Γ 
 τ � τ′. (For instance, for ML this core type normalization would

canonicalize the order of quantified type variables in polymorphic types.)

It is not difficult to show the following properties:

Lemma 6.1 (Signature normalization)

Assume fv(normcore(τ)) = fv(τ) and normcore(τ
′[τ/α]) = normcore(τ

′)[τ/α]. Then:

1. fv(norm(Ξ)) = fv(Ξ).

2. norm(Ξ[τ/α]) = norm(Ξ)[τ/α].

3. If Ξ explicit, then norm(Ξ) explicit.

4. If Γ 
 Ξ : Ω, then Γ 
 norm(Ξ) : Ω.

5. If Ξ explicit, then Γ 
 Ξ �� norm(Ξ).

The main result regarding normalization, then, is a form of anti-symmetry for

subtyping. But first, a technical lemma that we need for the proof. It effectively says

that two abstract signatures mutually matching each other quantify, up to reordering

and renaming, the same abstract type variables.
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norm([τ]) = [normcore(τ)]

norm([= τ : κ]) = [= τ : κ]

norm([= Ξ]) = [= norm(Ξ)]

norm({l : Σ}) = {l : norm(Σ)}
norm(∀α.Σ → Ξ) = ∀α′. norm(Σ) → norm(Ξ) where α′ = sort�norm(Σ)

(α)

norm(∃α.Σ) = ∃α′. norm(Σ) where α′ = sort�norm(Σ)
(α)

α1 �Σ α2 ⇔ min{l | α1 rooted in Σ (at l)} � min{l | α2 rooted in Σ (at l)}
Fig. 22. Signature normalization.

Lemma 6.2 (Mutual matching)

Suppose α rooted in Σ and α′ rooted in Σ′. Moreover, α ∩ fv(τ) = α′ ∩ fv(τ′) = ∅. If

Γ, α 
 Σ � Σ′[τ′/α′] and inversely, Γ, α′ 
 Σ′ � Σ[τ/α], then [τ/α] = [τ′/α′]−1, i.e.,

|α| = |α′|, and there is a reordering α′′ of α′, and a corresponding reordering τ′′ of τ′,

such that τ = α′′ and τ′′ = α.

Proof

For every α′ ∈ α′, we can show by induction on its rootedness derivation that there

are atomic type signatures with Γ, α 
 [= τ0 : κ] � [= α′[τ′/α′] : κ], and conversely,

Γ, α′ 
 [= α′ : κ] � [= τ0[τ/α] : κ]. By inverting those subtypings, τ0 = α′[τ′/α′],

and at the same time α′ = τ0[τ/α]. That is, α′ = α′[τ′/α′][τ/α]. Since α′ ∈ α′, there

is a corresponding τ′ ∈ τ′, such that α′ = τ′[τ/α]. Because τ′ �= α′ according to

the assumptions about fv(τ′), there has to be an α ∈ α, such that τ′ = α and

α[τ/α] = α′. We can prove the same for every other α′ ∈ α′. Consequently, because

all α′ are distinct, all τ′ have to be distinct, too, and thus |α| � |α′|. By symmetry,

i.e., exchanging roles and repeating the argument, we obtain that both substitutions

have the same cardinality and are mutual inverses. �

Theorem 6.3 (Anti-symmetry of subtyping up to normalization)

Let Γ 
 Ξ : Ω explicit and Γ 
 Ξ′ : Ω explicit. Furthermore, assume that if Γ 
 τ : Ω

and Γ 
 τ′ : Ω and Γ 
 τ �� τ′, then normcore(τ) = normcore(τ
′). Then, if both

Γ 
 Ξ � Ξ′ and Γ 
 Ξ′ � Ξ, it holds that norm(Ξ) = norm(Ξ′).

Proof

By induction on the (size of the) derivations. In the cases of rules U-abs and

U-funct, invert the matching premise and apply the previous lemma to reveal that

the quantified variables are equivalent up to reordering (and α-renaming). Hence,

we can assume (after α-renaming) that both inner signatures are well-formed under

the same extension of Γ, and apply the induction hypothesis to know that their

normalization are equal. Since sorting of the variables is independent of the original

quantifier order as well, it also produces the same result for both sides. �

By normalizing semantic signatures in all places where they are used as package

types, we hence establish the desired property that the intuitive notion of signature

equivalence coincides with type equivalence. By applying the coercion f in the rule

for pack, we also ensure that the representation of the module itself is normalized

accordingly.
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Soundness. The package semantics is so simple that soundness is an entirely

straightforward property.

Theorem 6.4 (Soundness of elaboration with packages)

Theorem 5.1 still holds with the additional rules from Figure 21.

Proof

By simultaneous induction on derivations. The existing cases are all proved as

before; the new ones are straightforward given Lemma 6.1. �

Our decidability result (Corollary 5.9) is not affected by the addition of modules

as first-class values, because it only hinged on the decidability of signature matching.

6.1 A note on first-class modules

Given that our elaboration of modules as first-class values does not actually do

much, the reader may be puzzled why it is allegedly so much harder to go the

whole way and make modules truly first-class. Can’t we just merge the module and

core levels into one unified language? For some constructs, such as conditionals,

this would probably require type annotations to maintain principal types, and ML-

style type inference certainly would not work anymore. But those are limitations

that other languages with subtyping (especially object-oriented ones) have always

been comfortable with. In the ML module literature, however, it has been frequently

claimed that first-class modules result in undecidable typechecking (Lillibridge, 1997),

so surely there must be more fundamental problems. What, specifically, would break

in the F-ing approach?

A move to first-class modules means collapsing module and term language, as

well as signature and type language. Because types can be denoted by type variables,

the latter would imply that signatures can then also be denoted by type variables.

Our elaboration, on the other hand, is dependent on one fundamental property: for

any signature occurring in the rules, the number of abstract types it declares — i.e.,

the number of quantifiers — is known statically and stable under substitution. If

this were not the case, then we could not perform the implicit lifting (or “monadic”

binding) of existentials that is so central to our approach. Clearly, if we allowed for

type variables as signatures, it would no longer work.

Moreover, as Lillibridge (1997) showed, we would lose decidability of subtyping.

Looking at our subtyping rules, they substitute type variables along the way.

With type variables possibly representing signatures, substitution could change the

structure of the signatures we are looking at. Consequently, the subtyping rules would

no longer describe an algorithm that is inductive on the structure of signatures, and

(backwards) application of the rules might indeed diverge (see Lillibridge (1997) for

an example). That is, the argument we made regarding Corollary 5.8 (decidability

of matching) would no longer hold.

The sort of “predicativity” restriction that results from separating types and

signatures (i.e., signatures can only abstract over types, not other signatures) is thus

crucial to maintaining decidability of typechecking. It is the real essence of the
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val p1 = pack {type t = int; val v = 6} : {type t; val v : t}
val p2 = pack {type t = bool; val v = true} : {type t; val v : t}
module Flip = fun X : {} ⇒ unpack (if random() then p1 else p2) : {type t; val v : t}

Fig. 23. Example: a statically impure functor.

core/module-language stratification in ML. Without it, the F-ing approach would

not work — nor are we aware of any other decidable type system for ML-style

modules without a similar limitation.

The same problems would arise if we were to add abstract signature declarations

of the form signature X to the language. Indeed, it is the presence of this

additional feature that tips the scales and renders OCaml’s module typechecking

undecidable (Rossberg, 1999).

7 Applicative functors and static purity

The semantics for functors that we have presented so far follows Standard ML, in

that functors are generative: if a functor body defines any abstract types, then those

types are effectively “generated” anew each time the functor is applied. OCaml

employs an alternative, so-called applicative semantics for functors, by which a

functor will return equivalent types whenever it is applied to the same argument.

For example, consider the following use of the Set functor (cf. Figure 3):

module IntOrd = {type t = int; val eq = Int.eq; val less = Int.less}
module Set1 = Set IntOrd

module Set2 = Set IntOrd

val s = Set1.add (7, Set2.empty).

The last line in this example does not typecheck under generative semantics, because

each application of Set yields a “fresh” set type, such that Set1.set and Set2.set

differ. Under applicative semantics, however, the example would typecheck, because

the two structures are created by equivalent module applications.

The applicative functor semantics enables the typechecker to recognize that

abstract data types generated in different parts of a program are in fact the same type.

This is particularly useful when working with functors that implement generic data

structures (e.g., sets), but it also supports a more flexible treatment of higher-order

functors. For more details about these motivating applications, see Leroy (1995).

Unfortunately, applicative functor semantics is also significantly subtler than

generative semantics, and much harder to get right. In particular, there are two

major problems:

Type safety: For a functor to be safely given an applicative semantics, it must at a

minimum satisfy the property that the type components in its body are guaranteed

to be implemented in the same way every time the functor is applied to the

same argument. In the presence of modules as first-class values (Section 6), this

property is not universally satisfied. For example, consider the functor Flip in

Figure 23. The first time this functor is applied, it may return a module whose

type component t is implemented internally as int, whereas the second time t may
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be implemented as bool. It is thus utterly unsound (i.e., breaks type safety) to give

a functor like Flip an applicative semantics.

Abstraction safety: Even if the type components of a functor are implemented in

the same way every time it is applied, treating the functor as applicative may

nevertheless constitute a violation of data abstraction. That is, for some abstract

data types implemented by a functor, applicative semantics breaks the ability to

establish representation invariants locally. We will discuss this problem in more

detail and see examples in Section 8.

Concerning the first of these two problems, both Moscow ML and (more recently)

OCaml provide packaged modules and applicative functors, and circumvent the

soundness problem only by imposing severe (and rather unsatisfactory) restrictions

on the unpacking construct, namely prohibiting its use within functor bodies. In this

section, we focus on the first problem and show how to address it properly within

the F-ing modules framework. The second problem will be explored in Section 8.

7.1 Understanding applicativity versus generativity in terms of purity

For the purpose of ensuring type safety, the key thing is to ensure that we only

project type components out of module expressions whose type components are

statically well-determined. Following Dreyer (2005), we refer to such expressions as

statically pure, which for the remainder of this section we will just shorten to pure.

(We will consider the role of dynamic purity in Section 8.)

In our module language, the expression that introduces static impurity is the

unpack E:S construct: the type components of the unpacked module depend

essentially on the term E, a term which may have computational effects that lead it

to produce values with different type components every time it is evaluated. If an

unpacked module appears in the body of a functor, the functor will encapsulate the

impurity.

Thus, we need to distinguish between pure functors and impure functors. And it is

precisely the pure ones that may behave applicatively, while the impure ones have to

behave generatively. Hence, from here on, when talking about functors, we will use

“applicative” interchangeably with “pure”, and “generative” interchangeably with

“impure”. (In fact, the correspondence is so natural and intuitive that we are tempted

to retire the “applicative” versus “generative” terminology altogether. For historic

reasons, however, we will continue to use the traditional terms in the remainder of

this article.)

One important point of note: in the case where E is a value (or more generally,

free of effects), it would seem that there is nothing unsafe about projecting type

components from unpack E:S , since each unpacking will produce modules with the

same underlying type components. The trouble with permitting unpack E:S to be

treated as statically pure — even in this case — is that, while its type components are

well-determined, they are not statically well-determined. In the parlance of Harper

et al. (1990), unpack E:S does not obey phase separation because the identity of

its type components may depend on the dynamic instantiation of the free (term)

variables of E. As a result, supporting projection from unpack E:S would require
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(signatures) S ::= . . . | (X:S ) ⇒ S

Fig. 24. Extending the syntax of the module language with applicative functor signatures.

full-blown value-dependent types, which we would like to avoid for a variety of

pragmatic reasons. The F-ing modules approach, by virtue of its interpretation into

the non-dependently typed Fω , has the benefit of providing automatic enforcement

of phase separation, and thus prohibits projection from unpack E:S .

7.2 Extending the language

In order to distinguish between pure (a.k.a. applicative) and impure (a.k.a. generative)

when specifying a functor — e.g., in a higher-order setting — we extend the syntax of

the external language of signatures with a new form of functor signature, shown in

Figure 24. While the original form retains its meaning for specifying impure functors,

the new one specifies pure ones. For example, the (pure) Set functor matches the pure

functor signature (X : ORD) ⇒ SET, while the (impure) Flip functor will only match

the impure signature (X : {}) → {type t; val v : t}. That said, Set will also continue

to match the impure signature (X : ORD) → SET, because pure (applicative) functor

signatures are treated as subtypes of impure (generative) ones.

One defining feature of applicative functors is the ability to project types from

module paths containing functor applications. For example, given the familiar pure

Set functor, (Set IntOrd).set should be a valid type expression, because every

application of Set returns the same type. Since our syntax of paths P has been

maximally general from the outset, it readily allows such types to be written. In fact,

we will see shortly that the existing semantics for paths does not need to change

much in order to encompass functor applications.

7.3 Elaboration

The addition of applicative functors, along with the attendant tracking of purity,

requires some significant changes to elaboration. We will walk through those changes

starting with the simple parts.

Semantic signatures. The main difference between a generative and an applicative

functor is the point at which the abstract type components in their bodies get

created, and this difference is reflected quite clearly in the placement of existential

quantifiers in their semantic signatures. A generative functor has an Fω type of the

form ∀α1.Σ1 → ∃α2.Σ2. Applying such a functor produces an existential package,

which must be explicitly unpacked in order to get access to the type components of

the package; however, due to the closed-scope nature of existential unpacking, there

is no way to associate those type components with the existential package (and thus

the generative functor) itself. In contrast, following Russo (1998), we will describe

applicative functors with Fω types of the form ∃α2.∀α1.Σ1 → Σ2. Such signatures

indicate that the existential package is constructed only once, when the functor
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(effects) ϕ ::= I | P
(concrete signatures) Σ ::= ∀α.Σ →I Ξ | ∀α.Σ →P Σ | . . .

Notation:

ϕ ∨ ϕ := ϕ

I ∨ P := P ∨ I := I

Abbreviations:

(types) τ1 →ϕ τ2 := τ1 → {lϕ : τ2}
(expressions) λϕx:τ.e := λx:τ. {lϕ = e}

(e1 e2)ϕ := (e1 e2).lϕ

Fig. 25. (Colour online) Semantic signatures for applicative functors.

is defined, not every time it is applied, thus enabling the abstract types α2 to be

associated with the functor itself. The return type of an applicative functor is always

a concrete signature Σ2, with no local existential variables.

Consequently, the introduction of applicative functors does not require any

significant change to our definition of semantic signatures — our existing notion

of abstract signature Ξ already subsumes the kind of quantification that expresses

an applicative functor! We merely extend functor signatures with a simple effect

annotation. As defined in Figure 25, an effect ϕ can either be pure (P) or impure

(I). These form a trivial two-point lattice with P < I, and there is a straightforward

definition of join (∨) on effect annotations (we won’t need meet). To encode effect

annotations in our Fω representation of functors, we assume that there are two

distinct record labels lP and lI.

The important point, though, is that a pure functor type may only have a concrete

result signature Σ, which is why we give it as a separate production in the syntax

of Σ in Figure 25. Nevertheless, we will often write ∀α.Σ →ϕ Ξ to range over both

kinds of functor signature, implicitly understanding that Ξ has to be a concrete Σ′

when ϕ = P.

Signature elaboration. Figure 26 shows the new elaboration rules for dealing with

functor signatures (we have highlighted the differences from the original rules from

Figure 11). The rule S-funct-i for impure functor signatures leaves the original

rule S-funct almost unchanged, except for adding the effect annotation I on the

signature in the conclusion.

In order to match the description of applicative functor signatures we just gave,

the new rule S-funct-p for applicative functors must produce a signature where all

existential quantifiers are “lifted” out of the functor type. It does so by replacing the

original α2 inferred for the result signature with fresh α′
2 that are quantified outside

the functor signature.

But abstract types defined inside a functor might have functional dependencies on

the functor’s parameters. The trick, discovered by Biswas (1995) and Russo (1998),

is to capture such potential dependencies by skolemizing the lifted variables over

the universally quantified types from the functor’s parameter. That is, we raise

the kind of each of the α′
2 so as to generalize it over all the type parameters α1;
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Signatures Γ 
 S � Ξ

Γ 
 S1 � ∃α1.Σ1 Γ, α1, X:Σ1 
 S2 � ∃α2.Σ2

Γ 
 (X:S1) → S2 � ∀α1.Σ1 →I ∃α2.Σ2

S-funct-i

Γ 
 S1 � ∃α1.Σ1 Γ, α1, X:Σ1 
 S2 � ∃α2.Σ2 κα′
2

= κα1
→ κα2

Γ 
 (X:S1)⇒S2 � ∃α′
2.∀α1.Σ1 →P Σ2[α

′
2 α1/α2]

S-funct-p

Subtyping Γ 
 Ξ � Ξ′ � f

Γ, α′ 
 Σ′ � ∃α.Σ ↑ τ� f1 Γ, α′ 
 Ξ[τ/α] � Ξ′ � f2 ϕ � ϕ′

Γ 
 (∀α.Σ→ϕΞ) � (∀α′.Σ′ →ϕ′ Ξ′)� λf:(∀α.Σ→ϕΞ).λα′. λϕ′x:Σ′. f2(f τ (f1 x))ϕ
U-funct

Subeffects ϕ � ϕ′

ϕ � ϕ
F-refl

P � I
F-sub

Fig. 26. (Colour online) New rules for applicative functor signatures.

(Elem : ORD) ⇒ (SET where type t = Elem.t)

� ∃β:(Ω →Ω).

∀α:Ω.{t : [= α : Ω],

eq : [α × α → bool],

less : [α × α → bool]}
→P {set : [= β α : Ω],

elem : [= α : Ω],

empty : [β α],

add : [α × β α → β α],

mem : [α × β α → bool]}
Fig. 27. (Colour online) Example: applicative signature elaboration.

correspondingly, all occurrences of an α ∈ α2 are substituted by the application of

the corresponding α′ ∈ α′
2 to the actual parameter vector α1. (At this point, clearly,

we require not just System F, but the full power of Fω , to model our semantics.)

To better understand what’s going on here, let us revisit the signature of the Set

functor (cf. Figure 12), and its elaboration into a semantic signature. Figure 27 shows

how the analogous applicative functor signature will be represented semantically.

The new elaboration rule places the existential quantifier for β outside the functor,

and it raises the original kind Ω of β to Ω → Ω, in order to reflect the functional

dependency on α. Everywhere we originally had a β, we now find β α in the result.

Where such a functor is later applied, β remains as is; only α gets substituted by

the concrete argument type. If that is, say, int, then the resulting structure signature

will equate the type set to β int. Any further application of the functor to arguments

with a type component t = int will yield the same type set = β int.
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(kinds) (·) → κ := κ

(Γ, α) → κ := Γ → κα → κ

(Γ, x:τ) → κ := Γ → κ

(types) λ(·).τ′ := τ′

λ(Γ, α).τ′ := λΓ.λα.τ′

λ(Γ, x:τ).τ′ := λΓ.τ′

τ′ (·) := τ′

τ′ (Γ, α) := τ′ Γ α

τ′ (Γ, x:τ) := τ′ Γ

(types) ∀(·).τ′ := τ′

∀(Γ, α).τ′ := ∀Γ.∀α.τ′

∀(Γ, x:τ).τ′ := ∀Γ.τ →P τ
′

(expressions) λ(·).e := e

λ(Γ, α).e := λΓ.λα.e

λ(Γ, x:τ).e := λΓ.λPx:τ.e

e (·) := e

e (Γ, α) := e Γ α

e (Γ, x:τ) := (e Γ x)P

ΓI := ·
ΓP := Γ

Fig. 28. Environment abstraction.

Subtyping. Because the definition of semantic signatures barely changed, only a

minor extension is required to define functor subtyping, namely to allow pure functor

types to be subtypes of impure ones. We do not need to change the definition of

matching at all. Abstract types lifted from a functor body act as if they were abstract

type constructors defined outside the functor, and the original matching rule (cf.

Figure 13) handles them just fine. (However, an algorithmic implementation of the

rules will require non-trivial extensions to the type lookup algorithm, as we will

discuss in Section 9.2.)

In other words, the correct subtyping relation between applicative and generative

functor signatures falls out almost for free. The F-ing method provides an immediate

explanation of such subtyping and why it is sound.

Modules. The rule M-seal defined in Section 4, when used with an applicative

functor signature, allows one to introduce applicative functor types. But the circum-

stances are limited: the definition of matching requires that the sealed functor may

not itself contain any non-trivial sealing, because a functor creating abstract types

would be considered generative, i.e., impure, under the module elaboration rules

from Section 4. Shao’s system (Shao, 1999), which introduces applicative functor

signatures solely through sealing, suffers from this limitation, a point we return to

in Section 11. In contrast, the system we will present is designed to support sealing

within applicative functors, a feature shared by all other accounts besides Shao’s.

That requires refining our module elaboration rules.

While signatures for applicative functors are (relatively) easy to elaborate, modules

require more extensive changes to their elaboration rules to account for applicativity

and purity. Superficially, the only extension to the module elaboration judgment

is the inclusion of an effect annotation ϕ, which specifies whether the module is

deemed pure or not. However, the invariants associated with pure and impure module

elaboration are quite different from each other, as we explain below. Figure 29 gives

the modified rules (we have again highlighted the changes relative to the original

rules, cf. Figure 14).
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Modules Γ 
 M :ϕ Ξ� e

Γ(X) = Σ

Γ 
 X :P Σ� λΓ.X
M-var

Γ 
 B :ϕ Ξ� e

Γ 
 {B} :ϕ Ξ� e
M-struct

Γ 
 M :ϕ ∃α.{lX : Σ, l : Σ′}� e

Γ 
 M.X :ϕ ∃α.Σ� unpack 〈α, y〉 = e in pack 〈α, λΓϕ. (y Γϕ).lX〉 M-dot

Γ 
 S � ∃α.Σ Γ, α, X:Σ 
 M :I Ξ� e

Γ 
 fun X:S ⇒M :P ∀α.Σ →I Ξ� λΓ.λα.λIX:Σ.e
M-funct-i

Γ 
 S � ∃α.Σ Γ, α, X:Σ 
 M :P ∃α2.Σ2 � e

Γ 
 fun X:S ⇒M :P ∃α2.∀α.Σ →P Σ2 � e
M-funct-p

Γ(X1) = ∀α.Σ1 →ϕ Ξ Γ(X2) = Σ2 Γ 
 Σ2 � ∃α.Σ1 ↑ τ� f

Γ 
 X1 X2 :ϕ Ξ[τ/α]� λΓϕ. (X1 τ (f X2))ϕ
M-app

Γ(X) = Σ′ Γ 
 S � ∃α.Σ Γ 
 Σ′ � ∃α.Σ ↑ τ� f κα′ = Γ → κα

Γ 
 X :>S :P ∃α′.Σ[α′ Γ/α]� pack 〈λΓ.τ, λΓ.f X〉
M-seal

Γ 
 S � Ξ Γ 
 E : norm(Ξ)� e

Γ 
 unpack E:S :I norm(Ξ)� e
M-unpack

Bindings Γ 
 B :ϕ Ξ� e

Γ 
 E : τ� e

Γ 
 val X=E :P {lX : [τ]}� λΓ.{lX = [e]} B-val

Γ 
 T : κ� τ

Γ 
 type X=T :P {lX : [= τ : κ]}� λΓ.{lX = [τ : κ]} B-typ

Γ 
 M :ϕ ∃α.Σ� e Σ not atomic

Γ 
 module X=M :ϕ ∃α.{lX : Σ}� unpack 〈α, x〉 = e in pack 〈α, λΓϕ.{lX = x Γϕ}〉
B-mod

Γ 
 S � Ξ

Γ 
 signature X=S :P {lX : [= Ξ]}� λΓ.{lX = [Ξ]} B-sig

Γ 
 M :ϕ ∃α.{lX : Σ}� e

Γ 
 include M :ϕ ∃α.{lX : Σ}� e
B-incl

Γ 
 ε :P {}� λΓ.{} B-emt

Γ 
 B1 :ϕ1
∃α1.{lX1

: Σ1}� e1 l′X1
= lX1

− lX2

Γ, α1, X1:Σ1 
 B2 :ϕ2
∃α2.{lX2

: Σ2}� e2 l′X1
: Σ′

1 ⊆ lX1
: Σ1

Γ 
 B1;B2 :ϕ1∨ϕ2
∃α1α2.{l′X1

: Σ′
1, lX2

: Σ2}
� unpack 〈α1, y1〉 = e1 in

unpack 〈α2, y2〉 = (let X1 = λΓϕ1∨ϕ2 .(y1 Γϕ1 ).lX1
in e2) in

pack 〈α1α2, λΓ
ϕ1∨ϕ2 .let X1 = (y1 Γϕ1 ).lX1

in

let X2 = (y2 (Γ, α1, X1:Σ1)ϕ2 ).lX2
in{l′X1

= X1, lX2
= X2}〉

B-seq

Fig. 29. (Colour online) New rules for applicative functors and modules.
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Functors We begin by explaining how we handle functors, since this motivates the

form and associated invariants of the module elaboration judgment. We now have

two rules: M-funct-i, which yields a generative functor (as before) if the body M

is impure, and M-funct-p, which yields an applicative functor if M is pure. In both

cases, the functor expression itself is pure, because it is a value form that suspends

any effects of M.

For applicative functors, we need to follow what we did for signatures, and

implement ∃-lifting. The difficulty, though, is doing it in a way that still allows a

compositional translation of sealing inside an applicative functor.

What is the problem? Consider the following example:

fun (X : {type t}) ⇒ {type u = X.t × X.t}:>{type u}

If the body of this functor were impure (like the body of Flip from Figure 23), the

impure functor rule M-funct-i would delegate translation of the functor body to a

subderivation, which, in this example, would yield a signature Ξ = ∃β.{u : [= β : Ω]}
and some term e : Ξ. We would then λ-abstract e over the functor argument to

produce a function of type ∀α.{t : [= α : Ω]} →I Ξ. Now, if we wanted to adapt

this situation for pure functors by applying the same lifting trick we used for pure

functor signatures, then we would have to somehow take e : Ξ and retroactively lift

its hidden type components over α to derive a term of type ∃β′ : Ω → Ω.∀α : Ω.{t :

[= α : Ω]} →P {u : [= β′α : Ω]}. In general, such retroactive lifting is not possible.

To avoid this dilemma, we employ a different trick: we design the translation

of a pure module (which the body of an applicative functor must be) so that it

consistently constructs an existential package with the necessary lifting already built

in!

In fact, for simplicity, the translation of a pure module abstracts over the entire

environment Γ. More precisely, whereas the impure judgment Γ 
 M :I ∃α.Σ � e

guarantees that Γ 
 e : ∃α.Σ, the pure judgment Γ 
 M :P ∃α.Σ � e instead

guarantees that e is a closed term satisfying · 
 e : ∃α.∀Γ.Σ, where the notation

∀Γ.Σ is defined in Figure 28. This idea is borrowed from Shan (2004), who used a

similar approach for a translation of the module calculus of Dreyer et al. (2003)

into System Fω .

The pure functor rule M-funct-p then becomes fairly trivial: it just computes the

translation of its body and returns that directly. This means the translation of the

functor will not only abstract over the functor’s parameters as required, but over

the rest of the current environment Γ, too (because ∃α2.∀(Γ, α, X:Σ).Σ2 is just an

alternative way of writing ∃α2.∀Γ.∀α.Σ →P Σ2). But that is fine, because the functor

is itself a pure module, so according to the elaboration invariant for pure modules,

it has to abstract over Γ anyway.

It turns out that the rule M-app for functor application can remain largely

unchanged — it can handle both kinds of functors. In both cases, the effect ϕ on the

functor’s type is unleashed and determines the effect of the application. Note that,

applicative application is always degenerate with Ξ being some concrete signature

Σ3, so that there are no existential quantifiers in the result to lift over.
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Paths Γ 
 P : Σ� e

Γ 
 P :ϕ ∃α.Σ� e Γ 
 Σ : Ω

Γ 
 P : Σ� unpack 〈α, x〉 = e in x Γϕ
P-mod

Expressions Γ 
 E : τ� e

Γ 
 M :ϕ ∃α.Σ� e Γ 
 S � Ξ Γ 
 ∃α.Σ � norm(Ξ)� f

Γ 
 pack M:S : norm(Ξ)� f (unpack 〈α, x〉 =e in pack 〈α, x Γϕ〉) E-pack

Fig. 30. (Colour online) New rules for applicative paths and packages.

Pure modules and bindings. The real “heavy lifting” (so to speak) happens in

M-seal. It abstracts the witness types τ over all type variables from Γ, thereby

lifting their kinds in a manner similar to what happens in the elaboration of

applicative functor signatures (except that Γ generally contains more than just the

functor’s parameters). Similarly, the rule abstracts the term component over all of

Γ, thereby constructing the desired functor representation inside the package. Both

these abstractions together cause the rule to yield a lifted existential type, as desired

for an applicative functor.

But using a different elaboration invariant for pure modules has implications on

the translation of other module constructs as well. In all places where the original,

impure rules had to unpack and re-pack existential packages in the translated term,

the pure ones also have to apply and re-abstract Γ (rules M-dot, B-mod, and B-seq).

To avoid the need for a separate set of rules for pure and impure elaboration, we

use the Γϕ notation defined in Figure 28 to make these steps conditional on the

effect ϕ. Rules that return concrete signatures do not need to shuffle around Γ,

but simply insert the expected abstraction (rules M-var, M-funct-i, M-app, B-val,

B-typ, B-sig, B-emt). Rule B-seq on the other hand is somewhat trickier, because

it has to handle all possible combinations of effects ϕ1 and ϕ2. (The let-expression

around e2 in this rule is actually redundant when ϕ2 = P — because e2 is a closed

expression in that case — but we leave it alone for the sake of simplicity of the

rule.)

Interestingly, sealing is always pure according to the rules. That is because the

syntax of our module language only permits sealing of module variables, which are

values. When expanding the derived syntax for M :> S (Figure 2), however, for

an M that is impure, the overall expression will be regarded impure as advertised,

thanks to the rules M-dot and B-seq that are needed to type the expansion.

Rule M-unpack is the only source of unconditional impurity. First of all, an

unpacked expression must be considered impure if the expression being unpacked

might compute to package values with different type components (as in the body

of Flip). But second, even if the expression being unpacked is already a value, it is

not possible to treat its unpacking as a pure module expression because doing so

would require us to be able to somehow project out its type components as type-level

expressions. (This is necessary if we want to be able to lift the type components of the
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Set �
pack 〈λα.list α,

λα.λPElem : {t : [= α : Ω],

eq : [α × α → bool],

less : [α × α → bool]}.
f ((let y1 = λα.λPElem : {. . . }.{elem = [α : Ω]} in

let y2 =

let y21 = (let elem = . . . in λα.λPElem : {. . . }.{set = [list α : Ω]}) in

let y22 =

. . .

in λα.λPElem : {. . . }.
let elem = (y1 α Elem)P.elem in

let set = ((y2 α Elem)P elem)P.set in

let empty = ((y2 α Elem)P elem)P.empty in

let add = ((y2 α Elem)P elem)P.add in

let mem = ((y2 α Elem)P elem)P.mem in

{elem = elem , set = set , empty = empty , add = add , mem = mem}
) α Elem)P

〉∃β:(Ω→Ω).∀α.{t:[=α:Ω],... }→P{set:[=β α:Ω], elem:[=α:Ω], empty:[β α], add:[... ], mem:[... ]}

Fig. 31. Example: applicative functor elaboration.

unpack over the context Γ.) If we were interpreting ML modules into a dependent

type theory, this might be possible; however, as discussed in Section 7.1, given that

we are interpreting into Fω , with packaged modules represented as existentials, there

is no way to project out their abstract type components as type-level expressions, so

we treat all unpacked expressions as impure.

Figure 31 shows the translation of the Set functor as an applicative functor

according to our rules. Compared to the elaboration previously given in Figure 15,

the main difference is that packing and λ-abstractions have switched order, and that

the existential witness type has been abstracted over α accordingly. Moreover, the

nested local let-bindings in the sequence rule have been replaced by applications of

the functor parameters inside the abstraction. As before, the translation produces

many administrative redexes that can be optimized via some fairly obvious partial

evaluation scheme. Figure 32 shows the translated Set functor after eliminating

all intermediate structures and functors this way, for easier comparison with the

analogous generative implementation in Figure 16.

Obviously, always abstracting over Γ in its entirety, as our rules do for pure

modules, also leads to over-abstraction (although that is not visible in the example,

where we assume the initial Γ to be empty). In particular, it would be sufficient

to abstract only over the part of Γ that is bound by, or local to, the outermost

applicative functor surrounding a pure module, if any. However, semantically the

difference does not matter much. It is not difficult to refine the translation so that it

avoids redundant abstractions, but the bureaucracy for tracking the necessary extra

information would unnecessarily clutter the rules, so for presentational purposes

we chose the simpler path. A real-world implementation can easily optimize the

redundant abstractions by what amounts to (fairly straightforward) local partial

reductions. We would also expect an implementation to present types in a more
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Set �
pack 〈λα.list α,

λα.λPElem : {t : [= α : Ω],

eq : [α × α → bool],

less : [α × α → bool]}.
f (let elem = [α : Ω] in

let set = [list α : Ω] in

let empty = [nil] in

let add = [. . .Elem .eq . . .Elem .less . . . ] in

let mem = [. . .Elem .eq . . .Elem .less . . . ] in

{elem = elem , set = set , empty = empty , add = add , mem = mem})
〉∃β:(Ω→Ω).∀α.{t:[=α:Ω],... }→P{set:[=β α:Ω], elem:[=α:Ω], empty:[β α], add:[... ], mem:[... ]}

Fig. 32. Example: applicative functor elaboration, simplified.

readable way to the user (e.g., as module paths), but such concerns are outside the

scope of this article.

Paths and packages. Finally, Figure 30 shows the modified rules for paths and

packages. They should not reveal any surprises at this point, because all that

changes is the insertion of the right Γ-abstraction/application necessary to match

the module rules.

Importantly, the path rule now fully supports functor applications in type paths.

For example, the type expression (Set IntOrd).set is well-formed when Set is an

appropriate applicative functor. This is simply a consequence of our semantic

treatment of paths: when Set is bound to a functor with the signature given in

Figure 27, its outer ∃β is separated in the environment (according to rule B-seq) and

the module (Set IntOrd).set simply has the atomic signature [= β int : Ω]. Since this

signature contains no existentials, it is trivially a legal path.

Contrast that to the behavior under a generative signature for Set, like the

one originally given in Figure 12. Under that typing, (Set IntOrd).set has the type

∃β.[= β : Ω], with a fresh local β that prevents it from typechecking as a path in

rule P-mod. The same applies to any other path to an abstract type defined inside a

generative functor.

Our semantics does, however, allow functor paths with applications of generative

functors if they do not refer to such abstract types. For example, (Set IntOrd).elem

yields signature ∃β.[= int : Ω], which can be used as a path — even in the basic

system of Section 4! In the extended system presented in this section, we could easily

rule out such corner cases by requiring P to be a pure module in rule P-mod, but

there is no real reason to do so.

8 Abstraction safety, dynamic purity, and sharing

The elaboration rules for applicative functors that we presented in the previous

section are type-safe in the basic syntactic sense that they produce well-typed

Fω terms and types, but they are not abstraction-safe. By “abstraction safety”,

we are referring to the ability to impose local representation invariants on the
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signature NAME = {
type name

val new : unit → name

val equal : name × name → bool

}
module Name = fun X : {} ⇒ {

type name = int

val counter = ref 0

val new () = (counter := !counter + 1; !counter)

val equal (x, y) = (x = y)

} :> NAME

module Empty = {}
module Name1 = Name Empty

module Name2 = Name Empty

Fig. 33. Problems with abstraction safety in applicative functors: dynamic impurity.

abstract types defined by a sealed module expression, and to reason locally about

the implementation of the sealed module under the assumption that all enclosing

program contexts will preserve the imposed invariants.9

The failure to provide abstraction safety is not a peculiar fault of our semantics:

contrary to popular belief, none of the existing accounts of applicative functors in

the literature (or in ML compilers) provide abstraction safety either (Harper et al.,

1990; Leroy, 1995; Russo, 1998; Shao, 1999; Dreyer et al., 2003). The reason, in

short, is that tracking only static purity of module expressions — as we have done

in the previous section, and as other approaches have done before us — is not

sufficient: it is important for the purpose of abstraction safety to track dynamic

purity as well. In a similar vein, it is not sufficient to consider only static module

equivalence — i.e., the equivalence of type components — to decide the equivalence

of types resulting from pure functor applications: we also need to consider dynamic

module equivalence, i.e., the equivalence of value components, as well.

To see what the issue with abstraction safety is, let us turn to the illustrative

set of examples in Figures 33 and 34. The first example, concerning the functor

Name and its instantiations Name1 and Name2, demonstrates why we may want

to require a functor that is statically pure, but not dynamically pure, to be treated

as generative. The remaining examples, concerning various applications of the Set

functor, show how ensuring abstraction safety can even be quite tricky when working

9 The term “abstraction-safe” (or “abstraction-secure”) has appeared in the literature a number of times,
but as far as we know without a clear formal definition. The informal description we have given here
matches the use of the term in various papers by Sewell et al. (Leifer et al., 2003; Sewell et al., 2007). To
make this precise, we would need to build a parametric model of the language and use it to establish
interesting invariants for abstract data types. This is clearly beyond the scope of the present article
and would in fact constitute new research, since as far as we know no one has yet attempted to build
parametric models for full-fledged ML-style modules. If anything, though, our F-ing semantics may
help point the way forward in this regard, since we show how to understand modules in terms of
System Fω , for which parametric models do exist (e.g., Atkey (2012)).
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module IntOrd = {type t = int; val eq = Int.eq; val less = Int.less}
module IntOrd’ = IntOrd

module Set0 = Set IntOrd

module Set1 = Set IntOrd’

module Set2 = Set {type t = int; val eq = Int.eq; val less = Int.less}
module Set3 = Set {type t = int; val eq = Int.eq; val less = Int.greater}

module F = fun X : {} ⇒
{type t = int; val eq = Int.eq;

val less = if random() then Int.less else Int.greater}
module Set4 = Set (F Empty)

module Set5 = Set (F Empty)

Fig. 34. Problems with abstraction safety in applicative functors: dynamic module

inequivalence.

with a functor that is dynamically pure, as long as we do not track dynamic module

equivalence.

First, consider the functor Name, which implements an ADT of fresh names.

Every time Name is instantiated, it will return a module with its own abstract type

name, along with its own private integer counter (of type ref int) — initially set

to 0 — which can be incremented to generate a fresh value of type name every

time its new operation is invoked. In order to ensure that new produces a fresh

name every time it is applied, it is crucial that each instantiation of Name have a

distinct name type — i.e., that we treat Name as a generative functor. Otherwise,

calling Name1.new might produce a name that Name2.new had already produced.10

However, since Name does not involve any uses of unpacking — i.e., it is statically

pure — our semantics from Section 7 would consider it to be applicative, as would

OCaml (since in OCaml all functors are applicative) and Moscow ML (in which,

even if Name were declared as generative, it could be subsequently coerced to an

applicative signature by eta-expansion, thus violating abstraction safety). In the case

of our semantics from Section 7, one could induce Name to be considered generative

by replacing the sealing in its body with a pack at NAME followed by an unpack,

but this is a rather indirect approach, and it does not work in OCaml or Moscow

ML due to their restrictions on the use of the unpack construct.

Second, consider the set types defined by modules Set0 through Set5 in Figure 34.

The set implementation is purely functional, so it may be more surprising to

some readers that abstraction safety can still be a problem with this functor!

The types Set0.set, Set1.set, and Set2.set should clearly be equivalent, since they

are constructed by passing Set the exact same argument IntOrd, just written

three different ways. To ensure abstraction safety, however, Set3.set should be

10 One can, of course, engender use-site generativity by explicitly sealing each application of Name
with the signature NAME. However, this is no substitute for true abstraction safety, since it demands
disciplined use of sealing on the part of clients of the Name functor — it does not ensure that any
local invariants on the abstract name type will be preserved under linking with arbitrary clients. For
a more detailed semantic explanation of the importance of generativity in this example, see Ahmed,
Dreyer & Rossberg (2009).
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considered distinct from the others: the argument passed to Set in the definition

of Set3 provides a different ordering on integers (Int.greater), thus rendering the

representation of Set3.set incompatible with the representation of sets ordered

by Int.less. If we were to treat Set2.set and Set3.set as equivalent, the defini-

tion val s = Set2.add(1, Set3.add(2, Set2.add(3, Set2.empty))) would become well-

typed. That would be disastrous, because it would yield a set value represented

internally by the list [1,3,2], which violates the internal ordering invariants of both

Set2 and Set3’s list-based set representations. This would result in unpredictable

behavior from any further interactions with Set2 and Set3’s operations; for instance,

Set2.mem(2, s) and Set3.mem(2, s) would both return false!

As for Set4.set and Set5.set, it is important to distinguish them from each other

(and from all the other set types), for the following reason. Depending on the result

of a random coin flip, the expression F Empty used in the definition of Set4 and

Set5 will evaluate to a module that is dynamically equivalent to one of the argument

modules used in the definitions of Set2 and Set3. Consequently, each of the types

Set4.set and Set5.set will end up dynamically being compatible with either Set2.set

or Set3.set, but statically we have no way of knowing which will be equivalent to

which! We must therefore conservatively insist that they are both fresh types, even

though they are defined using the exact same module expression Set (F Empty).11

Getting abstraction-safe applicative behavior on these Set examples seems to be

hard, as indeed all previous accounts of applicative functors are unsafe and/or

overly conservative in one way or another. Assuming that the Set functor has been

assigned an applicative signature, the type system of Section 7, as well as those of

Moscow ML, Shao (1999), and Dreyer et al. (2003), all consider Set0 through Set5
to have equivalent set components. The reason is that they employ a “static” notion

of module equivalence: they pretend that the meaning of abstract types created by a

functor only depends on the types from the functor’s parameters, while ignoring any

dependency on parameter values. Consequently, they consider the type components

of Set(M1) and Set(M2) to be equivalent so long as M1 and M2 have equivalent

type components. As one can plainly see, though, this approach is demonstrably

unsafe: since sets ordered one way are not compatible with sets ordered a different

way, the semantics of the type component set in the body of the Set functor clearly

depends on the value component less of the functor argument. A correct treatment

of abstraction safety thus demands capturing the dependency of abstract types on

entire modules, i.e., both type and value components — which is completely natural

from the point of view of dependent type systems.

OCaml is closest to this ideal: it only considers Set(M1) and Set(M2) to be

equivalent if M1 = M2 syntactically. However, this is quite restrictive, with the

consequence that Set0.set, Set1.set, and Set2.set are all considered distinct for no

11 As in the case of the Name functor, one could try to rely on disciplined use-site sealing to work around
this problem — e.g., by sealing the results of all applications of the Set functor appropriately, or by
introducing phantom types into the functor parameter, instantiated to fresh abstract types associated
with an ordering as necessary. But once more, this would wrongly place the burden of protecting the
abstraction on (all) clients of the functor, while depriving its implementer of the ability to perform
local reasoning about the correctness of the abstraction.
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good reason. Moreover, OCaml deems Set4.set and Set5.set equivalent just because

they are constructed from syntactically identical module expressions, even though

doing so constitutes a clear violation of abstraction safety.

8.1 Elaboration

In this section, we refine our elaboration from Section 7 in order to arrive at a

semantics that achieves abstraction safety in a satisfactory manner.12 Our approach

is as follows.

First, in order to deal with examples like the Name functor, which ought not to

be applicative, we now take into account not only static purity, but also dynamic

purity. That is, in the elaboration of pure modules, we only permit value bindings

that we can prove to have no side effects. The intuition behind this restriction is

simple: if a module defines abstract types and also has computational effects, then it

is only safe to assume that the semantic meanings of the abstract types are tied up

with the effects. For example, the meaning of the name type in the Name functor

is semantically tied to the stateful counter — in particular, it represents the set of

natural numbers less than the current value of counter (which may only grow over

time).

Second, we observe that it is only abstraction-safe to equate the types returned

by applicative functors if the arguments passed to them are dynamically (as well as

statically) equivalent. This explains why Set0, Set1, and Set2 produce equivalent set

types, but they are distinct from Set3.set. In order to check for dynamic equivalence

of functor arguments, we thus refine our semantics to (conservatively) track the

“identity” of values. In essence, we emulate a simple form of dependent typing

without actually requiring dependent types.

Dynamic purity. Determining whether an expression is dynamically pure is unde-

cidable. As a conservative approximation, we piggyback on a notion that already

exists in ML: the syntactic classification of non-expansive expressions — essentially,

syntactic values. In ML, this notion is used in the core language to prevent unsound

implicit polymorphism, the so-called value restriction (Wright, 1995). It makes perfect

sense to reuse it here, because an applicative functor can be thought of as a

polymorphic function on steroids.

Figure 35 gives a suitable grammar for non-expansive expressions � that accounts

for paths and packages. The “. . . ” in the grammar for � will typically define a

sublanguage of what is templated as “. . . ” in the grammar for E (cf. Figure 1),

but the specifics obviously depend on the concrete core language. For module

expressions � contained in �, the only constructs disallowed are functor application

and unpacking.

12 As explained in footnote 9, the notion of abstraction safety is somewhat informal. The claim that
the semantics described in this section regains abstraction safety is likewise informal, and to justify it
formally would take us beyond the scope of this article. At the very least, we believe it is clear that
our semantics does not suffer from the same problems with abstraction safety that afflict previous
approaches.
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� ::= . . . | � | pack �:S

� ::= �
� ::= X | {�} | �.X | fun X:S ⇒ M | X:>S

� ::= val X=� | type X=T | module X=� | signature X=S | include � | ε | �;�

Fig. 35. Non-expansive expressions.

(paths) π ::= α | π τ

(concrete signatures) Σ ::= [= π : τ] | . . .

Abbreviations:

(types) [= π : τ] := {val : τ, nam : π}
(expressions) [e as e′] := {val = e, nam = e′}

Fig. 36. (Colour online) Semantic signatures for tracking sharing.

Depending on the details of the core language and its type system, more refined

strategies are possible for classifying pure value bindings. Fortunately, this does

not affect anything else in our development, so we stick with the simple notion of

non-expansiveness for simplicity; adopting something more sophisticated should be

straightforward.

Dynamic module equivalence and semantic paths. We have demonstrated above that

abstraction safety requires type equivalence to take dynamic module equivalence

into account. As we have mentioned already, our approach relies on the tracking

of “identities” for value components of modules. Since equivalence of values is

obviously undecidable in general, and because we also want to avoid the need for

true dependent types, we again use a conservative approximation: our new typing

rules employ “phantom types” to identify values, i.e., abstract type expressions that

we call semantic paths π. Usually, such a path is just a type variable, but due to the

lifting that happens with applicative functors, it can actually take the more general

form defined in Figure 36.

Paths are recorded in an extended definition of atomic value signature, also given

in Figure 36. Consequently, every value binding or declaration will be associated

with a semantic path. As with abstract types, we can quantify over path variables

(existentially and universally), and thus abstract over value identities.

Semantic paths can be viewed as a refinement of the concept of structure stamps,

which tracked structure identity in SML’90 (Milner et al., 1990). Here, we reinterpret

the ad hoc operational notion of “stamp” as a phantom type introduced via System F

quantification, and we use it to stamp individual values rather than whole structures,

thus enabling the tracking of identities at a finer granularity. (We could reconstruct

“real” structure stamps, essentially by tracking module identities in addition to value

identities. But in the presence of fine-grained value paths we see no additional benefit

in also having structure stamps.)

Obviously, our notion of semantic paths could be refined in various ways. For

example, certain values, such as scalar constants, could be captured more precisely
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Declarations Γ 
 D � Ξ

Γ 
 T : Ω� τ κα = Ω

Γ 
 val X:T � ∃α.{lX : [= α :τ]} D-val

Subtyping Γ 
 Ξ � Ξ′ � f

π = π′ Γ 
 τ � τ′ � f

Γ 
 [= π : τ] � [= π′ : τ′]� λx:[= π : τ].[f (x.val) as x.nam]
U-val

Bindings Γ 
 B :ϕ Ξ� e

Γ 
 E : τ� e κα = Ω ∀�. E �= � ∀P . E �= P

Γ 
 val X=E :I ∃α.{lX : [= α : τ]}� pack 〈{}, {lX = [e as {}]}〉 B-val-i

Γ 
 � : τ� e κα = Γ → Ω ∀P . � �= P

Γ 
 val X=� :P ∃α.{lX : [= α Γ : τ]}� pack 〈λΓ.{}, λΓ.{lX = [e as {}]}〉 B-val-p

Γ 
 P :ϕ ∃α.[= π : τ]� e

Γ 
 val X=P :ϕ ∃α.{lX : [= π : τ]}� unpack 〈α, x〉 = e in pack 〈α, λΓϕ.{lX = x}〉 B-val-alias

Expressions Γ 
 E : τ� e

Γ 
 P :ϕ ∃α.[= π : τ]� e Γ 
 τ : Ω

Γ 
 P : τ� unpack 〈α, x〉 =e in (x Γϕ).val
E-path

Fig. 37. (Colour online) Elaboration of value sharing.

by reflecting them on the type level (equating more values and hence allowing more

programs to typecheck). However, such details are beyond the scope of this article.

Elaboration. The new and modified rules for value declarations and bindings are

shown in Figure 37. We once more have highlighted the relevant changes.

For a value declaration (rule D-val), we always introduce a fresh path variable

(of kind Ω) as a place-holder for the actual value’s identity. For value bindings, there

are now three rules. If the binding just rebinds a suitable path P , then we actually

know the value’s identity, and can retain it (rule B-val-alias). Otherwise, we treat

the value as “new” and introduce a fresh path variable representing it; the witness

type for the variable does not matter, so we simply pick {}. The binding can be

treated as pure if the expression is non-expansive (rule B-val-p), in which case we

have to abstract over Γ inside the package, in the same way we did in the sealing

rule M-seal (Figure 29).

Subtyping requires atomic value signatures to have matching paths (rule U-val).

For now, this condition is trivial to meet, because a rule D-val always produces a
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(Elem : ORD) ⇒ (SET where type elem = Elem.t)

� ∃β:(Ω3 → Ω), β1:(Ω
3 → Ω), β2:(Ω

3 → Ω), β3:(Ω
3 → Ω).

∀α: Ω, α1: Ω, α2: Ω.{t : [= α : Ω],

eq : [= α1 : α × α → bool],

less : [= α2 : α × α → bool]}
→P {set : [= β α α1 α2 : Ω],

elem : [= α : Ω],

empty : [= β1 α α1 α2 : β α α1 α2],

add : [= β2 α α1 α2 : α × β α α1 α2 → β α α1 α2],

mem : [= β3 α α1 α2 : α × β α α1 α2 → bool]}

(where Ω3 → Ω := Ω → Ω → Ω → Ω)

Fig. 38. (Colour online) Example: signature elaboration with value tracking.

separate, existentially quantified path for every single value declaration, so that the

matching rule U-match can pick them freely before descending into the subtyping

check. In Section 8.2 below, we present another small language extension that makes

the condition more interesting, though.

Finally, in the premise of the modified rule E-path, P is elaborated as a full module.

This is more permissive than going through the generic path rule P-mod as before (cf.

Figure 30), because the new rule also allows dropping any quantified variable that

only occurs in the path π. Without the modified rule, our encoding of let-expressions

would no longer work, since every local value definition (that is not a mere alias)

introduces an existential quantifier as its path. (Consider let val x = 1 in x+x, which

desugars into {val x = 1; val it = x+x}.it — as a module, its type is ∃α1α2.[= α2 :

int], so that α2 cannot be avoided by the path rule P-mod. Rule E-path, on the other

hand, can drop both variables.)

Example. Figure 38 shows the result of elaborating the (applicative) functor sig-

nature describing Set, previously shown in Figure 27, under the updated rules.

Differences to the previous result are highlighted: atomic value signatures now carry

path information, the signature abstracts the path variables α1, α2 and β1 to β3, and

the export type β has to be applied not just to the argument type α but also to the

argument paths α1, α2, accordingly.

Given a Set functor with the semantic signature from Figure 38, the types Set0.set,

Set1.set, and Set2.set (from the beginning of the section) will be seen as equivalent:

they all elaborate to the semantic type β int πeq πless, with the two paths πeq and

πless referring to the respective members of structure Int. They are distinguished

from type Set3.set, which elaborates to β int πeq πgreater.

Types Set4.set and Set5.set are also fresh, because the functor F will be deemed

impure under the new rules, due to its binding for less, which features an expansive

application (random()). Its semantic signature looks as follows (highlighting the

pieces that have been added or changed with the refined rules):

F : {} →I ∃β1:Ω.{t : [= int : Ω],

eq : [= πeq : int × int → bool],

less : [= β1 : int × int → bool]}.
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Hence, F delivers a fresh path for less with every application, and so each application

of the Set functor to F Empty will produce different set types.

The Name functor will be considered impure under the new rules as well, because

of the local effectful binding for counter. Here is its signature according to the

refined rules:

Name : {} →I ∃β:Ω, β1:Ω, β2:Ω.{name : [= β : Ω],

new : [= β1 : {} → β],

equal : [= β2 : β × β → bool]}

Consequently, the functor will behave generatively, with Name1.name and

Name2.name elaborating to distinct fresh abstract types.

8.2 Sharing specifications

Once value identities matter for determining type equivalences, it can be useful to

give the programmer the ability to explicitly specify sharing constraints between

values. For example, consider a functor that takes two arguments, both with a

sub-module Ord:

signature A = {module Ord : ORD; val v : Set(Ord).t; . . . }
signature B = {module Ord : ORD; val f : Set(Ord).t → int; . . . }
module F (X : A) (Y : B) = { . . . Y.f (X.v) . . . }

Clearly, the application in the functor’s body cannot typecheck without knowing

that X.Ord and Y.Ord are statically and dynamically equal. For that, we need to be

able to impose sufficient constraints on the parameters.

Figure 39 presents syntax for manifest value specifications (using module paths

P ) and a related signature refinement using where. It also introduces similar forms

to specify sharing between entire modules, which serves as an abbreviation for

sharing all type and value components. Finally, we add a construct, “like P”, which

yields the signature of the module P , and thus can only be matched by modules

that provide the same definitions as P . In essence, this describes a higher-order

singleton signature in the manner introduced by Dreyer et al. (2003).13 A manifest

specification module X=P is equivalent to the specification module X : like P . With

these extensions, we can, for example, define the functor F properly as follows:

module F (X : A) (Y : B where module Ord = X.Ord) = { . . . Y.f (X.v) . . . }.

One subtlety to point out here is that the design of these constructs depends on

the fact that our elaboration is deterministic, and so any path P trivially has a

unique type in our system. If that were not the case — e.g., if modules only had

principal types — then the “where module” and the “like” construct would not

yield a unique signature specification, i.e., their meaning would be ambiguous. To

compensate, it would be necessary to require the programmer to disambiguate those

13 It is also very similar to the “module type of” operator that was introduced in recent versions of
OCaml. The difference is that OCaml’s operator does not propagate the identities of abstract types
defined by the module, which we find rather surprising.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796814000264
Downloaded from https://www.cambridge.org/core. IP address: 207.241.231.82, on 24 Jul 2018 at 19:29:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796814000264
https://www.cambridge.org/core


584 A. Rossberg et al.

(signatures) S ::= . . . | S where val X=P | S where module X=P | like P

(declarations) D ::= . . . | val X=P | module X=P

Fig. 39. Extension with value and module sharing specifications.

Signatures Γ 
 S � Ξ

Γ 
 S � ∃α1αα2.Σ Γ 
 P : [= π : τ′]� e

Σ.lX = [= α : τ] Γ 
 τ′ � τ� f

Γ 
 S where val X=P � ∃α1α2.Σ[π/α]
S-where-val

Γ 
 S � ∃α.Σ Γ 
 P : Σ′ � e Σ.lX = Σ′′

α = α1 � α2 ∃α2.Σ
′′ explicit Γ, α1 
 Σ′ � ∃α2.Σ

′′ ↑ τ� f

Γ 
 S where module X=P � ∃α1.Σ[τ/α2]
S-where-mod

Γ 
 P : Σ� e Σ explicit

Γ 
 like P � Σ
S-like

Declarations Γ 
 D � Ξ

Γ 
 P : [= π : τ]� e

Γ 
 val X=P � {lX : [= π : τ]} D-val-eq

Γ 
 P : Σ� e Σ explicit

Γ 
 module X=P � {lX : Σ} D-mod-eq

Fig. 40. Elaboration of value and module sharing specifications.

constructs with explicit signature annotations “:S” on the paths. A deterministic

type system avoids any such nuisance.

Elaboration. The respective elaboration rules are shown in Figure 40. Rule S-where-

val is analogous to S-where-typ (cf. Figure 11).

Module refinement (rule S-where-mod) is slightly more involved. It is defined as

refining every individual abstract value and type specification in submodule X of

S . This module has the signature Σ′′, and the type variables α2 identify its abstract

entities; the remaining α1 are used elsewhere in Σ and remain untouched. The

concrete signature Σ′ of the refining path P has to match ∃α2.Σ
′′. (Typically, α2 will

coincide with the subset of α that are free in Σ′′, because only in rare circumstances

can matching succeed with an unquantified α ∈ α1 left over in Σ′′.14)

The rules for manifest value and module declarations are straightforward, as is

the rule for singletons.

14 With ML as a core language, one such example would be if Σ′′ contained a value component of type
t int → t int. This type could be matched by a Σ′ in which the corresponding component had type
∀α.α → α, which does not mention t but can nonetheless be instantiated to t int → t int.
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In all the module forms, a side condition about explicitness is necessary to

maintain the elaboration invariant that is required for decidability (cf. Section 5.2).

Inductively, we only know that the respective signatures are valid, but because they

can occur on the right-hand side of a match, we would lose decidability (which we

will prove in Section 9.2) if we did not require them to also be explicit. In practice,

the signature of a path (or any module, for that matter) can always be enforced to

be explicit by imposing a signature annotation. Alternatively, any “classic” syntactic

path consisting only of variables, projection, and pure functor application will satisfy

the explicitness criterion, as long as those variables in turn are bound to definitions

with explicit signature annotations.

In the case of rule S-where-mod, however, ∃α2.Σ
′′ can only be made explicit (and

the refinement made well-formed) by ensuring that the signature of the specialized

submodule is sufficiently self-contained, i.e., none of its type components refers to

any of the α1 from the surrounding signature. It is not merely decidability concerns

that demand this. For example, the refinement in

signature S = {type t : � → �; module A : {type u = t int; . . . }}
module B = {type u = int; . . . }
signature T = S where module A = B

would require higher-order unification to find a t such that t int = int. Not only is

that an undecidable problem in the general case, it also has more than one “solution”

for this example, and the signature T would therefore have an ambiguous meaning.

Consequently, the above example is disallowed by the rule — t is not rooted in the

inner signature of A, although it mentions it. But the example can be disambiguated

by splitting the refinement into stages:

signature T = (S where type t = fun a ⇒ a) where module A = B.

If all types from the surrounding signature have an alias in the submodule,

however, then our system accepts the direct refinement:

signature S = {type t : � → �; module A : {type u = t; . . . }}
module B = {type u = fun a ⇒ list a; . . . }
signature T = S where module A = B.

(And because we always βη-normalize all types, this even works when u is specified

as fun a ⇒ t a in signature S.)

The “where module” construct has been a rather dark corner of ML-style

modules. While it is often available in one form or another, its semantics tends to

be either vague or over-restrictive (or both), and rarely is it properly specified. The

structure sharing specifications of SML’90 (Milner et al., 1990) were the earliest form

of a comparable construct, but they were both relatively restricted and semantically

complicated, resorting to global “admissibility” conditions. In SML’97 (Milner

et al., 1997), they were hence degraded to a form of syntactic sugar, but this is

arguably not quite the right thing either, since their desugaring in fact relies on type

information. As has been observed repeatedly by SML implementers, the SML’97

semantics has a severe limitation: it prevents the placement of structure sharing

constraints on any signatures that export a single transparent type specification!

Generalizations and improvements, including the complementary “where module”
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(or “where structure”) mechanism, have been discussed in online forums and

implemented in some compilers (e.g., SML/NJ (SML/NJ Development Team, 1993)

and Alice ML (Rossberg et al., 2004)), but have never been formalized as far as we

are aware. In OCaml, “with module” is superficially similar, but actually extends

a signature instead of just refining types, which apparently is considered a bug.15

Our elaboration rule S-where-mod may thus be viewed as a novel step in the right

direction.

9 Meta-theory revisited

Having made non-trivial extensions to our system in the last two sections, we need

to revisit the meta-theoretical properties that we proved about the initial system in

Section 5.

9.1 Soundness

The soundness statement for the new elaboration rules has to cover the elaboration of

pure modules now. But first a helpful lemma about typing environment abstractions:

Lemma 9.1 (Typing of environment abstraction)

Let Γ 
 � and Γ1,Γ,Γ2 
 �.

1. If and only if Γ 
 τ : κ, then · 
 λΓ.τ : Γ → κ.

2. If and only if Γ1,Γ,Γ2 
 τ : Γ → κ, then Γ1,Γ,Γ2 
 τ Γ : κ.

3. If and only if Γ 
 τ : Ω, then · 
 ∀Γ.τ : Ω.

4. If and only if Γ 
 e : τ, then · 
 λΓ.e : ∀Γ.τ.

5. If and only if Γ1,Γ,Γ2 
 e : ∀Γ.τ, then Γ1,Γ,Γ2 
 e Γ : τ.

6. (λΓ.τ) Γ ≡ τ.

In the actual soundness statement, pure module elaboration has a somewhat

more intricate invariant than its impure version, as given by part 7 of the following

theorem (all other parts read as before):

Theorem 9.2 (Soundness of elaboration with applicative functors)

Let Γ 
 �.

1. If Γ 
 T : κ� τ, then Γ 
 τ : κ.

2. If Γ 
 E : τ� e, then Γ 
 τ : Ω and Γ 
 e : τ.

3. If Γ 
 τ � τ′ � f and Γ 
 τ : Ω and Γ 
 τ′ : Ω, then Γ 
 f : τ → τ′.

4. If Γ 
 P : Σ� e, then Γ 
 Σ : Ω and Γ 
 e : Σ.

5. If Γ 
 S/D � Ξ, then Γ 
 Ξ : Ω.

6. If Γ 
 M/B :I Ξ� e, then Γ 
 Ξ : Ω and Γ 
 e : Ξ.

7. If Γ 
 M/B :P ∃α.Σ� e, then Γ 
 ∃α.Σ : Ω and · 
 e : ∃α.∀Γ.Σ.

8. If Γ 
 Ξ � Ξ′ � f and Γ 
 Ξ : Ω and Γ 
 Ξ′ : Ω, then Γ 
 f : Ξ → Ξ′.

15 See the bug report at http://caml.inria.fr/mantis/view.php?id=5514.
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9. If Γ 
 Σ � ∃α.Σ′ ↑ τ� f and Γ 
 Σ : Ω and Γ, α 
 Σ′ : Ω,

then Γ 
 τ : κα and Γ 
 f : Σ → Σ′[τ/α].

Proof

By simultaneous induction on the derivations. Most cases are proved as before

(Theorem 5.1), except that some use additional abstraction over Γ, and we have

added a number of new rules, most of which are fairly straightforward. We give the

two most relevant cases for elaborating applicative functors and pure modules:

• Case M-funct-p: By induction on the first premise we know that Γ 
 ∃α.Σ : Ω,

and by iterated inversion this implies (1) Γ, α 
 Σ : Ω. Hence we can show

that Γ, α, X:Σ 
 �. By induction on the second premise it follows that (2)

Γ, α, X:Σ 
 ∃α2.Σ2 : Ω and (3) Γ 
 e : ∃α2.∀(Γ, α, X:Σ).Σ2. Statement (3) already

proves the second goal, because ∃α2.∀(Γ, α, X:Σ).Σ2 = ∃α2.∀Γ.∀α.Σ →P Σ2 by

the definition of environment abstraction.

To prove the first goal, inverting (2) gives Γ, α, X:Σ, α2 
 Σ2 : Ω, which can be

trivially strengthened and reordered to Γ, α2, α 
 Σ2 : Ω. By weakening (1) to

Γ, α, α2 
 Σ : Ω, applying Fω typing rules, and induction over the length of α1

and then α2, we arrive at Γ 
 ∃α2.∀α.Σ →P Σ2 : Ω.

• Case M-seal: Since we assume that Γ is well-formed, the first premise implies

(1) Γ 
 Σ′ : Ω. By induction on the second premise we get Γ 
 ∃α.Σ, which

can be inverted to (2) Γ, α 
 Σ : Ω. By induction (part 9) we can conclude (3)

Γ 
 τ : κα and (4) Γ 
 f : Σ′ → Σ[τ/α].

Consider the first goal first. By Lemma 9.1 and Fω kinding, we get

Γ, α′ 
 α′ Γ′ : κα, and accordingly, Γ, α′ 
 [α′ Γ/α] : Γ, α, so that the substitution

lemma applied to (2) yields Γ, α′ 
 Σ[α′ Γ/α] : Ω. By induction over the length

of α′, Fω typing rules then give Γ 
 ∃α′.Σ[α′ Γ/α] : Ω as desired.

For the second goal, first derive (5) Γ 
 f X : Σ[τ/α] by simple application

of Fω typing rules to (1) and (4). Lemma 9.1 then gives · 
 λΓ.f X :

∀Γ.Σ[τ/α]. Likewise, · 
 λΓ.τ : Γ → κα follows from (3). The lemma also gives

(λΓ.τ) Γ = τ, and hence it holds that Σ[τ/α] = Σ[(λΓ.τ) Γ/α] and we can apply

the conversion rule and Lemma 9.1 to (5) to get · 
 λΓ.f X : ∀Γ.Σ[(λΓ.τ) Γ/α].

Since we assume that α′ are fresh by convention, this is the same type as

∀Γ.Σ[α′ Γ/α][(λΓ.τ)/α′], and induction over α′ for application of the pack

typing rule gives the wanted result. �

9.2 Decidability

Recall from Section 5.2 that the decidability of our type system solely hinged on

the decidability of subtyping — more specifically, type lookup for the matching rule

U-match. This has not changed with any of the extensions we made. In fact, except

for the trivial incorporation of effect subtyping, the addition of applicative functors

did not change the declarative subtyping and matching rules at all!

However, the presence of applicative functors does necessitate fundamental

changes to their algorithmic implementation. In particular, type lookup now has

to look into pure functor signatures in order to find suitable types for matching,
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and the contravariance of functor parameters results in a significantly more complex

definition of the lookup function. That also makes the surrounding definitions and

proofs more involved than what we have seen so far. (The end of this section has a

few remarks concerning this complexity.)

Validity and rootedness. First, we observe that our previous definition of signature

validity and, specifically, rootedness (cf. Figure 18) is no longer appropriate — it is

violated by the new rules for pure functors (S-funct-p and M-funct-p), where we

lift an existential quantifier over a universal one, and thus separate the existential

quantifier from the structure that roots its variables. To deal with the additional

extensions from Section 8, we must also account for abstract value paths— however,

they are treated like any other abstract type variable, so do not affect the definitions

and proofs much. (That is, the essential meta-theoretical complexity encountered in

this section already comes up for the simpler system from Section 7 alone.)

Let us consider a couple of simple examples first. An abstract type β1 : Ω is rooted

in a structure signature { t1: [= β1 : Ω]} (as before), so that ∃β1.{ t1: [= β1 : Ω]} is

a valid (and explicit) signature. Likewise, structures can be roots for higher-kinded

types, if they specify them at their higher kind — for example, β2 : Ω → Ω is rooted

in {t2: [= β2 : Ω → Ω]} (still as before). What’s new now is that types may also be

rooted in a pure functor signature. For example, a higher-kinded β3 : Ω → Ω can

now be rooted in

∀α1, α2.{u: [= α1 : Ω], v: [= α2 : Ω]} →P {t3: [= β3 α1 α2 : Ω]}

if the path β α1 α2 — with α1, α2 being exactly the list of abstract types that the

functor quantifiers over — is rooted in the functor’s result signature. Consequently,

∃β3.∀α1, α2.{u: [= α1 : Ω], v: [= α2 : Ω]} →P {t3: [= β3 α1 α2 : Ω]}

is a valid (and explicit) signature. (As a degenerate case, the universal quantifier

in a functor signature can actually be empty; such functors can be roots even for

abstract types of ground kind Ω — e.g., β4 is rooted in {} →P {t4: [= β4 : Ω]}.)
Figure 41 gives an extended definition of validity and related properties. Root-

edness takes applicative functors into account: a variable may now be rooted in

a pure functor’s codomain. As a side effect, the definition no longer is concerned

with plain type variables only, but generalizes to semantic paths π. In the functor

case, we extend the current path by applying the functor’s universal variables before

descending into the codomain, mirroring the kind-raising substitution performed by

rule S-funct-p. The path π in the rootedness relation is always “abstract”, in the

sense that it is restricted to the form α α′. We write head(π) to denote the head

variable α in such a path.

However, we have to be careful not to treat variable occurrences inside a functor

as a root when that functor’s argument already mentions that variable. For example,

the (valid) signature

∀α.{u: [= α : Ω], v: [= β α : Ω]} →P {t: [= β α : Ω]}
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ε rooted in Σ :⇔ always

α, α rooted in Σ :⇔ α rooted in Σ avoiding α, α ∧ α rooted in Σ

π rooted in [= π′ : τ] avoiding β (at ε) :⇔ π = π′

π rooted in [= τ : κ] avoiding β (at ε) :⇔ π = τ

π rooted in {l : Σ} avoiding β (at l.l) :⇔ π rooted in {l : Σ}.l avoiding β (at l)

π rooted in ∀α.Σ1 →P Σ2 avoiding β (at l) :⇔ π α rooted in Σ2 avoiding β (at l)

∧ β ∩ fv(Σ1) = ∅

[= π :τ] explicit (always)

∀α.Σ →ϕ Ξ explicit :⇔ ∃α.Σ explicit ∧ Ξ explicit

. . .

[= π :τ] valid (always)

∀α.Σ →ϕ Ξ valid :⇔ ∃α.Σ explicit ∧ Ξ valid

. . .

Fig. 41. (Colour online) Validity for applicative functors.

cannot possibly be a root for β, even though the path β α has the right form in its

codomain. Intuitively, with β already occurring in its argument, this functor cannot

be the origin of the abstract type β. Rather, it represents a functor signature

like (X : {type u; type v = b u}) ⇒ {type t = b X.u}, where the type b that β

corresponds to is bound somewhere else. (Technically, the refined type lookup

algorithm that we are going to define in a moment could produce cyclic results if

we allowed examples like this as input.) The problem extends to multiple variables.

Imagine:

∃β1β2.{F : ∀α.{t : [= α : Ω], u: [= β2 : Ω → Ω]} →P {v : [= β1 α : Ω]},
G : ∀α.{t : [= α : Ω], v: [= β1 : Ω → Ω]} →P {u : [= β2 α : Ω]}}.

We cannot allow such a signature to be regarded explicit, because β1 and β2 would

then have a cyclic dependency.

The new rootedness judgment excludes such cyclic examples, by (1) enforcing

that each rooted variable is “avoided” by any functor parameter signature its root

is under, and (2) inductively requiring that for multiple variables, each root not

only avoids the variable itself, but also any of the following ones, thereby imposing

sequential dependencies. Intuitively, then, the order of the quantified variables has

to reflect the order of the respective declarations from which they originate. (This

means that we are no longer as free to reorder quantified variables as we were

before. We can only pick an order that represents a topological sorting with respect

to the (non-cyclic) dependency graph of the declarations. Our definition of signature

normalization (Section 6) hence is in need of refinement. However, the details are

not very interesting, so we omit them here.)

With the new and improved definition of rootedness, the validity lemma is valid

again, and we can extend it to the pure judgments:

Lemma 9.3 (Simple properties of validity with applicative functors)

1. If and only if π rooted in Σ avoiding β1 and π rooted in Σ avoiding β2,

then π rooted in Σ avoiding β1, β2.
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lookupε(Σ,Σ
′) ↑ ε always

lookupα,α(Σ,Σ
′) ↑ τ, τ if lookupα(Σ,Σ

′) ↑ τ ∧ fv (τ) ∩ α = ∅
∧ lookupα(Σ,Σ

′[τ/α]) ↑ τ

lookupπ([= π′′ : τ], [= π′ : τ′]) ↑ π′′ if π′ = π

lookupπ([= τ : κ], [= τ′ : κ]) ↑ τ if τ′ = π

lookupπ({l : Σ}, {l′ : Σ′}) ↑ τ if ∃l ∈ l ∩ l′. lookupπ({l : Σ}.l, {l′ : Σ′}.l) ↑ τ

lookupπ(∀α.Σ1 →P Σ2, ∀α′.Σ′
1 →P Σ′

2) ↑ λα′.τ if lookupα(Σ
′
1,Σ1) ↑ τ′ ∧ head(π) /∈ fv(τ′)

∧ lookupπ α′ (Σ2[τ
′/α],Σ′

2) ↑ τ

Fig. 42. (Colour online) Algorithmic type lookup with applicative functors.

2. If π rooted in Σ avoiding β1 and fv(Σ) ∩ β2 = ∅, then π rooted in Σ avoiding

β1, β2.

3. If α rooted in Σ, then α rooted in Σ[τ′/α′], provided α ∩ (fv(τ′) ∪ α′) = ∅.

4. If Ξ explicit, then Ξ valid.

5. If Ξ valid/explicit, then Ξ[τ/α] valid/explicit.

6. If Ξ valid/explicit, then norm(Ξ) valid/explicit.

Lemma 9.4 (Signature validity with applicative functors)

Assume Γ valid.

1. If Γ 
 P : Σ� e, then Σ valid.

2. If Γ 
 S/D � Ξ, then Ξ explicit.

3. If Γ 
 M/B :ϕ Ξ� e, then Ξ valid.

Type Lookup. Of course, the more liberal definition of rootedness and signature

validity now necessitates a more general type lookup algorithm. The upgrade is

shown in Figure 42. Like rootedness, it now deals with semantic paths π instead

of plain variables. That is, it no longer just looks for type variables but for paths.

When lookup descends into the codomain of a functor type, it extends the current

path with the functor’s parameter variables. These parameters become parameters

of the looked-up type, matching up with the raised kind that an abstract type from

an applicative functor is given.

For example, consider

lookupβ(∀α.{u: [= α : Ω]} →P {t: [= int : Ω]},
∀α′.{u: [= α′ : Ω]} →P {t: [= β α′ : Ω]})

which looks for the type β : Ω → Ω (rooted in the second signature) in the first

signature. It first takes the variables from the root’s universal quantifier (in this case

only a single α′) to extend the path β to β α′. It then performs lookup for this new

path in the functors’ codomains, yielding type int. Adding the parameters in the

end, it returns λα′.int as the appropriate substitution for β itself.

But that is not enough. In general, a type looked up in the codomain may have

occurrences of variables from the left hands universal quantifier, which would escape

their scope if we left them alone. Consider:

lookupβ(∀α.{u: [= α : Ω]} →P {t: [= list α : Ω]},
∀α′.{u: [= α′ : Ω]} →P {t: [= β α′ : Ω]}).
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Here, just performing lookup in the codomain would give us list α for β α′, which

is no good because the α it contains would be unbound. As with functor subtyping,

we hence have to substitute α first, in a contravariant fashion. We do so with

the corresponding types inversely looked up in the right-hand side’s domain, i.e.,

lookupα({u: [= α′ : Ω]}, {u: [= α : Ω]}) for the example, and thereby mapping α to

α′. As a result, the main lookup will return list α′ for β α′ — but that is fine, because

we have to lambda-abstract over α′ anyway. We arrive at λα′.list α′ (or just list, by

η-equivalence) as a proper substitute for β.

Unfortunately, as our earlier discussion of rootedness already suggested, con-

travariance complicates the lookup of multiple variables, because it can create

dependencies between the results. Consider:

Ξ = ∃β1β2.Σ, Σ = {F : ∀α.{t : [= α : Ω]} →P {t : [= β1 α : Ω]},
G : ∀α.{t : [= α : Ω]} →P {t : [= β2 α : Ω]}}.

Ξ′ = ∃β′
1β

′
2.Σ

′, Σ′ = {F : ∀α′.{t : [= α′ : Ω]} →P {t : [= β′
1 α

′ : Ω]},
G : {t : [= β′

1 int : Ω]} →P {t : [= β′
2 : Ω]}}.

If we want to check Ξ � Ξ′, then looking up β′
1, β

′
2 independently would deliver

lookupβ′
1
(Σ,Σ′) ↑ λα′.β1 α

′

lookupβ′
2
(Σ,Σ′) ↑ β2 (β′

1 int).

The solution for β′
2 still contains an occurrence of β′

1, which we need to substitute

away. Consequently, as in the definition of rootedness, we have to respect the

quantification order of the existential variables (like those from Ξ′ above) and

perform their lookup in this order, substituting types as we go. As explained

earlier, the definition of rootedness ensures that quantification order corresponds to

dependency order.

In fact, the lookup rules, in the case of multiple variables and of functors,

also contain explicit side conditions that check that the returned type(s) do not

contain the looked-up variable(s) themselves. The main reason for these side

conditions is technical: building them into the lookup judgment removes mutual

interdependencies between various properties we prove below. In practice, they are

implied by rootedness.

Because the new definition of lookup is more complicated, its “simple” properties

are a little bit less simple than before (cf. Lemma 5.4):

Lemma 9.5 (Simple properties of type lookup with applicative functors)
1. If lookupα(Σ,Σ

′) ↑ τ and α ∩ fv(Σ) = ∅, then fv(τ) ⊆ fv(Σ) ∪ fv(Σ′) − α.
2. If lookupπ(Σ,Σ

′) ↑ τ and head(π) /∈ fv(Σ), then fv(τ) ⊆ fv(Σ) ∪ fv(Σ′) − head(π).
3. If lookupα(Σ,Σ

′) ↑ τ and α ∩ (α′ ∪ fv(τ′)) = ∅,

then lookupα(Σ[τ′/α′],Σ′[τ′/α′]) ↑ τ[τ′/α′].
4. If lookupπ(Σ,Σ

′) ↑ τ and fv(π) ∩ (α′ ∪ fv(τ′)) = ∅,

then lookupπ(Σ[τ′/α′],Σ′[τ′/α′]) ↑ τ[τ′/α′].

(Moreover, in parts 3 and 4, the length of the derivation stays the same.)

The soundness statement also requires a more verbose formulation than before,

and because of the contravariant lookup in the functor case, both parts are mutually

dependent:
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Theorem 9.6 (Soundness of type lookup with applicative functors)

1. Let Γ 
 Σ : Ω and Γ, α 
 Σ′ : Ω. If lookupπ(Σ,Σ
′) ↑ τ1, then Γ, α 
 π : κ and

Γ 
 τ1 : κ.

Furthermore, if Γ 
 Σ � Σ′[τ2/α] for Γ 
 τ2 : κα and π = α α0 (with α∩α0 = ∅),

then τ1 = τ2 α0.

2. Let Γ 
 Σ : Ω and Γ, α 
 Σ′ : Ω. If lookupα(Σ,Σ
′) ↑ τ1, then Γ 
 τ1 : κα.

Furthermore, if Γ 
 Σ � ∃α.Σ′ ↑ τ2, then τ1 = τ2.

Proof

By simultaneous induction on the size of the derivation of the lookup. Interestingly,

proving well-kindedness of the looked-up types requires slightly different inductive

steps than proving the type equivalence(s). Part 1:

• Case lookupπ([= τ1 : κ], [= τ′ : κ]): Then π = τ′. By inversion of well-

kindedness, Γ 
 τ1 : κ and Γ, α 
 τ′ : κ. Furthermore, by inversion of subtyping,

τ1 = τ′[τ2/α], for which we know via substitution that τ′[τ2/α] = π[τ2/α] =

τ2 α0.

• Case lookupπ([= π′′ : τ3], [= π′ : τ′
3]): Analogous.

• Case lookupπ({l : Σ}, {l′ : Σ′}): Then lookupπ(Σ,Σ
′) ↑ τ1 for some Σ ∈ Σ and

Σ′ ∈ Σ
′
. By inverting well-kindedness, Γ 
 Σ : Ω and Γ, α 
 Σ′ : Ω. The

first claim then follows by induction. Furthermore, by inverting subtyping,

Γ 
 Σ � Σ′[τ2/α], and the second claim likewise follows by induction.

• Case lookupπ(∀α1.Σ1 →P Σ2, ∀α′
1.Σ

′
1 →P Σ′

2): Then τ1 = λα′
1.τ3 such that both

lookupα1
(Σ′

1,Σ1) ↑ τ′
1 with α /∈ fv(τ′

1), and lookupπ α′
1
(Σ2[τ

′
1/α1],Σ

′
2) ↑ τ3. Let

Γ′
1 = Γ, α, α′

1. First, inverting the kinding rules, Γ, α1 
 Σ1/Σ2 : Ω and Γ′
1 


Σ′
1/Σ

′
2 : Ω. For Σ1, we can weaken to Γ′

1, α1 
 Σ1 : Ω, which allows us to

invoke the induction hypothesis for part 2 and conclude Γ′
1 
 τ′

1 : κα1
. Because

α /∈ fv(τ′
1), the result can be strengthened to Γ, α′

1 
 τ′
1 : κα1

.

Let Γ′
2 = Γ, α′

1. Obviously, Γ′
2 
 [τ′

1/α1] : Γ, α1, and applying the substitution

lemma, Γ′
2 
 Σ2[τ

′
1/α1] : Ω. We can also use the substitution lemma to reorder

Γ′
1 and derive Γ′

2, α 
 Σ′
2 : Ω. We can now invoke the induction hypothesis on

the codomains and get Γ′
2, α 
 π α′

1 : κ′ and Γ′
2 
 τ3 : κ′. With Lemma 9.1, we

know both Γ′
2, α 
 π : α′

1 → κ′ and Γ 
 λα′
1.τ3 : α′

1 → κ′. Given that the α′
1 are

locally fresh by the usual variable convention, and thus don’t occur in π, the

former can be strengthened to Γ, α 
 π : α′
1 → κ′ as required.

To furthermore prove the type equivalence, we can invert the subtyping

assumption, revealing Γ′
2 
 Σ′

1[τ2/α] � ∃α1.Σ1 ↑ τ′
2 and Γ′

2 
 Σ2[τ
′
2/α1] �

Σ′
2[τ2/α]. The substitution lemma implies Γ′

2 
 Σ′
1[τ2/α] : Ω. And we can apply

weakening to kinding of Σ1, such that Γ′
2, α1 
 Σ1 : Ω. Using Lemma 9.5,

lookupα1
(Σ′

1[τ2/α],Σ1[τ2/α]) ↑ τ′
1[τ2/α], but by variable containment we actu-

ally know that Σ1[τ2/α] = Σ1 and τ′
1[τ2/α] = τ′

1. Because that modified lookup

derivation is still shorter than the current one, we can invoke the induction

hypothesis (part 2) for the type equivalence claim, and get τ′
1 = τ′

2. As a

consequence, Σ2[τ
′
2/α1] = Σ2[τ

′
1/α1]. So we know about the codomain that

Γ′
2 
 Σ2[τ

′
1/α1] � Σ′

2[τ2/α]. Consequently, the induction hypothesis (part 1)

also implies τ3 = α α0 α
′
1. or, via η-equivalence, λα′

1.τ3 = α α0.
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Part 2:

• Case lookupε(Σ,Σ
′): There is nothing to show.

• Case lookupα,α′(Σ,Σ′): Then τ1 = τ1, τ
′
1 and lookupα(Σ,Σ

′) ↑ τ1 with fv(τ1)∩α′ =

∅, and lookupα′ (Σ,Σ′[τ1/α]) ↑ τ′
1. By inverting well-kindedness, Γ, α, α′ 
 Σ′ : Ω,

which, via the substitution lemma, can be tweaked to Γ, α′, α 
 Σ′ : Ω. At the

same time, weakening gives Γ, α′ 
 Σ : Ω. Invoking the induction hypothesis

(part 1) yields Γ, α′, α 
 α : κ and Γ, α′ 
 τ1 : κ. Inverting the former tells

κ = κα. And because the side condition says α′ ∩ fv(τ1) = ∅, the latter can be

strengthened to Γ 
 τ1 : κα. We can invoke the substitution lemma to derive

Γ, α′ 
 Σ′[τ1/α] : Ω, which is enough to invoke the induction hypothesis again

and conclude Γ 
 τ′
1 : κα′ as well.

Furthermore, for proving the type equivalence, inverting matching reveals

Γ 
 Σ � Σ′[τ2, τ
′
2/α, α

′] such that Γ 
 τ2 : κα and Γ 
 τ′
2 : κα′ . And because

τ2, τ
′
2 are all well-formed in plain Γ, the variables α, α′ don’t appear free

in them, so Σ′[τ2, τ
′
2/α, α

′] = Σ′[τ′
2/α

′][τ2/α] = Σ′[τ2/α][τ
′
2/α

′]. Substitution

on Σ′ gives Γ, α 
 Σ′[τ′
2/α

′] : Ω. By application of Lemma 9.5, we have

lookupα(Σ[τ′
2/α

′],Σ′[τ′
2/α

′]) ↑ τ1[τ
′
2/α

′]. By the variable convention, fv(Σ)∩α′ =

∅. With the side condition on τ1, thus, lookupα(Σ,Σ
′[τ′

2/α
′]) ↑ τ1. Because that

still has a derivation shorter than the current one, we can invoke the induction

hypothesis (part 1) again on the first lookup, to obtain that τ1 = τ2.

Consequently, lookupα(Σ,Σ
′[τ2/α]) ↑ τ′

1 also holds (and still has a derivation

smaller than the current one), and so does Γ, α′ 
 Σ′[τ2/α] : Ω. Now,

because Σ′[τ2, τ
′
2/α, α

′] = Σ′[τ2/α][τ
′
2/α

′], we can apply U-match to construct a

derivation for Γ 
 Σ � ∃α′.Σ′[τ2/α] ↑ τ′
2. We can once more apply the induction

hypothesis to that derivation, which produces τ′
1 = τ′

2. �

Corollary 9.7 (Uniqueness of type lookup with applicative functors)

Let Γ 
 Σ : Ω and Γ 
 ∃α.Σ′ : Ω and Γ 
 Σ � ∃α.Σ′ ↑ τ. If lookupα(Σ,Σ
′) ↑ τ1 and

lookupα(Σ,Σ
′) ↑ τ2, then τ1 = τ2 = τ.

Thanks to uniqueness, we can still read the lookup judgment as a quasi-deterministic

algorithm.

Let us now turn to completeness, which becomes significantly more involved as

well:

Theorem 9.8 (Completeness of type lookup with applicative functors)

Let Γ 
 Σ : Ω valid and Γ 
 ∃α.Σ′ : Ω explicit.

1. If Γ 
 Σ � Σ′[τ/α] and Γ 
 τ : κα, and π rooted in Σ′ avoiding α, with π = α α1

and α ∈ α and α ∩ α1 = ∅, then lookupπ(Σ,Σ
′) ↑ τ α1 with τ = α[τ/α].

2. If Γ 
 Σ � ∃α.Σ′ ↑ τ, then lookupα(Σ,Σ
′) ↑ τ.

Proof

By simultaneous induction on the derivation of rootedness (implied by explicitness

in part 2). Part 1:

• Case π rooted in [= τ′ : κ]: Then π = τ′. Inverting subtyping, we know

Σ = [= τ′′ : κ] with τ′′ = τ′[τ/α]. By substitution, π[τ/α] = τ′[τ/α], and hence
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transitively, τ′′ = π[τ/α] = (α α1)[τ/α] = τ α1. So lookupπ([= τ′′ : κ], [= τ′ :

κ]) ↑ τ α1.

• Case π rooted in [= π′ : τ]: Analogous.

• Case π rooted in {l′ : Σ′}: Then π rooted in {l′ : Σ′}.l avoiding α. Inverting

subtyping, we know Σ = {l : Σ} and Γ 
 {l : Σ}.l � {l′ : Σ′}.l[τ/α]. In-

verting well-typedness and validity/explicitness, Γ 
 {l : Σ}.l : Ω valid and

Γ, α 
 {l′ : Σ′}.l : Ω explicit. Then by invoking the induction hypothesis,

lookupπ({l : Σ}.l, {l′ : Σ′}.l) ↑ τ α1.

• Case π rooted in ∀α′
1.Σ

′
1 →P Σ′

2: Then π α′
1 rooted in Σ′

2 avoiding α and

fv(Σ′
1)∩α = ∅. Let Γ′ = Γ, α′

1. Inverting subtyping, we know Σ = ∀α1.Σ1 →P Σ2

and Γ′ 
 Σ′
1[τ/α] � ∃α1.Σ1 ↑ τ1 and Γ′ 
 Σ2[τ1/α1] � Σ′

2[τ/α]. Moreover,

inverting well-typedness and validity/explicitness gives Γ, α, α′
1 
 Σ′

1/Σ
′
2 : Ω

explicit and, after weakening, Γ′, α1 
 Σ1/Σ2 : Ω explicit/valid, where α1

rooted in Σ1.

By substitution and Lemma 9.3, Γ′ 
 Σ′
1[τ/α] : Ω valid. By typing rules and

definition of explicitness, Γ′ 
 ∃α1.Σ1 : Ω explicit. Consequently, we can invoke

the induction hypothesis (part 2), and have lookupα1
(Σ′

1[τ/α],Σ1) ↑ τ1. Because

of the variable side condition on functor rootedness, Σ′
1[τ/α] = Σ′

1. Moreover,

because α /∈ fv(Σ1) ∪ Σ′
1[τ/α] by variable containment, Lemma 9.5 implies

α /∈ fv(τ1). That gives the first half of the definition of lookup in functors.

Now, by soundness of type lookup, Γ′ 
 τ1 : κα1
. By substitution and

Lemma 9.3, Γ′ 
 Σ2[τ1/α1] : Ω valid. We invoke the induction hypothesis

a second time (this time on part 1) and get lookupπ α′
1
(Σ2[τ1/α1],Σ

′
2) ↑ τ α1 α

′
1.

Consequently, we can derive lookupπ(Σ,Σ
′) ↑ λα′

1.τ α1 α
′
1, and by η-equivalence,

λα′.τ1 α1 α
′ = τ1 α1.

Part 2: inverting ∃α.Σ′ explicit implies α rooted in Σ′.

• Case ε rooted in Σ′: Then there is nothing to show.

• Case α, α′ rooted in Σ′: Then α rooted in Σ′ avoiding α, α′, and α′ rooted in

Σ′. Inverting matching implies Γ 
 Σ � Σ′[τ, τ′/α, α′] with Γ 
 τ : κα and

Γ 
 τ′ : κα′ .

From inverting well-typedness and explicitness we get Γ, α, α′ 
 Σ′ : Ω explicit.

Let π = α. Then we can invoke part 1 of the induction hypothesis to get

lookupα(Σ,Σ
′) ↑ τ. By variable containment, fv(τ) ∩ α′ = ∅.

By substitution and Lemma 9.3, Γ, α′ 
 Σ′[τ/α] : Ω explicit and α′ rooted in

Σ′[τ/α], and so, Γ 
 ∃α′.Σ′[τ/α] : Ω explicit. Because Γ 
 τ : κα and Γ 
 τ′ : κα′ ,

we know via variable containment that Σ′[τ, τ′/α, α′] = Σ′[τ/α][τ′/α′]. With

rule U-match we can then construct the derivation Γ 
 Σ � ∃α′.Σ′[τ/α] ↑ τ′.

With that, we can invoke part 2 of the induction hypothesis, to also get

lookupα′ (Σ,Σ′) ↑ τ′. �

As before, this property is sufficient to imply decidability of matching. (In addition,

when we apply the matching rule U-match algorithmically, we do not actually need

to check the rule’s side condition on the well-formedness of the types we have looked

up, because it is already implied by soundness of lookup.)
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Corollary 9.9 (Decidability of matching with applicative functors)

Assume that Γ is well-formed and valid, and also that Γ 
 τ � τ′ � f is decidable

for types well-formed under Γ. If Σ valid and Ξ explicit, and both are well-formed

under Γ, then Γ 
 Σ � Ξ ↑ τ � f is still decidable in the presence of applicative

functors and the relaxed definition of rootedness from Figure 41.

Decidability of elaboration then follows as well, even though the elaboration

rules under the applicative functor extensions are no longer purely syntactic: rules

M-funct-i and M-funct-p overlap. However, they have disjoint premises, and thus

the overlap does not induce any non-determinism. In the case of the multiple

rules for value bindings, we have ensured the absence of overlap via syntactic side

conditions.

Corollary 9.10 (Decidability of elaboration with applicative functors)

Under valid and well-formed Γ, provided we can (simultaneously) show that core

elaboration is decidable, then all judgments of module elaboration with applicative

functors are decidable, too.

Remark. At this point, the alert reader may ask: Where did the alleged simplicity

go? It is true that the above decidability proof is not as simple anymore. However,

we like to make a couple of observations.

First, the complexity witnessed above is only concerned with (signature matching

for) applicative functors. The basic system from Sections 2–6, with generative

functors only, is not affected. It is not completely surprising that applicative functors

are more complex, considering the difficulties they have caused historically.

Second, the declarative semantics of the system with applicative functors is only

mildly more involved than that of the basic system. From our perspective, the rules

are still fewer and smaller than in any of the previous accounts of applicative

functors — especially considering that they also do more. Moreover, the soundness

proof from Section 9.1 is not substantially harder than the one for the basic system

(Section 5.1) — and that arguably is all that is needed to understand the type system.

What gets more complicated is the algorithm to implement type lookup (Sec-

tion 9.2) — or rather, the proof that this algorithm (which, by itself, is only a few

lines of code) is complete. However, this algorithm arguably is only relevant to

implementors, and its correctness proof only interesting to experts.

It is also worth noting that a fair amount of the encompassing complexity may

actually be incidental. It is mainly due to the fact that our rules, unlike in most

other systems, separate type lookup from subtyping. We chose this design because

it makes the declarative subtyping rules pleasantly minimalist. For the basic system

it also makes for an almost trivial lookup algorithm (Section 5.2). However, with

the generalization to applicative functors, this factoring leads to a more complicated

algorithm: in that system, lookup and subtyping become intertwined, which means

that to separate them, lookup has to duplicate some of the work of subtyping, and its

correctness proof needs to make sure that both algorithms operate in sync. The issue

of rootedness could be avoided by decorating semantic signatures with “locators”

(compare with Rossberg & Dreyer (2013)). A more traditional, interleaved, and
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algorithmic definition of matching would eliminate the need for a correctness proof

altogether (while slightly complicating the declarative semantics and its soundness

proof). We leave further exploration of this option to future work.

Finally, it is also worth pointing out that our novel tracking of dynamic purity

and dynamic module equivalence (Section 8) turns out to be only a minor extension

to the system. In particular, it does not affect most of the definitions or proofs in a

significant way — since value paths are modeled as phantom types, they are handled

by the exact same mechanisms as ordinary abstract types.

10 Mechanization in Coq

One of our original motivations for the F-ing approach was that a simpler semantics

for modules would be an easier starting point for language mechanization. As a proof

of concept, we embarked on mechanizing the elaboration semantics of Sections 4

and 6 (but omitting normalization), and proved the soundness result of Theorem 5.1,

but including module packages.

We did so using Coq (Coq Development Team, 2007) and the locally nameless

approach (LN) of Aydemir et al. (2008). (There is no reason we could not have

used other proof assistants such as Twelf or Isabelle; but we were interested in

learning Coq and testing the effectiveness of the locally nameless approach.) This

effort required roughly 13,000 lines of Coq code. As inexpert users of Coq, we

made little use of automation, so most likely, the proofs could easily be shortened

significantly.

As with any mechanization, there are some minor differences compared with the

informal system. Our mechanized Fω is simpler than the one we use here in that

it supports just binary products, not records. Instead, we encode ordered records

as derived forms using pairs, with derived typing rules, and target those during

elaboration. Ordered records are easier to mechanize, yet adequate for elaboration.

The Fω mechanization does not allow rebindings of term variables in the context

as our informal presentation does. Indeed, using the LN approach, subderivations

arising from binding constructs have to hold for all locally fresh names. In the

mechanization, we had to abandon the use of the injection from source identifiers to

Fω variables, and instead use a translation environment that twins source identifiers

(which may be shadowed) with locally fresh Fω variables (which may not). In this

way, source identifiers are used to determine record labels, while their twinned

variables are used to translate free occurrences of identifiers. Lee et al. (2007) use a

similar trick in their Twelf mechanization of Standard ML.

Our use of a non-injective record encoding means that different semantic signa-

tures may be encoded by the same type. To avoid ambiguity, the mechanization

therefore introduces a special syntactic class of semantic signatures (corresponding

to the grammar in Figure 9), and separately defines the interpretation of semantic

signatures as System Fω types by an inductive definition (again much like the

syntactic sugar definitions in Figure 9). Consequently, the mechanized soundness

theorems state that if C 
 M : Ξ � e, then C◦ 
 e : Ξ◦, where ◦ denotes the

interpretation of elaboration environments and semantic signatures into plain Fω
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contexts and types. In retrospect, it would perhaps have been simpler to just beef

up our target language with primitive records (as we have done on paper here). In

any case, this issue is orthogonal to the rest of the mechanization effort.

Our experience of applying the LN approach as advertised was more painful than

we had anticipated. Compared to the sample LN developments, ours was different

in making use of various forms of derived n-ary (as well as basic unary) binders and

in dealing with a larger number of syntactic categories. Although we implemented

the n-ary binders as derived forms over the unary ones provided by basic Fω , we still

needed derived lemmas for n-ary substitution (substituting locally closed terms for

free names) and n-ary open (for opening binders with locally closed terms). Then we

needed lemmas relating the commutation of all the combinations of n-ary and unary

operations. The final straw was dealing with rules (notably for sequencing of binding

and declarations) that required us to extend the scope of bindings over terms from

subderivations. Doing this the recommended way requires the introduction of a third

family of closing operations (the inverse of open), for turning named variables back

into bound indices, together with a plethora of lemmas needed to actually reason

about them (again with unary and n-versions of close and all possible commutations).

We managed to work around these two cases by expressing the desired properties

indirectly using additional (and thus unsatisfactory) premises stipulating equations

between opened terms.

In the end, out of a total of around 550 lemmas, approximately 400 were tedious

“infrastructure” lemmas; only the remainder had direct relevance to the meta-theory

of Fω or elaboration. The number of required infrastructure lemmas appears to be

quadratic in the number of variable classes (type and value variables for us), the

number of “substitution” operations needed per class (we got away with only using

LN’s subst and open, and avoiding close) and the arity classes (unary and n-ary)

of binding constructs. So we cannot, hand-on-heart, recommend the vanilla LN

style for anything but small, kernel language developments. It would, however, be

interesting to see whether more recent proposals to streamline the LN approach

(Aydemir et al., 2009) could significantly shorten larger developments like ours,

without obscuring the presentation.

Despite the tedium, the mechanization still turned out to be relatively straight-

forward overall, and did not require any technical ingenuity. We believe that a Coq

user with more experience than us (or somebody with respective experience using

another proof assistant) but without specialist background in modules, could easily

have carried it out without much effort.

11 Related work and discussion

The literature on ML module semantics is voluminous and varied. We will therefore

focus on the most closely related work. A more detailed history of various accounts

of ML-style modules can be found in Chapter 2 of Russo’s thesis (1998; 2003).

Existential types for ADTs. Mitchell & Plotkin (1988) were the first to connect the

informal notion of “abstract type” to the existential types of System F. In F, values
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of existential type are first-class, in the sense that the construction of an ADT may

depend on run-time information. We exploit this observation in our elaboration of

sealed structures, and more directly, in our support for modules as first-class values

(Section 6), both of which are simply existential packages.

Cardelli & Leroy (1990) explained how to interpret the dot notation, which arises

naturally when defining ADTs as modules, via a program transformation into uses

of existentials. The idea is to unpack every existential immediately, such that the

scope of the unpack matches the scope of the module definition. Our elaboration’s

use of unpacking and repacking can be viewed as a more compositional extension

of this basic idea.

Dependent type systems for modules. In a very influential position paper, MacQueen

(1986) criticized existential types as a basis for modular programming, arguing that

the closed-scope elimination construct for existentials (unpack) is too weak and

awkward to be usable in practice. MacQueen instead promoted the use of dependent

function types and “strong sums” (i.e., dependently-typed record/tuple types) as a

basis for modular programming. Since then, there has been a long line of work

on understanding and evolving the ML module system in terms of increasingly

more refined dependent type theories (Harper et al., 1990; Harper & Mitchell, 1993;

Harper & Lillibridge, 1994; Leroy, 1994; Leroy, 1995; Leroy, 1996; Shao, 1999;

Dreyer et al., 2003; Dreyer, 2005).

On the design side, the work on dependent type systems led to significant

improvements in the expressiveness of ML modules, most notably the idea of

translucency — i.e., the ability to include both abstract and transparent type

declarations in signatures — which was independently proposed by Harper and

Lillibridge (1994) and Leroy (1994). On the semantics side, however, the use of

dependent type formalisms unleashed quite a can of worms. Several ideas and issues

pop up again and again in the literature, and for the most part the “F-ing modules”

approach either renders these issues moot or offers straightforward ways of handling

them.

One recurrent notion is phase separation, which is essentially the observation

that the “dependent” types in these module systems are not really dependent. The

signature of a module may depend on the type components of another module, but

not on its value components. Thus, as Harper et al. (1990) showed (for an early

ML-style module system without translucency or sealing), one can “phase-split” a

(higher-order) module into an Fω type (representing its type components) and an

Fω expression (representing its value components). Our approach of interpreting

ML modules into Fω is of course completely compatible with the idea of phase

separation, since we don’t pretend our type system is dependent in the first place.

Another recurrent notion is projectibility — that is, from which module expressions

can one project out the type and value components? As Dreyer et al. (2003) observed,

the differences between several different dialects of the ML module system can

be characterized by how they define projectibility. Most dependent module type

systems define projectibility by only allowing projections from modules from a

certain restricted syntactic class of paths. We also employ paths, but define them
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semantically to be any module expressions whose signatures do not mention any

“local” (i.e., existentially-quantified) abstract types. We consider this criterion to be

simpler to understand and less ad hoc. Russo (1998) describes and formalizes a

similar notion of “generalized path”, with an analogous type-based restriction, as

part of his system of higher-order functors. But the motivation is solely the ability

to express paths like (F M).t, whereas for F-ing modules, we harvest their expressive

power as a way of simplifying the language and its rules.

A common stumbling block in dependent module type systems is the so-called

avoidance problem. Originally observed in the setting of (a bounded existential

extension of) System F� by Ghelli & Pierce (1998), the avoidance problem is

roughly that a module might not have a principal signature (i.e., minimal in the

subtyping hierarchy) that “avoids” (i.e., does not depend on) some local abstract

type. As principal signatures are important for practical typechecking, dependent

module type systems typically either lack complete typechecking algorithms (e.g.,

Lillibridge (1997) and Leroy (2000)) or else require (at least in some cases) extra

signature annotations when leaving the scope of an abstract type (e.g., Shao (1999),

Dreyer et al. (2003)). In contrast, under our approach the avoidance problem does

not arise at all: the semantic signature ∃α.Σ of a module M keeps track of all the

abstract types α defined by M, even those which have “gone out of scope” in the

sense that they are not “rooted” anywhere in Σ (to use the terminology of Section 5).

Thus, the only point at which we need to “avoid” anything is when we typecheck a

path; at that point, we need to make sure that its signature does not depend on any

local abstract types. Of course, at that point the avoidance check is not a “problem”

but rather the crucial defining element of well-formedness for paths.

Elaboration semantics for modules. Our avoidance of the avoidance problem is due

primarily to our use of an elaboration semantics, which gives us the flexibility to

classify a module using a semantic signature Ξ that is not the translation of any

syntactic signature S (i.e., it is valid, but not explicit, as defined in Section 5.2).

Harper & Stone (2000) exploit elaboration in a similar fashion and to similar

ends. One downside of this approach, some (e.g., Shao (1999)) would argue, is that

one loses “fully syntactic” signatures — i.e., the ability to express the full static

information about any module using a syntactic signature, and thus typecheck the

module independently from the context in which it is used. But it is not clear

that in practice this is really such a big deal, because a programmer can always

avoid “non-syntactic” signatures by either adding a binding or an explicit signature

annotation. In fact, Shao’s approach to ruling out non-syntactic signatures would

simply amount to restricting the projection rule M-dot (Figure 14) in the same way

as the path rule P-mod (Figure 17) in our system, thereby forcing the programmer

to take these measures.

Perhaps a more serious concern is: how does the elaboration semantics we

have given here correspond to existing specifications of ML modules, such as

the Definition of SML or Harper-Stone? In what sense are we formalizing the

semantics of “ML modules”?
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The short answer is that it is very difficult to prove a precise correspondence

between different accounts of the ML module system. In the few cases where

such proofs have been attempted, the formalizations in question were either not

representative of the full ML module system (e.g., Leroy (1996)) or were lacking

some key component, such as a dynamic semantics (e.g., Russo (1998)). Moreover,

one of the main advantages of our approach (we believe) is that it is simpler

than previous approaches. We are not so interested in “correctness”, i.e., whether

our semantics precisely matches that of Standard ML, the archaeological artifact;

rather, we wish to suggest a way forward in the understanding and evolution of

ML-style module systems. That said, we believe (based on experience) that our

semantics for modules in Section 4 is essentially a conservative extension of SML’s,

as well as the generative fragment of Moscow ML (Russo, 2003).

Higher-order modules and applicative functors. The main way in which the language

defined in Section 4 diverges from Standard ML is its support for higher-order

modules, which constitute a relatively simple extension if one sticks to the generative

semantics for functors. (Our semantics for higher-order modules in that section is

similar to that of Leroy (1994; 1996) and Harper & Lillibridge (1994).) However,

as a number of researchers noted in the early years of ML modules, the generative

semantics is also fairly restrictive, because it assumes conservatively that any types

specified abstractly in the result signature of an unknown functor will be generated

anew every time the functor is applied. For example, if a higher-order functor H

has a functor argument F of type S → S , then H must account for the possibility

that F is instantiated with an impure/generative functor and treat it as such

during the typechecking of H ’s body, even though H may in fact be instantiated

with a transparent F like the identity functor. Thus, under a generative semantics,

abstraction over functor arguments can result in the rejection of seemingly reasonable

programs due to insufficient propagation of type information.

Harper et al. (1990) were the first to propose the use of an applicative semantics

(although they did not call it that) for achieving more flexible typechecking of

higher-order functors. Leroy (1995) later popularized the idea of applicative functor

semantics in the setting of a more fully realized module language, and it is his

semantics that serves as the basis of OCaml’s module system. In addition to better

supporting higher-order modules, Leroy also motivated applicative semantics by the

desire to treat semantically equivalent types (e.g., integer sets) as equivalent, even if

they were created by separate (but equal) instantiations of the same functor. Indeed,

this latter motivation has in practice turned out to be arguably more compelling

than the one concerning higher-order modules.

As we pointed out at the beginning of Section 8, the applicative functor se-

mantics does not obviate generative semantics — both are appropriate in different

instances — but constructing a language that supports and reconciles both forms

has proven very difficult. Several proposals have been made (Shao, 1999; Dreyer

et al., 2003; Russo, 2003), but all of them suffer from breaking abstraction safety

(cf. Section 8 for examples).
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Our semantics of applicative functors in Sections 7 and 8 is novel and does

not correspond directly to any existing account. As we explained in those sections,

our motivation has been to provide an account of applicative functors that is (a)

simple, (b) abstraction-safe, and (c) not overly conservative. To achieve simplicity,

we adopt the adage that “applicative = pure” and “generative = impure”. To

achieve abstraction safety, we employ “stamps” (modeled as hidden abstract types)

to statically track the identity of values, so that, for instance, the identity of the

type of sets can depend (as it should) on the identity of the comparison function by

which its elements are ordered. While this approach is necessarily conservative (in

order to ensure decidability of typechecking), it is no more conservative than other

abstraction-safe designs, and we have tried to be as liberal as possible by tracking

identity at the level of individual value components.

Technically, our semantics for applicative functors is based closely on the formu-

lation in Russo’s thesis (Russo, 1998). Although we believe the applicative higher-

order modules of Russo (1998) to be sound, their subsequent integration with

Standard ML modules in Moscow ML turned out not to be (Dreyer et al., 2002).

In an attempt at backward compatibility, Moscow ML’s early releases supported

both applicative and generative higher-order functors. The typing relation was

a seductively straightforward integration of both the generative and applicative

rules. Dreyer’s counterexample to type soundness is recounted by Russo (2003),

together with a relatively simple, if unproven, fix. Even if a revised Moscow ML

can be proven type sound, we claim that the marriage of applicative and generative

functors presented in this article remains superior, by offering abstraction safety

over and above simple type safety. In our refined system, only those abstract types

whose invariants are guaranteed not to be tied to mutable state are rendered

applicative. Moscow ML provides no such guarantee and freely allows the coercion

of a generative into an applicative functor (by simple η-expansion).

We credit Biswas (1995) with discovering the skolemization technique for typing

applicative higher-order functors: he used it to introduce higher-kinded universal

quantifiers, parameterizing a higher-order functor on its argument’s type dependen-

cies in order to propagate actual dependencies at application of the functor (by

implicit type application). The contribution of Russo (1998) was to additionally

use higher-kinded existential quantifiers to abstract (and thus hide) concrete type

dependencies at module sealing (by an implicit pack). Shao (1999) uses a similar

skolemization technique, with the difference being that he collects all abstract types

of a given module into a single variable of higher-order product kind (the module’s

“flexroot”), instead of quantifying them separately in a sequence of individual

variables. Unfortunately, employing this “uncurried” formulation would necessitate

jumping through extra hoops to handle the avoidance problem or constructs like

where (besides relying on a mild extension to Fω ’s type language).

We point out that the addition of applicative signatures alone (i.e., the basic

system from Section 4, extended with only the rules from Figure 26, but without the

refined module elaboration from Figure 29) subsumes the more limited applicative

functors of Shao (1999). Shao’s system, like ours, distinguishes between opaque and

transparent functor signatures, with the latter using higher-order type constructors
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to abstract over static type dependencies. The difference is that in Shao’s system, the

only way to introduce an applicative functor is to seal a fully transparent functor

by an applicative functor signature. This simple design choice has as an unfortunate

side-effect: in Shao’s system, unlike ours, a user cannot use sealing within the

body of an applicative functor. The ability to use sealing inside an applicative

functor is a desirable feature, since in principle one may wish to impose abstraction

boundaries at any point inside a module, and indeed it is supported by most other

designs, including our own. Furthermore, we depend crucially on this feature in our

semantics of value sharing (via phantom types), which we depend on in turn to

ensure abstraction safety. Specifically, we treat every value binding in a module as if

it were a little sealed submodule, introducing an abstract phantom type to statically

represent the identity of the value. In a system like Shao’s, such an approach would

automatically cause any functor (with a value component in it) to be treated as

generative. Consequently, we do not know how to effectively enforce abstraction

safety in a system like Shao’s.

The module calculus of Dreyer et al. (2003) provides support for both the “strong”

Shao-style sealing construct, which demands generativity of (immediately) enclosing

functors, and a “weak” variant of sealing, which does not demand generativity and

may thus be used inside applicative functors. Dreyer et al. account for these two

variants in terms of a dichotomy between “dynamic effects” and “static effects”. In

our system, we have only retained the weak variant of sealing (adjusted to properly

ensure abstraction safety), because our point of view is that the need for generativity

has solely to do with the computational effects in the module being sealed, and

that sealing per se is not a computational effect. Of course, if one really wished to

“strongly seal” a pure module in our language, one could easily do so by inserting

an impure no-op expression into the body of the module, thus inducing a pro forma

effect. But we see no compelling reason for wanting to strongly seal a pure module.

An alternative semantics for higher-order functors was proposed by MacQueen

& Tofte (1994), but it relied fundamentally on the idea of re-elaborating a functor’s

body at each application. In recent work, Kuan & MacQueen (2010) have investi-

gated how to account for such a semantics in a more satisfactory way by tracking the

“static effects” of higher-order functors in an “entity calculus”. However, it remains

unclear how to reconcile their approach, which underlies the module system of

modern-day SML/NJ, with the tradition of type-theoretic accounts of ML modules

to which “F-ing modules” belongs.

Interpreting ML modules into Fω . We are certainly not the first to explain ML

modules by translation into Fω . Harper et al. (1990) give a “phase-splitting”

translation of an early ML module calculus into an Fω-like language, but do

not yet deal with the crucial aspect of type generativity. As mentioned above,

Cardelli & Leroy (1990) show how a calculus with dot notation — i.e., with a mildly

dependently-typed variant of System F existentials whose witness type is projectible

on the type level — can be translated down to plain System F existential. Shao (1999)

gives a multi-stage translation of his more advanced module calculus into a language

called FTC, which is a variant of Fω enriched with Cardelli/Leroy-style dot notation
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and a restricted form of dependent products for expressing functors. However, he

does not provide any translation of this language into Fω itself, and it is not obvious

how to extend the Cardelli/Leroy translation to FTC.

Shan (2004) presents a type-directed translation of the Dreyer–Crary–Harper

module calculus (Dreyer et al., 2003) into Fω . His translation naturally uses some

techniques similar to ours. In particular, his translation of signatures closely mirrors

that of Russo (1998; 1999; 2003), and to translate module terms, he opens and

repacks existentials in the same way we do. Our elaboration also borrows from

Shan the technique of abstracting over the whole environment for the translation of

applicative functors.

The biggest difference between these previous translations and ours is that the

previous ones all start from a pre-existing dependently-typed module language and

show how to translate it down to Fω . This translation is directed by (and impossible

without) the types and contexts from the source language. We instead use the

type structure of Fω in order to give a static semantics for ML modules directly.

Thus, we feel our approach is simpler and more accessible to someone who already

understands Fω and does not want to learn a new dependent type system just in

order to understand the semantics of ML modules.

As explained in the introduction, our approach can be viewed as giving an evidence

translation, and thus a soundness proof, for (a variant of) the static semantics of

SML modules given in Russo’s thesis (Russo, 1998; Russo, 1999). Russo started

with the Definition of Standard ML (Milner et al., 1997), and observed that its

ad hoc “semantic object” language could be understood quite clearly in terms of

universal and existential types. A key observation, also made by Elsman (1999),

was that the state of generated type variables, threaded as it was through the

static semantics of SML, could be presented more declaratively as the systematic

introduction and elimination of existential types. Given the non-dependent, Fω-like

structure of the semantic objects, it was also relatively straightforward to extend

them to higher-order and first-class modules (Russo, 1998; Russo, 2000).

We point the interested reader to Chapter 9 of Russo’s thesis (1998; 2003) for an

in-depth comparison with the non-dependent approach to modules that he pioneered

(and that the F-ing approach is derived from), giving targeted examples to pinpoint

the problems with dependently typed accounts and how they are avoided by this

approach.

It is worth noting that our approach also scales to handle more ambitious module-

language extensions, at least if one is willing to beef up the target language somewhat.

Inspired by Russo’s work, Dreyer proposed an extension of Fω called RTG (Dreyer,

2007a), which he and coauthors later used as the target of an elaboration semantics

for recursive modules (Dreyer, 2007b), mixin modules (Rossberg & Dreyer, 2013),

and modules in the presence of type inference (Dreyer & Blume, 2007). These

elaboration semantics are similar to ours in that they use the type structure of

the (beefed-up) Fω language in order to directly encode semantic signatures for

ML-style modules. However, our semantics is significantly simpler, since we are only

trying to formalize a non-recursive ML-like module system and we are only using

plain Fω as the target language.
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Mechanization of module semantics. Lee et al. (2007) mechanized the meta-theory

of full Standard ML, based on a variant of Harper–Stone elaboration given by

Dreyer in his thesis (Dreyer, 2005). It is difficult to compare the mechanizations,

since theirs uses Twelf. However, it is worth noting that a significant piece of

their mechanization is devoted to proving meta-theoretic properties of their target

language, which employs singleton kinds (Stone & Harper, 2006). In contrast, since

our internal language is so simple and well-studied, we largely took it for granted

(though we have proved the Fω properties that we use).

Direct modular programming in Fω . Lastly, several authors have advocated doing

modular programming directly in a rich Fω-like core language like Haskell’s (Jones,

1996; Shields & Peyton Jones, 2002; Shan, 2004), using universal types for client-side

data abstraction and existential types for implementor-side data abstraction. Several

other authors (MacQueen, 1986; Harper & Pierce, 2005) have argued why this

approach is not practical. The common theme of the arguments is that Fω is too

low-level, a language to program modules in directly, and that ML modules provide

a much higher-level idiom for modular programming. More recently, Montagu

& Rémy (2009) have proposed directly programming in a variant of Dreyer’s

RTG (Dreyer, 2007a) (see above), because RTG addresses to some extent the

limitations of closed-scope existential elimination. However, RTG is still quite low-

level compared to ML modules.

In some sense, the point of the present article is to observe that the high-level

elegance of ML modules and the simplicity of Fω typing are not mutually exclusive.

One can understand ML modules precisely as a stylized idiom — a design pattern,

if you will — for constructing Fω programs. The key benefit of programming this

idiom using the ML module system, instead of directly in Fω , is that elaboration

offers a significant degree of automation (e.g., by inferring signature coercions and

implicitly unpacking/repacking existentials), which in practice is extremely useful.

12 Conclusion

In this article, we have shown that it is possible to give a direct, type-theoretic

semantics for a comprehensive ML-style module system by elaboration into standard

System Fω . In so doing, we have also offered a novel account of applicative versus

generative functor semantics (via a simple “pure/impure” distinction), which avoids

the problems with abstraction safety that have plagued previous accounts.

Our main focus has been on semantics — a concern that we have not addressed

in this article is implementation. As already alluded to in several places (such as

Sections 4 and 7.3), we do not expect a real-world compiler to implement the F-ing

rules verbatim. Obvious optimizations include: eliminating redundant administrative

redexes at compile time, introducing type tuples to group semantic type parameters

into single variables (effectively reconstructing structure stamps), lazily expanding

type abbreviations, and minimizing the environments abstracted over by applicative

functors. It also seems preferable for compilers to reconstruct user-friendly syntactic

type expressions where possible when presenting semantic types to users. Most of
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these techniques are well known, and we do not envision any particular difficulties

in applying them to our system. But such concerns are outside the scope of this

article.

Finally, while our semantics of ML modules accounts for almost all of the major

features that can be found either in the literature or in the various implemented

dialects of ML, there is one key feature we have left out: recursive modules. As

Dreyer (2007a) has observed, the combination of recursion and ML-style abstract

data types seems to demand an underlying type theory that goes beyond plain

System Fω , and moreover, in our opinion, doing recursive modules “right” requires

abandoning some of the fundamental design decisions of traditional ML modules.

Nevertheless, the basic ideas of the “F-ing” approach still apply: a semantics for

recursive modules can be given using a variation of our elaboration, and targeting

a language that is a conservative extension of Fω . The first and last authors’ work

on MixML, a module system with recursive mixin composition, explores precisely

that path (Rossberg & Dreyer, 2013).
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