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Abstract

We present metaSNV, a tool for single nucleotide variant (SNV) analysis in metagenomic

samples, capable of comparing populations of thousands of bacterial and archaeal species.

The tool uses as input nucleotide sequence alignments to reference genomes in standard

SAM/BAM format, performs SNV calling for individual samples and across the whole data

set, and generates various statistics for individual species including allele frequencies and

nucleotide diversity per sample as well as distances and fixation indices across samples.

Using published data from 676 metagenomic samples of different sites in the oral cavity, we

show that the results of metaSNV are comparable to those of MIDAS, an alternative imple-

mentation for metagenomic SNV analysis, while data processing is faster and has a smaller

storage footprint. Moreover, we implement a set of distance measures that allow the com-

parison of genomic variation across metagenomic samples and delineate sample-specific

variants to enable the tracking of specific strain populations over time. The implementation

of metaSNV is available at: http://metasnv.embl.de/.

Introduction

Recently, strain-level analysis of metagenomes has been shown to be feasible even for complex

communities such as the human gut [1] and a number of tools have been consequently devel-

oped to enable researchers to study microbial communities at this level of resolution. These

tools differ considerably in approach and assumptions as well as in the type of information

they provide as output. As such, conspecific strains can be disentangled based either on gene

content [2,3] or using specific SNVs [1,4]. The latter approach is the category that the current

work falls under, though here also the specifics vary, with some tools attempting to reconstruct

mini-haplotypes, based either of core species genes [5] or species-specific marker genes [6],

while others try to characterize the genome-wide variation landscape, without endeavouring

to construct haplotypes [1,4]. All these approaches are dependent of the availability of
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reference genomes and may thus only be applied to well characterized environments. Comple-

mentary methodology is being developed to tackle the challenge of characterizing samples for

which few or no reference genomes are available, by combining metagenomic assembly with

single cell sequencing [7].

There are two main challenges in the use of these of the reference dependent tools, which

are of interest here: usability and interpretability. For the former, as the number of samples to

compare increases, considerations such as run-time and storage footprint become increasingly

important. In the case of the latter, the tools currently available output primary analyses that

require additional work to interpret the results.

Here, we present a fast and scalable tool, metaSNV, for quantifying genomic variation

based on original concepts and procedures of Schloissnig et al. [1], with additional functional-

ity and packaged as an easy to use pipeline. We compare its performance and output to

MIDAS as an alternative implementation [4], which also aims at characterizing whole genome

variation based on mapping to one representative genome per species. We do not perform a

comparison to the output of tools that use only a subset of the genome to determine strain hap-

lotypes, be it a set of common marker genes [5] or a species-specific set [6].

metaSNV uses a collection of microbial reference genomes, where each species is repre-

sented by a single representative genome to avoid redundancy [8,9]. Alternatively, users may

specify their own reference genome or gene collection. We show that our approach identifies

extensive variation within microbial species and that this variation is informative in quantify-

ing differences between metagenomic samples. Towards this end, metaSNV also implements a

set of distance measures that can be used to compare the variation profiles between samples in

order to determine genetic distances of strain populations and to identify relations to explana-

tory variables of interest (sampling site, environmental conditions, health states, etc.).

As a demonstration, using data from the Human Microbiome Project (HMP) [10], we

show that the genomic variation of most bacteria that inhabit the human oral cavity is highly

correlated with the specific sub-habitat that they have been collected from (e.g. tongue dorsum

vs. supra-gingival plaque) and that individual SNV profiles are stable over time.

Materials and methods

The pipeline input is a list of alignment files in SAM/BAM format, which contain the results of

mapping metagenomic samples to a reference genome database. Results presented here were

computed using bwa as an aligner [11]; however other tools can be used. In particular, we

describe the parameters we used to quality control metagenomic sequences on the tutorial

webpage (http://metasnv.embl.de/) and how to use bwa and Ngless (http://ngless.embl.de/) to

produce BAM files [12] which can be used as input for metaSNV. As previously stated, the ref-

erence genome database may be a custom one created by the user or the one deployed with the

current software [9]. metaSNV is structured as a sequence of three processing steps (Fig 1A),

with the first two wrapped together in one command and a separate script for post-processing.

Firstly, we determine the average coverage over each reference genome in each sample. For

this, we run qaCompute per sample (a tool from the qaTools suite https://github.com/

CosteaPaul/qaTools, which is deployed with metaSNV) and aggregate the coverage informa-

tion. This step can be parallelized as each sample coverage estimation is independent of all oth-

ers. In the next step we compute the genomic variation and output all of the variant positions

that meet the imposed quality criteria. Here we take advantage of the mpileup tool in samtools

[13], in order to obtain per-position variant information. These variant calls then get filtered

based on the given criteria and if a gene position file is given, get annotated as synonymous or

non-synonymous change compared to the reference allele. For this processing steps also,
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metaSNV supports multi-threading to use multiple cores. Lastly, we provide post-processing

analyses of the SNV landscape and allow the user to compute per species pair-wise distance

matrices of samples, as well as evolutionary measures such as nucleotide diversity and fixation

index [14,15].

If desired, metaSNV can automatically estimate a balanced split of the input data and divide

the overall work into multiple jobs, which can then be executed in parallel over many machines

in a high-performance computing cluster.

Genome coverage estimation

Given an alignment file (in standard BAM format [13]), we estimate the vertical coverage, that

is the number of bases covering each genome divided by its length. We also compute the hori-

zontal coverage, namely the percentage of the genome that is covered by at least one read.

Based on the coverage information, the reference may be divided into parts that are estimated

to require similar execution times.

Fig 1. Overview of analysis pipeline and example results. (A) shows the SNV calling and analysis workflow, consisting

of an optional pre-processing step, which splits the computation load into subsets of similar size based on the genome

coverage, the main SNV calling step and further post-processing of the raw output, which can be tailored according to the

aim of the analysis. (B) shows the Principal Coordinate Analysis projection of a pairwise distance between oral samples,

based on population SNVs, which clearly separates strain populations in tongue dorsum samples from those in supra-

gingival plaque samples. (C) shows the tracking of the individual SNV frequencies within an individual over a period of 384

days. Each line represents one variant position and the respective colour encodes the amount by which the allele frequency

of that position changed over time; red represents stable variants that maintain their frequency while in blue are positions

which dramatically change their frequency in the population. Only a small number of positions vary over the measured

period, with most remaining at approximately the same population frequency, suggesting great stability of strain

populations within the individual.

https://doi.org/10.1371/journal.pone.0182392.g001
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Population and individual SNV calling

We determine the existence of a candidate variant on a per-nucleotide basis, building upon

the mpileup tool in the samtools package [13]. All reads from all samples that align to a given

position are considered together. If at least four variant containing reads cover a position

(across all samples), it is considered a potential SNV [1]. Variants are split into two classes:

population and individual variants. The former are non-reference nucleotides observed in

more than 1% of all reads combined across all samples. The individual variants are those that

fall below the 1% frequency population threshold, but are confidently observed in at least

one sample (at least four reads containing the variant). If multiple different non-reference

nucleotides are observed, all are reported independently. We observed such multi-allelic

positions to be rare in our experiments: 3.7% of the population variants and 1.6% of the indi-

vidual ones. While the four reads criterion filters out sequencing errors randomly distributed

across the genome, the 1% criterion eliminates random sequencing errors that accumulate in

the same position when depth of coverage reaches very high numbers; conservative error

rates have been estimated for these cut-offs to be in the range of 0.35–0.7% [1]. The thresh-

olds described are the default settings for the pipeline, but may be customized by the user if

desired.

Post-processing and analysis

Taxon, sample and position filters are applied post SNV calling. Within each sample, we con-

sider a taxon to have been observed if the respective genome has a vertical coverage of at least

5x and a horizontal coverage of at least 40%. We impose the 5x vertical coverage cut-off to pre-

vent ascertainment biases due to spurious coverage. In addition, as high vertical coverages can

be reached by spurious mapping of sufficiently high numbers of short reads to highly con-

served genes or genomic regions, we additionally impose a horizontal coverage filter. We base

the default cut off (40%) on a previously estimated lower bound of the genome percentage

shared by distinct E. coli strains [16]. We note that this lower bound is rather conservative and

we generally find more than 80% horizontal coverage at 5x in human faecal samples. However,

this ensures the presence of the given species in the sample of interest. Both these cut-offs can

be customized by the user, though we recommend using the proposed ones to ensure the accu-

racy of subsequent distance estimations. Resulting SNVs are further filtered to only consider

those positions which were covered at 5x in at least 50% of samples, ensuring that only varia-

tion over commonly observed positions is considered. For downstream processing, we imple-

mented a per-taxon computation of pair-wise distance matrices between all samples, based on

these filtered SNVs. These distances are based on non-reference allele frequencies across all

the pair-wise observed variants. Namely, a Manhattan distance, which adds the absolute fre-

quency difference per site and normalizes to the total number of comparisons. That is, the

number of sites for which the comparison was possible; if a position was not observed in a

sample, it is ignored in the calculation. Additionally, we offer a “major allele” distance, which

only considers differences in the major allele per site; that is, frequency differences greater of

equal to 60%. We note that if a position has multiple variants, these are considered indepen-

dently. Finally, nucleotide diversity (π) [14,17] within and between samples and fixation

indexes (FST) [15] can be adapted to metagenomics data [18] and computed for each species as

previously described [1]:

pðS1; S2;GÞ ¼
1

G

XnSNVs

i¼1

X

N12fATGCg

xS1 ;i;N1

X

N22fATGCg=N1

xS2 ;i;N2
ð1Þ
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FST ¼ 1 �
pwithin

pbetween
¼ 1 �

ðpðS1; S1;GÞ þ pðS2; S2;GÞÞ=2

pðS1; S2;GÞ
ð2Þ

Where G is the size of the genome, and xS,i,N the frequency of nucleotide N, at position i in the

genome, in sample S. All measured described above result in values from 0 to 1, with 1 denot-

ing the greatest dissimilarity between two populations.

Results and discussion

We have applied the SNV pipeline to 676 shotgun metagenomes from the oral cavity, collected

as part of the Human Microbiome Project (HMP) [10]. The result for Capnocytophaga sputi-
gena demonstrates that samples from the tongue dorsum of an individual’s oral cavity cluster

separately from those collected from supra-gingival plaque (Fig 1B). This result provides

strong evidence that the strain populations inhabiting the two habitats are divergent, reminis-

cent of previously described ecotypes [19,20]. Furthermore, metaSNVs enables the tracking of

strains within individuals over time using individual specific variant positions (Fig 1C). Thus,

we can track the evolutionary path of SNVs and show that they can be remarkably stable

within an individual, even when measured ~400 days later. Specifically, we note that the fre-

quency of the vast majority of variants in the population stays relatively constant, with only

few positions being fixed or cleared from the population.

To compare our results with MIDAS [4], we selected two sites in the oral cavity, tongue

dorsum and supra-gingival plaque, and analysed 80 randomly selected HMP samples from

these body sites, supra-gingival plaque (N = 40) and tongue dorsum (N = 40). As differences

in the called positions themselves are not informative, we computed the Manhattan distance

on the allele frequencies using the output from both tools, while running them with similar

parameters (using merge_midas.py snps with—min_samples 10—sample_depth 5.0—fract_

cov 0.4—site_depth 5—site_prev 0.5—site_maf 0.01 and metaSNV_post.py with -m 10). The

distances computed are comparable, with a median R2 of 0.81 for the common species and

sample intersects, suggesting both methods capture the same genomic variation profile. Com-

mon species overlap with a Jaccard-index of 0.86 and the sample intersects per species average

a Jaccard-index of 0.89. (Fig 2). Thus, the two methods are able to assess genome variation

across the same samples and the resulting characterization is mostly the same.

Runtime Benchmarking

In order to compare running time and storage footprint we used both approaches with match-

ing parameters and up to 32 CPUs per job. The average runtime for each processing step

(alignment, species abundance estimation, SNV calling, filtering and post-processing) was

computed by averaging the real time for each individual job (up to 80 jobs per processing step,

one for each sample or split). The pipeline’s absolute runtime is the sum of all necessary tasks,

hence the average real-time to run the total work-flow from fastq files to distance matrix

(Table 1).

metaSNV processed all the samples in 226 minutes (132 minutes if the samples were already

aligned) and produced 18 GB output (241 GB including the alignment files). This processing

time includes alignment (BWA), species abundance estimation (qaCompute), SNV calling

(samtools + metaSNV called in parallel computing modus) and post-processing (filtering). In

comparison, MIDAS ran for 3455 minutes and produced 537 GB output.

The difference in storage footprint is explained by the fact that metaSNV only outputs posi-

tions at which at least one variant across all samples was observed, while MIDAS output all
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positions. Overall, metaSNV was 15.3 times faster than MIDAS while using 48% less CPUs

(2677 total) and has less than half the storage footprint.

Availability of reference genomes: Limitations and perspectives

metaSNV can be broadly applied to investigate bacterial populations across varying habitats,

hosts or clinical conditions. One important consideration, however, is that of availability of

reference genomes. At the moment, the collection we provide contains representative genomes

for over 5,000 bacterial species [9], though they represent a biased sample of different environ-

ments. For instance, the current database only captures a fraction (6%) of the reads collected

from the Tara Oceans expedition. Nonetheless, the recent release of newly sequenced

Fig 2. Comparison of metaSNV and MIDAS results. Correlation coefficient (R2, mantel) for the pairwise distance matrices generated by

MIDAS and metaSNV (top). Compared are only sample intersects for species examined with both methods. Jaccard indices for the sample

overlap per species was computed (bottom). The average sample number and average Jaccard index over all samples intersect is shown in

the legend.

https://doi.org/10.1371/journal.pone.0182392.g002
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prokaryotes based on phylogenetic coverage could significantly improve the number of

species for previously under-sampled habitats [21]. Additionally, the improvement culture-

independent sequencing techniques such as single-cell sequencing or reference-independent

approaches [7] could further reduce such biases.

Taken together, we have shown that metaSNV offers a fast, scalable and reliable way of

quantifying prokaryotic single nucleotide variation in hundreds of samples. Moreover, we pro-

vide easy to use scripts for analyzing this variation in different settings both to compare popu-

lations across samples and to track them over time.
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