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Abstract 
This paper describes an approach for modeling real-time systems using dy­
namic priorities. The advantage of the technique is that it drastically reduces 
the state space sizes of the systems in question while preserving properties of 
their functional behavior. We demonstrate the utility of our approach by for­
mally modeling and verifying aspects of the widely-used SCSI-2 bus-protocol. 
It turns out that the state space of this model is about an order of magnitude 
smaller than the one resulting from traditional real-time semantics. 
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1 INTRODUCTION 

A variety of formal approaches have been introduced for modeling and verify­
ing distributed systems including process-algebraic frameworks (Milner 1989) 
and model checking (Clarke et al. 1986, Kozen 1983). However, only with the 
advent of verification tools (Bengtsson et al. 1995, Cleaveland & Sims 1996, 
Holzmann 1991) in the last decade they have emerged as practical aids for 
system designers (Baeten 1990, Cleaveland et al. 1996, Elseaidy et al. 1996). 
This paper addresses the problem of modeling and verifying concurrent sys­
tems where real-time plays an important role for functional behavior. On the 
one hand, real-time is used to implement abstract synchronization constraints 
in distributed environments. As an example of a synchronization constraint, 
consider a communication protocol where the next protocol phase may be 
entered only if some or all components agree. On the other hand, electric phe­
nomena like wire glitches, that may lead to malfunction, can be avoided using 
deskew delays. Thus, for accurately modeling such systems it is necessary to 
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capture their real-time aspects, thereby motivating the need for implementing 
real-time process algebras (Moller & Tofts 1990, Yi 1991) efficiently. 

Traditional implementations of real-time process algebras typically cause 
state spaces to explode, the reason for this being that time is considered 
as part of the state, i.e. a new state is generated for every clock tick. We 
tackle this problem by using dynamic priorities to model real-time. We in­
troduce a new process algebra, called ccsdp (CCS with dynamic priorities), 
which essentially extends CCS (Milner 1989) by assigning priorities to ac­
tions. Unlike traditional process algebras with priorities (e.g. Cleaveland & 
Hennessy 1990), actions in our algebra do not have fixed or static priorities; 
priorities may change as systems evolve. It is in this sense that we refer to 
CCSdp as a process algebra with dynamic priorities. In contrast to traditional 
real-time algebras, e.g. a version of Temporal CCS (Moller & Tofts 1990), 
which we refer to as ccsrt (CCS with real-time), the ccsdp semantics inter­
prets delays preceding actions as priority values attached to these actions. In 
other words, the longer the delay preceding an action, the lower is its priority. 
The semantics of CCSdp avoids the unfolding of delay values into sequences of 
elementary steps, each consuming one time unit, thereby providing a formal 
foundation for efficiently modeling real-time. The soundness and complete­
ness of this approach is proven by establishing a one-to-one correspondence 
between the ccsrt and the ccsdp semantics of arbitrary systems. It is impor­
tant to note that our approach does not abstract away aspects of real-time. 
Thus, all quantitative timing constraints explicit in ccsrt semantics can still 
be analyzed within ccsdp semantics. 

The utility of our technique is shown by means of a practical example, 
namely modeling and verifying several aspects of the SCSI-2 bus-protocol, a 
protocol used in many of today's computers. The protocol's model is derived 
from the official standard (ANSI 1994) where real-time delays are recom­
mended for implementing synchronization constraints as well as for ensuring 
correct behavior in the presence of signal glitches. Accurate modeling of the 
SCSI-2 bus-protocol thus requires considering discrete quantitative real-time. 
To this end, we model our protocol in the syntax common to both ccsrt 
and ccsdp. We then generate the state space according to both semantics. 
We show that the size of our model is an order of magnitude smaller in the 
CCSdP semantics than in the ccsrt semantics. The modeling of the protocol 
was carried out in the Concurrency Workbench of North Carolina (Cleaveland 
& Sims 1996), CWB-NC, a tool for analyzing and verifying concurrent systems. 
In order to verify and to prove the accuracy of our model, we extract several 
mandatory properties from the ANSI document and validate them for our 
model. We use the well-known modal !-£-calculus as our specification language, 
and automatically check the formalized properties by using the local model 
checker (Bhat & Cleaveland 1996) integrated in the CWB-NC. Due to space 
constraints all proofs and part of the formalization of the SCSI-2 case study 
are left out and can be found in a technical report (Bhat et al. 1997) . 
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2 PROCESS-ALGEBRAIC FRAMEWORK 

In this section we introduce the process algebra ccsrt and develop the new 
process algebra ccsdp' which has the same syntax but different semantics. 
Whereas ccsrt is an extension of CCS (Milner 1989) in order to capture 
discrete quantitative timing aspects with respect to a single, global clock, ccgdp 
extends CCS by a concept of dynamic priorities. Our syntax differs from CCS 
by associating delay and priority values with actions, respectively, and by 
including the disabling operator known from LOTOS (Bolognesi & Brinksma 
1987). 

Formally, let A be a countable set of action labels or ports, not including 
the so-called silent or internal action r. With every a E A we associate a 
complementary action a. Intuitively, an action a E A may be thought of as 
representing the receipt of an input on port a, while a constitutes the deposit 
of an output on a. We define A =dr {a I a E A} and take A to denote the set 
of all actions A U A U { r}. In what follows, we let a, b, . . . range over A U A 
and a,/3, ... over A. Complementation is lifted to actions in AUA, also called 
visible actions, by defining a =dr a. As in CCS an action a communicates with 
its complement a to produce the internal action r . 

In our syntax actions are associated with delay values, or priority values, 
taken from the natural numbers, respectively. More precisely, the notation 
a: k, where a E A and k E N, specifies that action a is ready for execution 
after a minimum delay of k time units or, respectively, that action a possesses 
priority k. In the priority interpretation, smaller numbers encode higher pri­
ority values; so 0 represents the highest priority. The syntax of our language 
is defined by the following BNF: 

p nil 
PIP 

a :k.P 
P[f] 

P+P 
P\L 

P~P 
c 

where k E N, the mapping f : A -+ A is a relabeling, L ~ A\ { T} is a restriction 
set, and C is a process constant whose meaning is given by a defining equation 

C ~r P. A relabeling f satisfies the properties f(r) = T and f(a) = f(a). 
We adopt the usual definitions for closed terms and guarded recursion, and 
refer to the closed guarded terms as processes. Let P represent the set of all 
processes, ranged over by P, Q, R, .... 

Regarding the semantics of processes w e first introduce a real-time seman­
tics, referred to as ccsrt semantics, which explicitly represents timing be­
havior. We concentrate here on the operational semantics for our notion of 
prefixing since the semantics of the other operators is standard (Moller & 
Tofts 1990). Formally, the semantics of a process is defined by a labeled tran­
sition system which contains explicit time transitions - each representing a 
delay of one time unit - as well as action transitions. With respect to time 
transitions, the operational semantics is set up such that processes willing to 
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communicate with some process running in parallel are able to wait until the 
communication partner is ready. However, as soon as it is available the com­
munication has to take place, i.e. further idling is prohibited. This assumption 
is usually referred to as maximal progress assumption (Yi 1991). Accordingly, 
the process a: k.P, where k > 0, may delay one time unit and then behave 
like a: (k- 1).P. The process a: O.P performs an a transition leading toP. 
Moreover, if a f= r, it may also idle by performing a time transition to itself. 
Unfortunately, ccsrt semantics unfolds every delay value into a sequence of 
elementary time units, thereby creating many additional states. For example, 
the process a: k. nil has k + 2 states, namely nil and a: l. nil where 0 ~ l ~ k. 
It would be much more efficient if we could represent a : k.nil by a single 
transition labeled by a : k leading to the state nil. This idea of compacting 
the state space of real-time systems can be realized by viewing k as a priority 
value assigned to action a. In other words, one may consider the delay value 
k as the time stamp of action a. 

To this end, we present a new semantics for our language that uses a no­
tion of priority taken from Cleaveland & Hennessy (1990), generalized to a 
multi-level priority scheme. We refer to our process algebra as CCSdP when in­
terpreted with respect to the new semantics which, in contrast to the priority 
approach mentioned above, dynamically adjusts priorities along transitions. 
Intuitively, visible actions represent potential synchronizations that a process 
may be willing to engage in with its environment. Given a choice between a 
synchronization on a high priority and one on a low priority, a process should 
choose the former. Thus, high-priority r-actions have pre-emptive power over 
low-priority actions. The reason that high-priority visible actions do not have 
pre-emptive power over low-priority actions is that visible actions only indi­
cate the potential of a synchronization, i.e. the potential of progress, whereas 
r-actions describe complete synchronizations, i.e. real progress, in our model. 
Note that this notion of pre-emption naturally mimics the maximal progress 
assumption employed in ccsrt semantics. 

Formally, the CCSdp semantics of a process P E P is given by a labeled 
transition system (P,A x N, ----t,P) where Pis the set of states, Ax N the 
set of labels, ----t the transition relation which is defined in Table 1 via struc­
tural operational rules, and P is the initial state. For the sake of simplicity 

we write P ~ P' for (P, a : k, P') E ----t and say that P engages in action a 
with priority k and thereafter behaves like process P'. The presentation of the 
operational rules requires two auxiliary definitions which are formally given 
in Appendix 1. First, we introduce initial action sets which are inductively 
defined on the syntax of processes as usual. More precisely, Ik(P) denotes 
the set of all potential initial actions of P with priority greater thank, where 
J:O(P) is defined to be the empty set. Second, we define a priority adjustment 
function. Intuitively, our semantics is set up in a way such that if one par­
allel component of a process engages in an action with priority k, then the 
priority values of all initial actions at every other parallel component have 
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Table 1 Operational semantics for ccsdp 

- l>k 
a :l -

a:k.P ---t P 

P~P' Q~Q' 
-----:--=---..::.... r f/. zk(PIQ) 

PIQ~P'IQ' 

Act2 

Sum2 

Dis2 

Rel 

Res 

Con 

T :k 
r:k.P --,t P 

P~P' 

P[j] 1~J/ P'[j] 

p a :k P' _ 
---t af/.LUL 

P\L~P'\L 

P~P' ---=-- c~r P 
C~P' 

to be decreased by k, i.e. those actions become 'more important.' Thus, the 
semantics of parallel composition deploys a kind of fairness assumption, and 
priorities have a dynamic character. More precisely, the priority adjustment 
function applied to a process PEP and a natural number kEN, denoted as 
[P]k, returns a process term which is 'identical' toP except that the priorities 
of the initial, top-level actions are decreased by k. Note that a priority value 
cannot become smaller than 0. 

Intuitively, a : k.P may engage in action a with priority l 2:: k yielding 
process P. The side condition l 2:: k reflects that k does not specify an exact 
priority but the maximal priority of the initial transition of a: k.P. It may 
also be interpreted as lower-bound timing constraint. Due to the notion of pre­
emption incorporated in CCSdP, r :k.P may not perform the r -transition with 
a lower priority than k. The summation operator + denotes non-deterministic 
choice, i.e. the process P+Q may behave like P (Q) if Q (P) does not pre-empt 
it by being able to engage in a higher prioritized internal transition. Thus, our 
notion of pre-emption reflects implicit upper-bound timing constraints. Also 
the process P ~Q behaves like P and, additionally, it is capable of disabling 
P by engaging in Q. The restriction operator \L prohibits the execution 
of actions in L U L and thus permits the scoping of actions. P[f] behaves 
exactly as P where actions are renamed by the relabeling f . The process PIQ 
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stands for the parallel composition of P and Q according to an interleaving 
semantics with synchronized communication on complementary actions of P 
and Q both having some priority k which results in the internal action r : k. 
The side conditions of the interleaving rules implement pre-emption. Finally, 

C ~f P denotes a constant definition, i.e. C is a recursively defined process 
that is a distinguished solution of the equation C = P. 

For our framework we obtain the following important results, which are 
formally stated and proved in a technical report (Bhat et al. 1997). Given an 
arbitrary process in our language there exists a one-to-one semantic correspon­
dence between the associated transition systems according to ccsrt and to 
CCSdP semantics. Moreover, the standard strong bisimulations (Milner 1989), 
which can be defined straightforwardly for ccsrt and ccsdp' coincide. 

We conclude this section by discussing a related approach by Jeffrey (1992) 
who has established a formal relationship between a quantitative real-time 
process algebra and a process algebra with (static) priorities. He also trans­
lates real-time into priorities based on the idea of time stamping. In contrast 
to Temporal CCS semantics, a process modeled in Jeffrey's framework may 
either immediately engage in an action or idle forever . However, this semantics 
does not reflect our intuition about the semantic behavior of reactive systems, 
i.e. a process should wait until a desired communication partner becomes avail­
able instead of engaging in a 'livelock.' Only because of these counter-intuitive 
assumptions, Jeffrey does not need to choose a dynamic priority framework. 

3 SCSI-2 - AN OVERVIEW 

We demonstrate the utility of the process algebra CCSdP by a case study deal­
ing with the bus-protocol of the widely-used Small Computer System Interface 
(ANSI 1994), or SCSI for short . The SCSI bus is designed to provide an effi­
cient peer-to-peer I/0 connection for peripheral devices such as disks, tapes, 
printers, processors, etc. It usually connects several of these devices with one 
host adapter which often resides on a computer's motherboard. In contrast to 
the host adapter, peripherals are not attached directly to the bus but via SCSI 
controllers, also called logical units (LUNs). Thus, LUNs provide the physical 
and logical interface between the bus and the peripherals. Conceptually, up 
to seven LUNs can be connected to one bus, and one LUN can support up 
to seven peripherals. However, in practice most peripherals contain their own 
SCSI controller ( cf. Figure 1). 

The SCSI-2 bus-protocol implements the logical mechanism regulating how 
peripherals and the host adapter communicate with each other on the bus. 
Communication on the SCSI bus is point-to-point, i.e. at any time either none 
or exactly two LUNs may communicate with each other. In order to allow 
easy addressing each LUN is assigned a fixed SCSI id in form of a number 
ranging from one to seven. Id 0 is reserved for the host adapter which is also, 
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Figure 1 Typical SCSI configuration 

conceptually, a LUN. Communication on the bus is organized by the use of 
eight signal lines whereas the actual information, like messages, commands, 
data, and status information, are transferred over a data bus. 

Figure 2 Usual progression of the SCSI-2 bus-phases 

The SCSI-2 bus-protocol is organized in eight distinct phases, called Bus 
Free, Arbitration, Selection, Reselection, Command, Data, Status, and 
Message Phase. At any given time, the SCSI bus is exactly in one phase. The 
usual progression of phases is shown in Figure 2. During the Bus Free Phase 
no device is in possession of the bus, i.e. LUNs may request access. If more 
than one device competes for the bus in order to initiate a communication, 
the one with the highest SCSI id is granted access. In the Arbitration Phase, 
every LUN that has posed a request determines if it has been granted access. 
All LUNs which lose may compete for the bus again later, whereas the winner, 
also referred to as initiator, proceeds to the Selection Phase. In this phase 
the initiator tries to connect to the desired destination, called target. When 
the link between initiator and target has been established, the so-called in­
formation transfer phases, including the Command, the Data, the Status, and 
the Message Phase are entered. In the Command Phase the target may re­
quest a command from the initiator. During a Message Phase information is 
exchanged between the initiator and the target concerning the bus-protocol 
itself. Finally, the Status Phase is used to transfer status information to the 
initiator upon completion of a command executed by the target. The key idea 
for accelerating communication on the bus, which has significantly contributed 
to the success of SCSI, is that the target can free the bus whenever it receives 
a time-intensive command from the initiator. As soon as the execution of such 
a command is finished, the target competes for the bus in order to transmit 
the result to the former initiator. 
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4 MODELING THE SCSI-2 BUS-PROTOCOL 

In this section we model the SCSI-2 bus-protocol in our language. The syntax 
we use here is the one implemented in the Concurrency Workbench of North 
Carolina in which ccsrt and CCSdP are integrated as front ends. It slightly 
departs from the syntax introduced in Section 2 in that output actions a E X 
are notated as 'a, the internal action r as t, and process definitions C ~c Pas 
proc C = P. Moreover, we use the notation a( obs): k which, for the purposes 
of this section, may be interpreted as a: k. Actions obs come into play in the 
next section where they serve as 'probes' for verification purposes. 

Before we present the actual modeling of the SCSI-2 bus-protocol, we com­
ment on some assumptions we imposed. First, we restrict ourselves to model­
ing two LUNs, called LUNO and LUNl, having id 0 and id 1, respectively. This 
is sufficient for dealing with the aspects of the SCSI-2 bus-protocol we are 
interested in. Note that even in the situation of two LUNs there exists compe­
tition for the bus. Moreover, we abstract away from time-out procedures and 
from the contents of most messages, commands, and data. These abstractions 
are justified since they do not affect the conceptual parts of the bus-protocol's 
behavior. For example, the sole purpose of a timeout is to determine if a tar­
get is alive or not . The contents of information sent over the bus, except from 
messages presenting the completion of some transmission, are only relevant 
for the device-specific part of LUNs but not for the bus-protocol itself. Ad­
ditionally, the bus signals BSY (busy) and SEL (select) are wired-or signals 
in reality. However, we need not model this 'or'-behavior, since our model 
only deals with two LUNs, and just one LUN at a time can assert the BSY 
or SEL signal. Finally, all quantitative timing information occurring in the 
model is measured relative to a time unit of 5 ns, including arbitration delays 
(480 time units), bus clear delays (160 time units), bus settle delays (80 time 
units), deskew delays (9 time units), and cable skew delays (9 time units) . 

The underlying structure of the bus-protocol is explicitly reflected in our 
model. Each LUN connected to the bus is modeled as a separate parallel 
component containing models of the different bus phases as discussed in the 
previous section. The logical behavior of the bus control is implemented by 
bus signals. Each signal physically consists of a wire which we model as a 
separate process similar to a global Boolean variable. Note that signal delays 
are not modeled in the wires but in the operations used for transmitting 
information over the SCSI bus. Since we abstract away from the content of 
most information, we do not need to model each bit of the data bus. Hence, 
arbitration is modeled via a global variable which stores the highest id of all 
LUNs requesting access to the bus. Accordingly, the structure of our model, 
called SCSIBus, consists of the parallel composition of both LUNs, and the 
BusSignals, including the regular signals and the data path. Formally, 

proc SCSIBus = (LUNO I LUNl I BusSignals) \ Restriction 
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Table 2 Modeling the bus signals and the data bus 

proc BusSignals z DataBus 

proc Off 
proc On 

Arbitrator 
Off[setBS'f/sset,relBSY/rel,isBSY/on,noBSY/off] 
Off[setSEL/sset,relSEL/rel,isSEL/on,noSEL/off] 

'off:O.Off + sset:O.On + rel:O.Off 
'on:O.On + sset:O.On + rel:O.Off 

proc DataBus = DataBus' [> release(obsrelease):O.DataBus 
proc DataBus' placemsgln(obsplace):O.'readmsgin(obsread) :O.DataBus' 

+ placemsgOut(obsplace):O.'readmsgOut(obsread):O.DataBus' 
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+ placefinished(obsplace):O.'readfinished(obsread):O.DataBus' 
+ placedata(obsplace):O.'readdata(obsread):O.DataBus' 
+ placecmd(obsplace):O.'readcmd(obsread):O.DataBus' 
+ placestatus(obsplace):O.'readstatus(obsread):O.DataBus' 
+ sentdisconnect(obssentdiscon):O. 

'readdisconnect(obsreaddiscon):O.DataBus' 
+ sentcomplete(obssentcompl):O . 

'readcomplete(obsreadcompl):O.DataBus' 
+ writetargetO(obswritetO):O.'readtargetO(obsreadtO):O.DataBus' 
+ writetarget1(obswritet1):0.'readtarget1(obsreadt1):0.DataBus' 

where Restriction contains all actions that are internal to the protocol, i.e. 
those concerned with setting/releasing signals, requesting signal status, and 
placing/reading messages, commands, and data on/from the data bus. 

4.1 Modeling the bus signals and the data bus 

Conceptually, each bus signal is modeled as a Boolean variable which is either 
true (signal on) or false (signal off). Thus, the processes representing the 
signals BSY (busy), SEL (select), C/D (command/data), I/0 (input/output), 
MSG (message), ATN (attention), REQ (request), and ACK (acknowledgment) are 
generically created by relabeling the actions of the process Off (see Table 2) . 
Using the ports sset and rel one can set or release the signal and, hereby, 
switching the state to On or Off, respectively. Actions 'off ('on) indicate that 
the signal is currently in state Off (On). Note that the atomicity of actions 
in process algebras guarantees that conflicts, arising by setting several signals 
simultaneously, are avoided. 

In the following, we abstract away the contents of most messages. Only the 
distinguished messages disconnect and complete are explicitly considered 
since they require to exit the information transfer phases and to switch to the 
initial state of the L UN. Accordingly, we may model the data bus, as seen 
il! Table 2, as a variable which can store and read out information (actions 
placeXXX and readXXX, respectively). The labels obsXXX are used to record 
the events of placing and reading messages on the bus. 
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proc LUNO 
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Table 3 Bus Free and Command Phase 

t(start0) :9 . 'reliO:O . (BusFree0 + GetSelectedO) 
+ t(start0):9.'setiO(obs_setiO):O.(BusFreeO + GetSelectedO) 
+ t:9.LUNO 
+ GetSelectedO 

proc BusFreeO = t(busfree) :80.'setBSY(obs_setBSY) :80.'setidO:O.Arbitrate0 
+ isSEL(obs_isSEL) :O. LUNO 
+ isBSY(obs_isBSY):O.LUNO 

proc CommandiO isREQ:O.( 'placecmd:O . 'setACK :9.noREQ :O. 'release :O. 
'relACK:O.CommandiO 

+ 'placefinished:O.'setACK:9.noREQ:O.'release:O. 
'relACK :O. InitiatorO' 

proc CommandTO 'relHSG :O. 'setCD :O.'reliO(begin_Command):O.t(begin_Phase):O. 
CommandTO' 

proc CommandTO' = 'setREQ:O.isACK(obs_isACK) :O. 
( readcmd:O. 'relREQ(obs_relREQ):O.noACK:O . CommandTO' 
+ readfinished :O.'relREQ(obs_relREQ) :O.noACK :O. 

t(end_Phase):O. 
(MsgOutTO + MsglnTO + DataOutTO + DatalnTO + StatusTO) 

4.2 Modeling the bus-phases 

Now we focus on modeling the logical characteristics of the SCSI-2 bus­
protocol (see Section 6 of ANSI 1994). Due to space constraints we only pro­
vide models of the Bus Free Phase and the Command Phase for LUNO here. For 
the complete model we refer the reader to a technical report (Bhat et al. 1997) . 

In the Bus Free Phase, no device is in possession of the bus, hence it 
is available for arbitration. The SCSI bus is defined to be in the Bus Free 
Phase as soon as the signals SEL and BSY have been false for at least a bus 
settle delay. Accordingly, the process BusFreeO detects the Bus Free Phase 
when the actions isBSY and isSEL are absent for 80 time units (cf. Table 3). 
If one of the actions isBSY or isSEL is observed, the bus is occupied and 
LUNO returns to the start state. H the bus is free, the logical unit asserts 
the BSY signal (action 'setBSY) and sets the arbitration variable accordingly 
(action 'setidO) before it performs an arbitration delay and switches to the 
Arbitration Phase. 

The processes TargetO and InitiatorO initiate the Information Transfer 
Phases (ITP) which include the Command, Data, Status, and Message Phases. 
In those phases, information is exchanged between the initiator and the target. 
The Data and the Message Phases are further divided in Dataln, DataOut, 
Message In, and MessageOut Phases according to the direction of information 
flow. The 'In' phases are concerned with transferring information from the 
target to the initiator whereas the 'Out' phases are concerned with transfer­
ring information in the other direction. The information transfer takes place 
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by byte-wise handshakes. The phase of the SCSI-2 bus-protocol, in which it 
is currently in, is encoded via the MSG, C/D, and I/0 signals. In the follow­
ing, we explain the Command Phase and its modeling in detail, especially the 
underlying handshake mechanism (cf. Table 3). 

The Command Phase is entered if the target, the master of the bus-protocol, 
intends to request a command from the initiator. The target indicates the 
Command Phase by deasserting the MSG and I/0 signals and asserting the C/D 
signal. After waiting for a deskew delay the target requests a command from 
the initiator by setting the REQ signal (action 'setREQ). In the meantime, 
the initiator detects that the target has switched to the Command Phase by 
observing the status of the MSG, C/D, and I/0 signals. Upon detection of 
the asserted REQ signal (action isREQ) the initiator places the first byte of 
the command on the data bus (action 'placecmd), waits for a deskew delay, 
and asserts the ACK signal (action 'setACK). After the target detects the 
asserted ACK signal (action isACK) it reads the command from the data bus 
(action readcmd) and releases the REQ signal (action 'relREQ). At this point 
the handshake procedure for receiving (the first byte of) the command is 
completed. Now, the initiator may release the data bus (action 'release) 
and the ACK signal (action 'relACK). Alternatively, since a command may 
consist of more than one byte, the bus may remain in the Command Phase, 
and the handshake mechanism may be repeated, until the message finished 
(action readfinished) has been transferred. Note that in practice the length 
of a command can always be determined from its first byte. 

4.3 State spaces of our model 

We have created front-ends for both process algebras, ccsrt and CCSdP, for 
the Concurrency Workbench of North Carolina (Cleaveland & Sims 1996), 
CWB-NC, by using the Process Algebra Compiler (Cleaveland et al. 1995) which 
is a generic tool for integrating new interfaces in the CWB-NC. Whereas the in­
tegration of ccsrt has been straightforward, we have needed some more effort 
regarding ccgdp. The reason is that Rule Actl gives rise to an infinite branch­
ing transition system. However, for practical purposes infinite branching can 
be eliminated by providing an upper bound upper which reflects the maximal 
priority value of any initial action of the considered process. The validity of 
this approach stems from the fact that a delay of more than upper time units 
does not change the system state but results in global idling. 

We have run the CWB-NC on a SUN SPARC 20 workstation to construct 
and minimize the state spaces of our models. Whereas the ccsrt version of 
our model has 62 400 states and 65 624 transitions, the CCSdP possesses only 
8 391 states and 14 356 transitions. This drastic saving in state space em­
phasizes the utility of using dynamic priorities in order to encode discrete 
quantitative real-time. 
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5 VERJFYING THE SCSI-2 BUS-PROTOCOL 

In this section we specify and verify several safety and liveness properties 
which our ccsdp model of the SCSI-2 bus-protocol is expected to satisfy. The 
one-to-one correspondence between ccsrt and ccsdp semantics ensures that 
the properties hold with respect to ccsrt semantics, too. As specification 
language for the properties we use the modal 11--calculus (Kazen 1983), and for 
verification we employ the model-checker (Bhat & Cleaveland 1996) integrated 
in the CWB-NC. The following desired requirements of the SCSI-2 bus-protocol 
have been extracted from the official standard (ANSI 1994). 

• Property 1: All bus phases are always reachable. This implies that the 
model is free of deadlocks. 

• Property 2: Whenever a bus phase is entered, it is eventually exited. 
• Property 3: The signals REQ and ACK do not change between two information 

transfer phases. 
• Property 4: The signal BSY is on and the signal SEL off during information 

transfer phases. 
• Property 5: Whenever a device sends a message on the bus, the message is 

eventually received by the intended LUN. 
• Property 6: Whenever the initiator sets the ATN signal, eventually the bus 

enters the MessageOut Phase. 

We formalize these properties within the modal 11--calculus which is a simple 
but expressive language for specifying temporal properties. Its syntax and 
semantics has been given e.g. by Kazen (1983). For our purposes it is suffi­
cient to introduce the intuitive meaning of the following meta-formulas, where 
a, j3 E A, L <;;;; A, and Cii is a temporal formula. 

between(a,/3, Cii) =dr vX.[a](vY.(Cii 1\ [f3]X 1\ [-j3)Y)) 1\ [-a)X 

fair-follows( a , /3, L , Cii) =dr 
vX.[a](vY.~J-Z.(Cii 1\ [/3]X 1\ [L]Y 1\ [-j3,L]Z)) 1\ [-a]X 

The meta-formula between( a, /3, Cii) can be interpreted as follows: On every 
path it is always the case that after a, the formula Cii is true at every state 
until the action j3 is seen. Note that action j3 need not occur after a since j3 
only releases the requirement that Cii be true at every state. The meta-formula 
fair-follows( a, /3, L, Cii) encodes that on every path it is always the case that 
after action a is seen, either C) is always true until j3 is seen or C) is always 
true, and an action from L occurs infinitely often on the path. Note that on 
fair-paths , i.e. paths on which actions from L do not occur infinitely often, 
action j3 has to occur eventually. Without this notion of fairness, which we use 
to encode e.g. that messages transferred over the SCSI bus have finite length, 
some properties cannot be validated. 
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Unfortunately, our process algebra ccsdp turns any visible action a and a 
into the internal action r when communicating on channel a. However, in order 
to prove any interesting property except deadlock, we have to observe certain 
actions of the system, e.g. asserting and deasserting bus signals. Therefore, 
we attach to each output action a a visible action or probe o, thus leading to a 
complex action a(o). Whenever a transition labeled by a(o) synchronizes with 
a transition labeled by a, the resulting r is annotated by o, i.e. r(o) is pro­
duced. Hence, a communication on port a is immediately observed by probe 
o, as intended. Our model includes the probes beginYhase and endYhase 
marking the beginning and end of each information transfer phase, respec­
tively, and the probes obs_setSIG and obs..relSIG indicating the assertion 
and deassertion of some signal SIG, respectively. 

Now, we can formalize the desired properties in the modal J.L-calculus as 
shown for Properties 2 and 3. For Property 2 we have to check for every path 
that probe begin.l'hase is eventually followed by probe endYhase before 
another begin.l'hase is observed. 

f air-f ollows(beginYhase, endYhase, { obs_setATN}, (-}tt) 

The implicit fairness constraint ensures that the initiator does not forever 
ignore the target's wish to enter a new phase by continuously asserting the 
ATN signal. Regarding Property 3 we encode that on all paths the probes 
obs_setREQ, obs..relREQ, obs_setACK, and obs..relACK do not occur in be­
tween end.l'hase and beginYhase by the formula 

between( endYhase, beginYhase, 
[obs_setREQ, obs..relREQ, obs_setACK, obs..relACK].ff ) . 

We were able to validate each property in our model within at most two 
minutes when running the CWB-NC on a SUN SPARC 20 workstation. The 
model checker we used is a local model checker (Bhat & Cleaveland 1996). 
Applying a local model checker in contrast to a global one remarkably speeds­
up the task of verification. In fact, the modeling of the SCSI-2 bus-protocol 
has been done in several stages, after each of which the above mentioned 
properties have been checked. At early modeling stages the model checker has 
invalidated most properties immediately. The encountered errors have ranged 
from missed fairness constraints to wrong timing information. However, the 
diagnostic information in form of failure traces provided by the model checker 
simplifies the task of finding bugs in models. 

During the process of verification, we also realized that the timing con­
straints of the bus-protocol are not only imposed for avoiding wire glitches 
but also in order to implement necessary synchronization constraints during 
the initial bus-phases. Without these synchronization constraints, two LUNs 
may gain access to the bus for arbitration which leads to a deadlock. This 
emphasizes the necessity of dealing with real-time constraints in reactive sys­
tems. 
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6 CONCLUSIONS AND FUTURE WORK 

We introduced the process algebra CCS4P with dynamic priorities whose se­
mantics corresponds one-to-one with the discrete quantitative real-time se­
mantics of ccsrt. However, the CCSdP semantics yields significantly more com­
pact models and, thus, provides a means for efficiently implementing tradi­
tional real-time process algebras. Moreover, our approach does not abstract 
away any aspects of real-time, i.e. all quantitative timing constraints can still 
be verified within ccsdp semantics. 

We implemented the process algebras ccgdp and ccsrt in the Concurrency 
Workbench of North Carolina, an automated verification tool, which we used 
to formally model and reason about the SCSI-2 bus-protocol. The size of our 
model is about an order of magnitude smaller when constructed with ccsdp 
instead of ccsrt semantics and could be handled easily within the Workbench. 
In addition, we specified several desired properties of the bus-protocol in the 
modal JL-calculus and validated them by using model checking. Regarding fu­
ture work, the SCSI-2 bus-protocol should be modeled in more detail, thereby 
enabling the verification of additional interesting properties. 
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APPENDIX 1 AUXILIARY DEFINITIONS 

Tables 4 and 5 formally present auxiliary relations used for defining the op­
erational semantics of ccsdp 0 

Table 4 Initial action sets 

zk(a:l .P) =dr {all< k} 

zk (P ~Q) =df :Ik(P) U zk (Q) 

zk (PIQ) =dr :rk(P) u :rk(Q) u { r 1 zk (P) n :Ik(Q) i= 0} 

:rk(P(/]) =df {/(a) I a E :rk(P)} zk(P\L) =d£ {a fl. LurIa E :rk(P)} 

Table 5 Priority adjustment function 

(PIQ]k =df (P]k I (Q]k 

(P!/W =dr (P]k[/] 

[ ·lP]k- { a:(l-k).P 
a . . -d£ a:O.P 

if l > k 
otherwise 


