
Procedural Generation of Narrative Puzzles
in Adventure Games: The Puzzle-Dice System
Clara Fernández-Vara

Massachusetts Institute of Technology
telmah@mit.edu

Alec Thomson
Massachusetts Institute of Technology

alect@mit.edu

ABSTRACT
This project tackles procedural generation of narrative puzzles
found in adventure games. The challenge is not only generating
the puzzles in games which traditionally only have one
walkthrough, but also making the development process accessible
to designers. Given that the goal is to make these games playable
and easy to develop, the focus of this project is facilitating the
immediate development of these games. This paper describes the
system of procedural generation of one game, Symon, which was
the reference and inspiration for a standalone toolset, the Puzzle
Dice System to create other adventure games with procedurally
generated puzzles. The toolset has been put to the test with
another game, Stranded in Singapore, and it is still being
expanded and improved on at the moment of writing.

Categories and Subject Descriptors
D.2.2. [Design Tools and Techniques]: Object-oriented design
methods – games.

K.8.0 [Personal Computing]: General – games.

General Terms
Algorithms, Design, Economics, Experimentation, Human
Factors.

Keywords
Procedural generation, adventure games, puzzles, narrative.

1. INTRODUCTION
Procedurally generated content in videogames has been relatively
common since games like Rogue. While it has become easier to
generate game spaces and levels, as well as mathematical puzzles,
one of the current challenges is incorporating narrative into
procedurally generated content. Previous academic research has
focused mainly on procedural level generation for video games [2,
4]; other specific work on procedurally generated content is
specific to puzzle research: Ashmore [1] focuses on “lock and
key” puzzles while Doran and Parberry [3] have constructed a
procedural quest model based common structures of quests from
MMORPGs.
This project brings procedurally generated content to a different
application of narrative games—the generation of narrative-driven

puzzles in adventure games. For our purposes, “adventure games”
refers to the family of games whose design derives from Crowther
and Woods’ Adventure, a.k.a. Colossal Cave Adventure. They are
story-driven games, where the player controls a character or
characters; the main mode of gameplay is solving puzzles that are
integrated in the environment; the solution to the puzzles is found
by exploring the space and objects and the possibilities to
manipulate them [5]. Traditionally, the player advances in the
story of the game by solving puzzles; since the narrative is usually
pre-set, the puzzles and the story always remain the same. Even
when there may be multiple endings, these endings are usually
pre-determined by the designer.
The challenge tackled here is generating narrative puzzles
procedurally, to make adventure games replayable. The puzzles
must both make sense from a logical standpoint as well as
narrative. This paper will overview the design challenge, as it was
first tackled in the game Symon [7], and the subsequent
development of tools to develop games that make it easier to
create similar adventure games with procedurally generated
puzzles. The project focuses on procedural generation as a design
problem, rather than a computational issue.

2. THE PROBLEM
The initial idea was to create an adventure game where the
puzzles were different whenever one started the game. Thus the
player would find new challenges in subsequent replays. There are
many types of narrative puzzles in adventure games, which were
the ones we were aiming at generating. Here are a few examples:

- giving an object to someone who will provide a reward
in exchange.

- combining two items that result in a new object.

- disassembling an object.

- restoring an object to its original state.

- saying the right thing to convince a character to help the
player.

- providing a key that gives the player access to a new
area.

These high-level examples are patterns that derive from adventure
games [5], and constitute the foundation of the system. The
gameplay would be based on a set of puzzles, which would
concatenate these patterns to make up the structure of the game,
which we will call puzzle map. The map establishes the
relationships between puzzles, so that solving a puzzle provides
an item or information to solve another puzzle. For example, by
taking the battery from a radio (disassembling an object), one can
use it to make a flashlight work (restoring an object to its original
state). See Figure 1 as a sample map of how puzzles would relate
to each other. During the conceptual phase of this project, the

Procedural Generation Content Workshop at Foundations of Digital
Games 2012, May 29th, 2012, Raleigh, North Carolina, USA.

designer would come up with both the puzzle patterns and the
puzzle map; the procedural generation would consist of inserting
the patterns in the pre-designed map, so that the outcome of one
puzzle would be necessary to resolve another puzzle or finish the
game.

Figure 1: Sample puzzle map of an adventure game.

3. THE INITIAL SYSTEM – SYMON
In order to create the system that would generate the puzzles, the
structural idea was inspired by the GRIOT system [6] to generate
poetry procedurally. GRIOT allows writers to define first a
general structure of stanzas and topics, which is the higher level
structure that will be populated with sentences. Then the system
allows poets to define grammatical structures, which are later
filled up with words according to specific semantic criteria and
grammatical categories (such as noun, verb, etc.). In a similar
way, the puzzle map and puzzle patterns like the ones described
above constitute the higher level, and the puzzle patterns could be
populated with characters and objects that fulfilled specific
criteria.
Each of the characters and objects to populate the pattern would
have a set of properties (for example: character, temperature,
color, taste, carryable); and each property would have a set of
possible values (for instance: temperature could be hot or cold).
The system would fill out the puzzle pattern according to their
categories and attributes. For example:

Give character1 item1
[temperature=cold] then reward with
item2 [edible]

or
Combine item3 [temperature=hot] with
item4 [temperature=lukewarm] then
change item4 [color=red].

This defines two different areas of design: on the one hand, the
designer devises the puzzle map and a series of puzzle patterns,
which acted like the grammatical structure for the puzzle. The
other part of the system consisted of a database of objects and
characters. The generation takes place by selecting items in the
database that fulfill the requirements of the grammatical structure
of the puzzle.
The advantage of this system is that it sidesteps the need to have
an AI solver, which checks whether the puzzles are solvable or not
or whether there are duplicate objects, because the items must fit
in the corresponding slot to be solvable, and once an item has

been placed in a slot, it cannot be reused. If an object does not
fulfill the condition that the puzzle pattern requires, it will not be
placed in that slot, and if the generator cannot complete a map
with objects that fulfill all the conditions, it will discard the
generated puzzles and start over.
This system was the basis for the game Symon [7], which was
developed by a team of students during the summer 2010. The
premise of the game is that the player is in the dreams of a
paralyzed patient; the dream-like quality of the puzzles would be
supported by the procedural generation. For example, in a dream
setting, using paint to change the flavor of a box of chocolate is
plausible, giving the design of the game more room for
experimentation.

3.1 Evaluation of the Initial system
The design of Symon succeeded in creating a point-and-click
adventure game that was replayable. Each playthrough takes 5 to
15 minutes to complete, depending on the familiarity of the player
with adventure games, and the game can be replayed hundreds of
times. There are three pre-determined endings, so that each time
the game starts, the system selects an ending; if the player
completes the session, that ending is marked as complete so that
in the next playthrough the system will select one of the other two
endings. This system of endings creates a story arch that provides
insight on the story—each ending refers to one aspect of the
character’s life.
Because of specific design decisions, which will be described
below, the game also becomes relatively repetitive after several
playthroughs (enough to see all the endings, and get a sense of all
the objects). Some of the issues of the design and the development
process derive from problems encountered during development.
One of the first problems was that there is only one basic puzzle
pattern, which is a simple fetch quest.

NPC or station wants item1[state1] →
player gets Item2 [state] or
finalItem.

Example: Carnivore plant wants a box of chocolates [bitter] → get
bouquet flowers [red]
This basic pattern admits variations that result in different
patterns, depending on whether the state is relevant or not to
complete the puzzle, for example:

NPC or station [state1] wants item1
[state2] to change NPC or station to
[state3] → player gets [item2]

Example: Children [asleep] want music box [raspy] to make
Children [awake] → get [family photo]
or

NPC wants Change item1 [state2]
Item2 [state2] is changed by
combining it with station or item2
[state2].

Give item1 [state] to NPC → get item2
[state] or finalItem.

Example: Quack doctor wants Diamond ring [blue].
Diamond ring [red] is changed by Desk Lamp [cold]
Give Diamond [blue] to Quack doctor → get finalItem [window]
The puzzle map pre-determined in the form described in Figure 1,
which the algorithm populates. The system starts by selecting the

end puzzle, which is giving three pre-determined items to
Symon’s doppleganger in the dream. The generator then proceeds
backwards towards the initial state of the game, to have all the
puzzles unsolved and all the items and characters involved in their
initial slots. The final items are the reward for three separate
puzzles. Each puzzle might also involve a fourth puzzle entailing
changing a single property of the object that the NPC requires.
The system populates the map by trying different combinations
until one fits; although it may not be a very computationally
efficient method, it works for the purposes of the game. The fact
that there is one basic puzzle pattern with slight variations, and
that there are only 40 objects in the database makes this brute-
force process not an issue during the puzzle generation. The focus
of this experiment was having a working game, it was a design
problem rather than a computational one. Improving on the puzzle
generation algorithm is one of the aspects that will be addressed in
future development.
The workflow created by the procedural generation was the most
pressing problem during the process of development. The designer
could not modify the puzzle patterns directly, which not only
slowed down development, but also prevented iterating on the
design. The designer only had direct control over the database in
the form of a spreadsheet; incorporating the changes to the game
was also a problem, because the spreadsheet could not be directly
exported to the code and needed a programmer to integrate it in
the game.
These problems with the game pipeline also got in the way of
creating more complex puzzle patterns, and also combining them
in different ways. Although this was not an obstacle for the
algorithm to generate the puzzles, it was certainly the most salient
issue to address. Thus the next step of the project became
developing tools that would both improve the pipeline by giving
the designer more control, and by allowing the designer to create
more complex puzzle patterns and overall structures.

4. THE PUZZLE-DICE SYSTEM
The next step after the development of Symon was to work on a
toolset that would facilitate the development of similar games.
The goal of the project became developing a more generalized
version of the system used in Symon to generate narrative puzzles
for adventure games procedurally. The result was the initial
version of the Puzzle-Dice system, which consists of a puzzle
generation library and a basic editing tool for .NET platforms.
The initial basic approach was to separate puzzles into discrete
reusable units (puzzle building blocks), which could be
recombined and customized by designers making use of designer
tools. This modular approach facilitates expanding and adding
complexity to the system by adding building blocks one by one.
The first version of the toolset was developed during the spring
2011, then put to the test during the development of another
adventure game, Stranded in Singapore [8], during that same
summer. The puzzle generator algorithm and toolset are being
expanded and improved at the time of writing, as will be
described in sections 4.1 and 4.2 below.

4.1 Part 1: Puzzle Generator Library
The following sections are a high-level technical description of
how the Puzzle-Dice puzzle generator algorithm works, including
the inputs that are given to the algorithm, the outputs that are
produced, and advice on how these inputs and outputs can be
integrated with a game in a general way. While the puzzle
generator algorithm relies on the behavior of many puzzle

building blocks, these blocks all follow a very similar process
described in section 4.1.3.

4.1.1 Inputs to the Puzzle Generator Algorithm
There are two main inputs to the puzzle generator algorithm: a
database of items and characters (referred to as the “item
database”) and a recursively defined puzzle map representing the
narrative structure of the puzzles to be generated. Additionally,
the puzzle generator takes as input an item name as input to
generate as the reward for solving the puzzle, and (optionally) any
desired properties the reward should have. This reward can be
replaced with something more concrete for an actual game, such
as the game being completed, credits rolling, etc. To simplify the
current implementation, the reward is an item the player receives
upon completion of all the generated puzzles. This structure was
mainly chosen to support the recursive nature of the high-level
puzzle map.

4.1.1.1 Database
The item database is a collection of items that can exist in the
game world along with their properties and relationships to other
items in the database. An item database is most easily constructed
using the database editor tool. The puzzle generator uses the item
database to select items for its puzzles; it also uses the
relationships between database items to filter out items that may
not fit the puzzle being generated.
For example, for a Combine puzzle, where the player must bring
two items together and the intended reward of the puzzle is
“water”, the puzzle generator will look at the “water” item in the
database. The database information states that the water item can
be the result of combining the items “hydrogen” and “oxygen”.
The puzzle generator can then use this information to create an
appropriate Combine puzzle.

4.1.1.2 Puzzle Map
The puzzle map represents the structure of the puzzles that will be
the basis for the game. Rather than a series of interconnected
puzzle patterns as the one described in Figure 1, the map is a tree
structure resulting from the combination of building blocks.
The puzzle structure can be viewed as a chronology of all the
actions a player takes while moving from the beginning of the
puzzle to the end of the puzzle. The puzzle map is composed of
puzzles and areas and the connections between them. These
components of a puzzle map are collectively referred to as
building blocks in the library and tools.
An example of a more complex puzzle sequence than what was
present in Symon that can be defined by the puzzle map is as
follows:

NPC1 is in area1 → NPC1 wants item1
[state1] → player gets key to area2
→ NPC2 is located in area2 → NPC 2
wants item2 [state2] → player gets
item2

example: Librarian is in the quad → Librarian wants a
banana [green] → player gets key to the Library →
Professor is in the library → Professor wants a book
[old] → player receives a good grade.

4.1.1.2.1 Puzzles
Puzzles are objects that represent a single set of actions the player
performs to get from a set of input items (hydrogen and oxygen in
the example above) to an output item (the water in the example
above)

4.1.1.2.2 Areas
Areas are objects that represent a set of “rooms” within the game
world that are all accessible from each other. Figure 2 shows a
basic puzzle map for a simple combine puzzle example.

Figure 2: Puzzle map for a simple combine puzzle with final
output “Water”.

The original version of the puzzle map did not have any notion of
where the generated items should be placed in relation to each
other; this feature was required to implement the Door Unlock
puzzle type easily and properly. In this type of puzzle type, having
an unlocked door means that there is an area that is not accessible
to the player, where there are objects that are out of reach;
therefore the generator must make sure that the items behind the
door are not part of the puzzle that requires opening that same
door, making the game unsolvable.
In the current version, the puzzle map is created by the designer,
thanks to the puzzle editor tool. Given a certain database, not all
puzzle maps will be able to generate puzzles. Some maps will be
able to generate more puzzles than others; the more items in the
database and relationships between them, the more likely it will
be to generate a complete puzzle map.

4.1.2 Outputs of the Puzzle Generator Algorithm
The output of the puzzle generator is a list of items and
relationships to spawn in the world.

4.1.2.1 Items
The list of items produced by the puzzle generator is a list of
items to be spawned. Each item also has a list of properties for the
item to possess, as well as relationships to other objects. For
example, items of the container type may also provide a list of
items they can initially contain.
Items also provide a unique ID representing the area in which they
should be spawned. This information is mainly relevant for Door
Unlock puzzles, as the items needed to unlock a door must by
necessity be accessible without opening the door; the information
also comes into play for puzzles that require non-carryable items
to be in a specific room to solve the puzzle.

4.1.2.2 Relationships
The list of relationships produced by the puzzle generator
represents a list of relationships necessary to produce the puzzles
created by the generator. “Relationship” is a loose term that can
refer to a number of different things. Relationships are similar to
items in that the underlying game can define the exact way in
which relationships are spawned within the game.

• Combine Relationship

Combine relationship represents a relationship between
two items that can be combined to produce a third item.
The relationship itself provides the names of the two
“ingredient” items along with a copy of the “reward”
item (and all properties it possesses). For example, a
combine relationship could exist between a “hydrogen”
item and an “oxygen” item that produces a “water” item
when the two are used together.

• Property Change Relationship

Property Change relationship represents a relationship
between two items, where one item can be used to
change the property of the other. The relationship
provides the names of the “changer” and the “changee”
along with the name and desired value of the property to
change. For example, a property change relationship
could exist between a “red egg” and “green dye” that
changes the color property of the egg to green when the
items are used together.

• Insertion Relationship

An Insertion relationship represents a relationship
between two items where one item can be inserted into
the other. For example, an insertion relationship could
exist between a “water” item and a “bottle” allowing
water to be inserted and removed from a bottle in the
player’s inventory.

• Request Relationship

Request is a special kind of relationship that represents
a set of conditions within the game that are constantly
being checked. When the conditions are met, something
changes in the game. For example, an Insertion Request
might constantly check to see if a certain container has
been filled with a certain item. When this happens, the
player may receive an item or a door may open. For
example, a “Professor” NPC could request a “book”
from the player and provide a “key” as a reward.

• Area Connection Relationship

Area Connection relationship represents a required
connection between two areas. While extra connections
between areas can be created, the area connection
relationship outlines a specific connection that is needed
for the puzzles to be solvable. The relationship provides
the unique IDs of the two areas requiring the
connection.

• Start Area Relationship

Start Area relationship identifies the area in which the
player begins the game. It simply provides the unique
ID of the area where the player should be spawned.

4.1.3 General Pattern of Puzzle Algorithms: How
the Puzzle Generator Works
The actual details of most of the puzzle generation depend on the
building blocks used to construct the puzzle map. Fortunately,
almost all of the building blocks follow a very general pattern
when generating puzzles.
When a building block is asked to generate a puzzle, it is given
the following parameters: the name of the desired output of the
puzzle and a list of desired properties for the output to have. With
this information, the building block then follows the steps outlined

below. If the building block happens to fail during any of these
steps, it passes the responsibility of handling the failure to
whatever object asked it to generate a puzzle (be it another
building block or the main puzzle generator algorithm). As will be
shown below, when inputs to a building block fail, the building
block simply tries another combination until it runs out of options,
at which point it fails itself.

4.1.3.1 Step 1: Attempt to generate the output
The building block attempts to generate the output requested of it
with the desired properties. If for some reason the output cannot
be generated (i.e. the output was already spawned by another
puzzle or the output cannot possess the desired properties), the
puzzle generation fails. Depending on the building block, the
output is not always spawned. For instance, a Property Change
puzzle will have its inputs generate the desired output while it
merely generates a Property Change relationship.

4.1.3.2 Step 2: Attempt to generate the input
After the desired output has successfully been generated, the
building block then uses a series of filters to construct a list of
items in the database that might work as inputs to the puzzle.
These filters include:

• Filters internal to the particular building block.
For instance: a Combine Puzzle will only consider items
that can be combined to produce the output.

• Filters dealing with the desired properties of the output.
For instance: a Property Change Puzzle usually has a
specific property it hopes to change.

• Filters derived from user-defined constraints.

Once a filtered list of items has been produced, the building block
randomly shuffles the list and tries to have its inputs generate the
items. Its inputs, themselves building blocks, attempt to generate
these items as their outputs. If its inputs fail, the building block
simply moves on to the next item in the list. If it runs out of items
in the list, the building block itself fails.
Once all of its inputs manage to successfully generate items, the
building block has succeeded in generating a puzzle and moves on
to step 3.

4.1.3.3 Step 3: Build the Relationships
Using the successful inputs and outputs it managed to generate,
the building block then creates relationships between the inputs
and outputs relevant to the type of building block (i.e. a Combine
Puzzle will generate a Combine Relationship). The building block
has now successfully generated a complete puzzle. It returns a list
of items and relationships composed of the items/relationships it
and its inputs generated during the entire process.

4.2 Part 4: The Database Editor
The database editor is a tool for designers, which allows the user
to create and edit a database of items for the generation library to
construct puzzles. Since Puzzle-Dice expands a system for
procedurally generating narrative puzzles, the database editor is
the tool that allows designers to explicitly link potential puzzles
with narrative by adding textual descriptions and hints to the items
and characters that the player might encounter. Currently, the
database editor exists as a .NET Windows application (see Figure
3) with simple spreadsheet controls and a limited amount of user
customizability.

Figure 3: Screenshot of the prototype database editor.

4.3 Part 5: The Puzzle Editor Tool
The puzzle editor is a visual tool for designers, which allows a
user to create and edit different puzzle maps. These maps act as a
description of the general shape of the puzzles for the puzzle
generator to construct. For example, Figure 2 above is a graphical
representation of a very basic puzzle map. The puzzle editor tool
can also be used to construct an undirected graph representing a
map of areas the player can explore. The initial prototype of the
tool was built as a .NET Windows application for the development
of the game Stranded in Singapore [7]; which has been later
rebuilt as a cross-platform application (see Figure 4) with a
stronger UI and new features including a textual representation of
the puzzle map.

Figure 4: Screenshot of the prototype puzzle editor

5. Initial Evaluation of the Puzzle-Dice
System
The initial set of tools was used and expanded on during the
development of Stranded in Singapore during the summer of
2011. The tools certainly helped improve the pipeline, providing
the designer with direct access to the code, and being able to
change puzzles independently of the programming team. This
allowed for iteration on the puzzles, a basic process of design that
is actually difficult to incorporate to the development of point-
and-click adventure games in general, since they depend on assets
so heavily.

Stranded in Singapore’s scope is comparable to Symon: each
playthrough takes 5 to 10 minutes to complete, depending on the
abilities of the player; the number of database items and assets is
also 40. The advantage is that the tools helped create a wider
variety of puzzles, including the Door Unlock puzzle type, where
players do not have access to a specific area until they solve a
puzzle. On the other hand, the way the generator bases its
generation on trial and error can also be a problem when
generating larger games, so that certain puzzle maps can take
longer to generate. This is not a major problem with a game of
this scope, but may become unwieldy for larger games.

6. Further work
The ultimate goal of this project is to release a polished
procedural puzzle generation system under an open source
license, which can be used in combination with other game
engines. The puzzle generation algorithm was initially developed
in Action Script 3.0; the new version was coded in Python and
then exported into Action Script for Stranded in Singapore. The
goal is to make the algorithm work in other engines or
development environments, such as Inform, Adventure Game
Studio, Unity, or XNA.
Current work focuses on improving the UI of the designer tools to
make them more accessible to designers, as well as optimizing the
puzzle generator to create new types of puzzles. In preparation for
releasing the tools to the public, the plan is to make a new cross-
platform database editor with a more polished UI and optimized
performance.

7. ACKNOWLEDGMENTS
The authors wish to acknowledge the groundwork of the
development team of Symon, particularly programmers Caroline
Sugianto and Kang Hean Jin and designer Justin Tan, for having
worked on the first version of the generator system.
Thanks also to Michaela Lavan, co-developer of the Puzzle Dice

generator system in its first implementation.

The Stranded in Singapore development team also put the Puzzle
Dice system to the test and worked on some of the early
improvements to it during development. Special thanks must go to
programming team Adin Schmahmann, Abhishek Ray, Lee
Weizheng, as well as designer Teng Howe Lim.

8. REFERENCES
[1] Ashmore, C. 2006. Key and Lock Puzzles in Procedural

Gameplay. Georgia Institute of Technology.
[2] Compton, K. and Mateas, M. 2006. Procedural Level Design

for Platform Games. Proceedings of the Second Artificial
Intelligence and Interactive Digital Entertainment
International Conference (AIIDE) (Jun. 2006).

[3] Doran, J. and Parberry, I. 2011. A prototype quest generator
based on a structural analysis of quests from four
MMORPGs. Proceedings of the 2nd International Workshop
on Procedural Content Generation in Games (New York,
NY, USA, 2011), 1:1–1:8.

[4] Dormans, J. 2011. Level design as model transformation: a
strategy for automated content generation. Proceedings of
the 2nd International Workshop on Procedural Content
Generation in Games (New York, NY, USA, 2011), 2:1–2:8.

[5] Fernandez Vara, C. 2009. Play’s the Thing: A Framework to
Study Videogames as Performance. (Brunel University, West
London, 2009).

[6] Harrell, F. 2005. Shades of Computational Evocation and
Meaning: The GRIOT System and Improvisational Poetry
Generation. Proceedings of the 6th Digital Arts and Culture
Conference, 133-143.

[7] Sugianto, C. and Kang,, H.J. 2010. Symon. Singapore-MIT
GAMBIT Game Lab.

[8] Ray, A. et al. 2011. Stranded in Singapore. Singapore-MIT
GAMBIT Game Lab.

