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Abstract

We derive the noncommutative Chern-Simons action induced by
Dirac fermions coupled to a background gauge field, for the funda-
mental, antifundamental, and the adjoint representation. We discuss
properties of the noncommutative Chern-Simons action showing in
particular that the Seiberg-Witten formula maps it into the standard
commutative Chern-Simons action.

Recent results in noncommutative geometry and string theory [1]-[3], re-
vealed the interest on its own right for studying different field theories like
Yang-Mills, λφ4, QED, Chern-Simons, Wess-Zumino theories and two-dimen-
sional models, in noncommutative space [4]-[24]. In this respect, it is the
purpose of this paper to analyse different aspects of the noncommutative
Chern-Simons (CS) action. First, we discuss how the parity anomaly in a
2 + 1 massive fermion model induces a Chern-Simons term (as originally ob-
served in [11] for the massless case). Then, we discuss relevant properties of
the non-commutative CS action, its relation with the chiral Wess-Zumino-
Witten model and its dependence on the noncommutative parameter θµν .

Let us start by establishing our conventions. The ∗-product for fields is
defined by

(f̂ ∗ ĝ)(x) = e
i
2
θµν∂ξµ∂ζν f̂(x+ ξ)ĝ(x+ ζ)

∣∣∣
ξ=ζ=0

(1)
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and the Moyal brackets as{
f̂(x), ĝ(x)

}
= f̂(x) ∗ ĝ(x)− ĝ(x) ∗ f̂(x) (2)

We indicate with a hat functions which have to be multiplied using the ∗-
product. The U(N) gauge-group elements are defined by

ĝ(x) = e iα̂(x)
∗ = 1 + i α̂(x)− 1

2
α̂(x) ∗ α̂(x) + · · · (3)

where α̂(x) is a Lie-algebra valued function of space-time. Gauge fields in
the Lie algebras of U(N) transform according to

Âµ(x)→ ĝ(x) ∗ Âµ(x) ∗ ĝ−1(x)− i

e
ĝ(x) ∗ ∂µĝ

−1(x) (4)

with the field strength defined as

F̂µν = ∂µÂν − ∂νÂµ + ie
{
Âµ, Âν

}
. (5)

When acting over fermion fields ψ̂, even in the U(1) case, there are three
possible representations of the gauge group action

ψ̂(x)→



ĝ(x) ∗ ψ̂(x) fundamental representation “f”

ψ̂(x) ∗ ĝ−1(x) anti-fundamental representation “f̄”

ĝ(x) ∗ ψ̂(x) ∗ ĝ−1(x) adjoint representation “ad”
(6)

Accordingly, the covariant derivative acting on ψ is defined as

D̂µψ̂(τ, x) =



∂µψ̂ + ie Âµ∗ ψ̂ “f”

∂µψ̂ − ie ψ̂ ∗ Âµ “f̄”

∂µψ̂ + ie {Âµ, ψ̂} “ad”

. (7)

We write the action for massive fermions, coupled to a gauge field, in 2 + 1
non-commutative space as

S(Â;m) =
∫
d3x

¯̂
ψ(x) ∗ (i 6D̂ −m)ψ̂(x) . (8)

and define the effective action Γ(Â;m) trough

eiΓ(Â;m) = Z(Â;m) =
∫
Dψ̂D ¯̂

ψ eiS(Â;m) (9)
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Induced Chern-Simons term

Before studying some specific properties of non-commutative Chern-Simons
action, let us describe how a parity violating Chern-Simons term is induced
by fluctuations of massive non-commutative fermions fields, exactly as it
happens in the commutative case [21]. We shall just concentrate in the parity
odd part of the effective action Γodd, thus disregarding parity conserving
contributions.

Fundamental and anti-fundamental representations

The calculation of the effective action for fermions in the fundamental and the
anti-fundamental representations gives the same answer. We shall describe
first the case of the fundamental representation. As in the original calcu-
lation in [21], one obtains the contribution to Γodd(Â;m) from the vacuum
polarization and the triangle graphs

iΓodd[Â;m] =

(
1

2
Tr
∫

d3p

(2π)3
Âµ(p) Πµν(p;m) Âν(−p)+

+
1

3
Tr
∫

d3p

(2π)3

d3q

(2π)3
Γµνρ(p, q;m) Âµ(p)Âν(q)Âρ(−p− q)

)∣∣∣∣∣
odd

(10)

Here Tr represents the trace over the U(N) algebra generators, with

Πµν(p;m) = −e2
∫

d3k

(2π)3
tr

[
γµ /k −m
k2 −m2

γν /k + /p−m
(k + p)2 −m2

]
(11)

Γµνρ(p, q;m) = e3 exp(− i
2
pλθ

λδqδ)
∫

d3k

(2π)3
tr

[
γµ (/k −m)

k2 −m2
γν (/k − /q −m)

(k − q)2 −m2
×

×γρ (/k + /p−m)

(k + p)2 −m2

]
(12)

As first observed in [11] for massless fermions, there are no nonplanar contri-
butions to the parity odd sector of the effective action, the only modification
arising from noncommuativity is the θ-dependent phase factor in Γµνρ, as-
sociated to external legs in the cubic term, which is nothing but the star
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product in configuration space. The result for Γodd(Â;m) is analogous to
the commutative one except that the star ∗-product replaces the ordinary
product.

Regularization of the divergent integrals (11) and (12) can be achieved
by introducing in the original action (8), bosonic-spinor Pauli-Villars fields
with mass M . These fields give rise to additional diagrams, identical to
those of eq.(10), except that the regulating mass M appears in place of
the physical mass m. Since we are interested in the parity violating part
of the effective action, we keep only the parity-odd terms in (11) and (12)
(and in the corresponding regulator field graphs). To leading order in ∂/m,
the gauge-invariant parity violating part of the effective action is, for the
fundamental representation, given by

Γf
odd(Â,m) =

1

2

(
m

|m| +
M

|M |
)
ŜCS(Â) +O(∂2/m2)

= ±ŜCS(Â) +O(∂2/m2) (13)

with

ŜCS(Â) =
e2

4π

∫
d3x εµνρtr

(
Âµ ∗ ∂νÂρ +

2ie

3
Âµ ∗ Âν ∗ Âρ

)
(14)

As it is well known, the relative sign of the fermion and regulator contri-
butions depends on the choice of the Pauli-Villars regulating Lagrangian (of
course the divergent parts should cancel out independently of this choice). In
the first line of (13) we have made a choice such that the two contributions
add to give the usual gauge invariant parity odd result in the second line.
Note that even in the Abelian case, the Chern-Simons action contains a cubic
term (analogous to that arising in the ordinary non-Abelian case).

As expected, the effective action is gauge invariant even under large gauge
transformations. This is due to the fact that we have taken into account both
parity violating sources: that originated in the (parity non-invariant) fermion
mass term and that related to the regularization prescription (which requires
the introduction of the mass M). The factor in (13) also gives the correct
gauge-invariant answer in the m→ 0 limit [22].

As advanced, the parity odd part of the effective action for fermions in the
anti-fundamental representation gives the same answer. There is a change
of sign e → −e on each vertex, compensated by a change in the momenta
dependence of propagators due to the different ordering of fields in the f and
f̄ covariant derivatives (see (7)).
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Adjoint representation

The diagrams contributing to Πµν in the adjoint representation are shown in
Fig. 1.

xx x

1a 1b 1c

Figure 1
Diagrams contributing to Πµν for fermions in the adjoint representation. The
dotted vertex coincides with the coupling of Aµ with fermions in the fundamental
representation, the cross with that for fermions in the anti-fundamental.

Planar diagrams 1a and 1b coincide with those arising in the fundamen-
tal and the anti-fundamental representation, thus giving, each one, the pre-
viously computed answer (13). Concerning the non-planar diagram 1c, the
resulting contribution is given by

Πµν
1c (p;m) = e2

∫ d3k

(2π)3
exp(−ipλθ

λδkδ)tr

[
γµ /k − /p−m

(k − p)2 −m2
γν /k −m
k2 −m2

]

(15)
The parity odd part of the above expression is

Πµν
1c (p;m)|odd = −2e2mεµνρ ipρ

∫ d3k

(2π)3

exp(−ipλθ
λδkδ)

(k2 −m2)((k − p)2 −m2)

= −2
m

|m|e
2εµνρ ipρ

∫ d3q

(2π)3

exp(−i|m|pλθ
λδqδ)

(q2 − 1)((q − p
|m|)

2 − 1)
(16)

where we have written kµ = |m|qµ. As in the previous section, one should
add the regulator contribution.

We are interested in the leading term in a derivative expansion of the
effective action. In the ordinary (commutative) case, this amounts to make
an expansion in powers of the unique available dimensionless variable, p/m.
In the noncommutative case, where one has, apart from the fermion mass,

5



the dimensionfull parameter θ, one can construct a second independent di-
mensionless variable, m|pθ|. Let us first expand (16) to first order in p/m,

Πµν
1c (p;m)|odd = − m

|m|2ie
2εµνρ pρ

∫ d3q

(2π)3

exp(−i|m|pλθ
λδqδ)

(q2 − 1)2

− M

|M |2ie
2εµνρpρ

∫
d3q

(2π)3

exp(−i|M |pλθ
λδqδ)

(q2 − 1)2
(17)

here, the regulator contribution has been explicitly written. Concerning the
expansion in powers of the second dimensionless parameter m|pθ|, let us note
that, since m is finite, first order in m|pθ| should be kept in the first term of
(17). This gives the same contribution to the effective action as the 1a and
1b graphs. For the second term in (17), the M → ∞ limit must be taken,
then, the oscillating factor makes the integral vanish [11]. Finally one gets

Πµν
1c (p;m)|odd = −i m|m|

e2

4π
εµνρipρ , (18)

so that the complete quadratic Πµν for the adjoint representation is then
given by

Πµν
adj(p;m) = Πµν

1a (p;m) + Πµν
1b (p;m) + 2Πµν

1c (p;m) =
e2

2π
εµνρpρ

M

|M | (19)

Note that the whole contribution to Πµν in the adjoint comes from the
regulating fields. This accounts for the quadratic part of the CS induced
action. Concerning the cubic term, it can be either explicitly computed or
adjusted so as to achieve gauge-invariance. In anycase, the result for the the
parity violating effective action for fermions in the adjoint is, to leading order
in ∂,

Γad
odd(Â,m) = ±ŜCS(Â) +O(∂2) . (20)

As before, the result is gauge invariant even under large gauge transforma-
tions.

It should be stressed that (20) gives a non-trivial effective action even in
the θ → 0 limit, in which fermions in the adjoint decouple from the gauge
field. As observed in other cases [5]-[6], [13], [18], this is due to the fact that
this limit does not commute with that of the regulator M →∞.
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The connection between noncommutative CS and chiral
WZW theories

As it is well-known, the (ordinary) CS theory can be related with the chiral
WZW model following different approaches [25]-[27]. Here, we shall discuss
how such a connection can be established in the noncommutative case.

Consider the action

ŜCS[Â0, Âi] =
e2

4π
Tr
∫
M
d3x εij

(
Â0 ∗ F̂ij +

˙̂
Ai ∗ Âj

)
, (21)

which differs from the CS action (14) by a surface term. Of course, whenM
has no boundary, such surface term is irrelevant. However, in what follows
we choose as manifoldM = Σ× R with Σ a two-dimensional manifold. We
shall take eq.(21) as the starting point for quantization of the 2 + 1 theory
and follow the steps described in [26]-[27] in their original derivation of the
connection.

Expression (21) can be rewritten as

ŜCS[Â0, Âi] =
e2

4π
Tr
∫
M
d3x εij

(
Â0F̂ij +

˙̂
Ai ∗ Âj

)
+
e2

4π
Tr
∫

∂M
dSµΛ

µ (22)

with

Λµ = εij
∞∑

n=1

1

n!

(
i

2

)n

θµν1θµ2ν2...θµnνn∂µ2 ...∂µnÂ0 ∂ν1∂ν2 ...∂νnF̂ij (23)

Using action (22), the partition function for the noncommutative CS theory
takes the form

Z =
∫
DÂiDÂ0 exp

(
iκe2

4π
Tr
∫
M
d3x εij

(
Â0F̂ij +

˙̂
Ai ∗ Âj

)

+
iκe2

4π
Tr
∫

∂M
dSµΛµ

)
(24)

where κ is an integer. For interior points of M, A0 acts as a Lagrange
multiplier enforcing flatness of the spatial components of the connection

F̂ij(x) = 0 ∀x ∈M− ∂M (25)
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By continuity, F̂ij must also vanishes on the boundary. The partition function
takes then form

Z =
∫
DÂiδ(εijF̂ij) exp

(
iκe2

4π
Tr
∫
M
d3x εij

˙̂
Ai ∗ Âj

)
(26)

Let us discuss the case where Σ is the disk. Then the solution of the
flatness condition (25) is Âi = − i

e
ĝ−1 ∗∂iĝ, and one has reinserting it in (26)

Z =
∫
Dĝ exp

(
iκŜCWZW [ĝ]

)
(27)

where ŜCWZW [ĝ] is the noncommutative, chiral WZW action

ŜCWZW [ĝ] = − 1

4π
Tr
∫

∂M
d2x(ĝ−1 ∗ ∂tĝ) ∗ (ĝ−1 ∗ ∂ϕĝ)

− 1

4π
Tr
∫
M
d3x εij(ĝ

−1 ∗ ∂ig) ∗ (ĝ−1 ∗ ∂tg) ∗ (ĝ−1 ∗ ∂jg)

(28)

here ϕ is a tangential coordinate which parametrize the boundary ofM2.
With this result in mind and taking into account the connection between

commutative and noncommutative WZW models established in [18] through
a Seiberg-Witten map, one can advance an analogous connection for the CS
theories. The situation can be visulized in the following scheme

CWZW [ĝ] ←→ ∫
d3x (ÂdÂ + 2i

3
Â3)

l l ?

CWZW [g] ←→ ∫
d3x (AdA+ 2i

3
A3)

(29)

The next section is devoted to the study of this issue.

The Seiberg-Witten map

A correspondence between commutative and noncommutative gauge field
theories can be defined by the map [3]

δÂµ = δθρσ ∂

∂θρσ
Âµ(θ) = −1

4
δθρσ

{
Âρ, ∂σÂµ + F̂σµ

}
+
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δF̂µν(θ) = δθρσ ∂

∂θρσ
F̂µν(θ)

=
1

4
δθρσ

(
2
{
F̂µρ, F̂νσ

}
+
−
{
Âρ, D̂σF̂µν + ∂σF̂µν

}
+

)
(30)

For the case of noncommutative Yang-Mills action, this map leads to a com-
plicated non-polynomial commutative action. Remarkably, in the Chern-
Simons case, the action remains (up to surface terms) invariant under the
map (30). Let us write the noncommutative Chern-Simons action in the form
(14)

ŜCS(Â) =
e2

4π

∫
M
d3x εµνρ

(
Âµ ∗ ∂νÂρ +

2ie

3
Âµ ∗ Âν ∗ Âρ

)
(31)

where we choose for M either R3 or Σ × R with Σ a manifold without
boundary. Action (31) can be rewritten in the form

ŜCS(Â) =
e2

4π

∫
M
d3x εij

(
Â0F̂ij +

˙̂
AiÂj

)
. (32)

In order to investigate the variation of this action under Seiberg-Witten
map, let us differentiate it with respect to θµν

∂ŜCS(Â)

∂θµν

=
e2

4π

∫
M
d3x εij

∂

∂θµν

(
Â0F̂ij + ȦiAj

)

=
e2

4π

∫
M
d3x εij

(
∂Â0

∂θµν

F̂ij + Â0
∂F̂ij

∂θµν

+ 2
∂Aj

∂θµν

Ȧi

)
(33)

Now, we can use (30) in order to rewrite the θ-derivatives. Keeping only the
terms which are antisymmetric with respect to the indices µ, ν and i, j, we
get

∂ŜCS(Â)

∂θµν
= 0 ⇒ ŜCS(Â) = SCS(A) (34)

Here SCS(A) is the ordinary (commutative) CS action. It is interesting to
note that in the U(1) case the SW map cancels out the cubic term which is
present in ŜCS(Â).

In summary, we see that the SW transformation (30) maps the noncom-
mutative Chern-Simons action into the commutative one.
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Conclusions

We have computed the effective action for fermions in noncommutative space,
for different representations, showing that a gauge invariant answer (even for
large gauge transformations) is obtained when regulator contributions are
taken in account. In particular, for the adjoint representation, the non-trivial
gauge invariant result (20) is completely due to the regulator fields, showing
that the commutative θ → 0 limit does not commute with the M →∞ limit.

We have shown that the noncommutative Chern-Simons action can be
related to the chiral noncommutative WZW model in the usual way. It is
important to note that for deriving this relation we needed to define the
Chern-Simons theory from action (21), which shows A0 as a Lagrange mul-
tiplier enforcing the flatness constraint (24). Finally, we showed that the
Chern-Simons action is mapped into the standard (commutative) action un-
der the Seiberg-Witten map (30).
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