
Article

BROJA-2PID: A Robust Estimator for Bivariate Partial
Information Decomposition

Abdullah Makkeh * ID , Dirk Oliver Theis † and Raul Vicente †

Institute of Computer Science, University of Tartu, Ülikooli 17, 51014 Tartu, Estonia; dotheis@ut.ee (D.O.T.);
raul.vicente.zafra@ut.ee (R.V.)
* Correspondence: makkeh@ut.ee
† These authors contributed equally to this work.

Received: 22 February 2018; Accepted: 9 April 2018; Published: 11 April 2018

Abstract: Makkeh, Theis, and Vicente found that Cone Programming model is the most robust
to compute the Bertschinger et al. partial information decomposition (BROJA PID) measure.
We developed a production-quality robust software that computes the BROJA PID measure based on
the Cone Programming model. In this paper, we prove the important property of strong duality for the
Cone Program and prove an equivalence between the Cone Program and the original Convex problem.
Then, we describe in detail our software, explain how to use it, and perform some experiments
comparing it to other estimators. Finally, we show that the software can be extended to compute
some quantities of a trivaraite PID measure.

Keywords: bivariate information decomposition; Cone Programming

1. Introduction

For random variables X, Y, Z with finite range, consider the mutual information MI(X; Y, Z):
the amount of information that the pair (Y, Z) contain about X. How can we quantify the contributions
of Y and Z, respectively, to MI(X; Y, Z)? This question is at the heart of (bivariate) partial information
decomposition (PID) [1–4]. Information theorists agree that there can be: information shared redundantly
by Y and Z; information contained uniquely within Y but not within Z; information contained uniquely
within Z but not within Y; and information that synergistically results from combining both Y and Z.
The quantities are denoted by: SI(X; Y, Z); UI(X; Y\Z), UI(X; Z\Y); and CI(X; Y, Z), respectively.
All four of these quantities add up to MI(X; Y, Z); moreover, the quantity of total information that Y
has about X is decomposed into the quantity of unique information that Y has about X and shared
information that Y shares with Z about X, and similarly for quantity of total information that Z
has about X, thus SI(X; Y, Z) + UI(X; Y\Z) = MI(X; Y), and SI(X; Y, Z) + UI(X; Z\Y) = MI(X; Z).
Hence, if the joint distribution of (X, Y, Z) is known, then there is (at most) one degree of freedom
in defining a bivariate PID. In other words, defining the value of one of the information quantities
defines a bivariate PID.

Bertschinger et al. [1] have given a definition of a bivariate PID where the synergistic information
is defined as follows:

CI(X; Y, Z) := max(MI(X; Y, Z)−MI(X′; Y′, Z′)) (1)

where the maximum extends over all triples of random variables (X′, Y′, Z′) with the same
12,13-marginals as (X, Y, Z), i.e., P(X = x, Y = y) = P(X′ = x, Y′ = y) for all x, y and
P(X = x, Z = z) = P(X′ = x, Z′ = z) for all x, z. It can easily be verified that this amounts
to maximizing a concave function over a compact, polyhedral set described by inequalities [5].

Entropy 2018, 20, 271; doi:10.3390/e20040271 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-3581-8262
http://www.mdpi.com/journal/entropy
http://dx.doi.org/10.3390/e20040271

Entropy 2018, 20, 271 2 of 19

Hence, using standard theorems of convex optimization [5,6], BROJA’s bivariate PID can be efficiently
approximated to any given precision.

In practice, computing CI has turned out to be quite challenging, owing to the fact that the
objective function is not smooth on the boundary of the feasible region, which results in numerical
difficulties for state-of-the-art interior point algorithms for solving convex optimization problems.
We refer to [5] for a thorough discussion of this phenomenon.

Due to these challenges and the need in the scientific computing community to have a reliable
easily usable software for computing the BROJA bivariate PID, we made available on GitHub a Python
implementation of our best method for computing the BROJA bivariate PID (https://github.com/
Abzinger/BROJA_2PID/). The solver is based on a conic formulation of the problem and thus a Cone
Program is used to compute the BROJA bivariate PID. This paper has two contributions. Firstly,
we prove the important property of strong duality for the Cone Program and prove an equivalence
between the Cone Program and the original Convex problem (1). Secondly, we describe in detail our
software and how to use it. Thirdly, we test the software against different instances and then compare
the results with the COMPUTEUI estimator introduced in [7] and the IBROJA estimator from the DIT

package (https://github.com/dit/dit). Finally, we show how to use the so-called exponential cone to
model some quantities of the multivariate PID measure introduced in [8].

This paper is organized as follows. In the remainder of this section, we define some notation
we will use throughout, and review the Convex Program for computing the BROJA bivariate PID
from [1]. In the next section, we review the math underlying our software to the point which is
necessary to understand how it works and how it is used. In Section 3, we walk the reader through
an example of how to use the software, and then explain its inner workings and its use in detail.
In Section 4, we present some computations on larger problem instances, discuss how the method
scales up, and compare it to other methods. In Section 5, we present a modeling, using the exponential
cone, of some quantities for a multivariate PID measure. We conclude the paper by discussing our
plans for the future development of the code.

Notation and Background

Denote by X the range of the random variable X, by Y the range of Y, and by Z the range of Z.
We identify joint probability density functions with points in RW; for example, the joint probability
distribution of (X, Y, Z) is a vector in RX×Y×Z. (We measure information in nats, unless otherwise
stated.) We use the following notational convention.

An asterisk stands for “sum over everything that can be plugged in instead of the ∗”, e.g.,
if p, q ∈ RX×Y×Z,

qx,y,∗ = ∑w∈Z qx,y,w; p∗,y,zq∗,y,z =
(
∑u∈X pu,y,z

) (
∑u∈X qu,y,z

)
We do not use the symbol ∗ in any other context.

We define the following notation for the marginal distributions of (X, Y, Z): With p the joint
probability density function of (X, Y, Z):

px,y,∗ = P
(
X = x ∧Y = y

)
for all x ∈ X, y ∈ Y

px,∗,z = P
(
X = x ∧ Z = z

)
for all x ∈ X, y ∈ Y.

These notations allow us to write the Convex Program from [1] in a succinct way. Unraveling the
objective function of (1), we find that, given the marginal conditions, it is equal, up to a constant
not depending on X′, Y′, Z′, to the conditional entropy H(X′ | Y′, Z′). Replacing maximizing
H(. . .) by minimizing −H(. . .), we find (1) to be equivalent to the following Convex Program:

https://github.com/Abzinger/BROJA_2PID/
https://github.com/Abzinger/BROJA_2PID/
https://github.com/dit/dit

Entropy 2018, 20, 271 3 of 19

minimize ∑
x,y,z

qx,y,z ln
qx,y,z

q∗,y,z
over q ∈ RX×Y×Z

subject to qx,y,∗ = px,y,∗ for all (x, y) ∈ X× Y

qx,∗,z = px,∗,z for all (x, z) ∈ X× Z

qx,y,z ≥ 0 for all (x, y, z) ∈ X× Y× Z.

(CP)

2. Cone Programming Model for Bivariate PID

In [5], we introduced a model for computing the BROJA bivariate PID based on a so-called
“Cone Programming”. Cone Programming is a far reaching generalization of Linear Programming:
The usual inequality constraints which occur in Linear Programs can be replaced by so-called
“generalized inequalities”—see below for details. Similar to Linear Programs, dedicated software is
available for Cone Programs, but each type of generalized inequalities (i.e., each cone) requires its own
algorithms. The specific type of generalized inequalities needed for the computation of the BROJA
bivariate PID requires solvers for the so-called “Exponential Cone”, of which two we are aware of
ECOS [9] and SCS [10].

In the computational results of [5], we found that the Cone Programming approach (based on one
of the available solvers) was, while not the fastest, the most robust of all methods for computing the
BROJA bivariate PID which we tried, such as projected gradient descent, interior point for general
convex programs, geometric programming, etc. The reason for this success is that the interior point
method for Cone Programming is an extension of the efficient interior point methods of Linear
Programming, see [11] for more details. This is why our software is based on the Exponential Cone
Programming model.

In this section, we review the mathematical definitions to the point in which they are necessary to
understand our model and the properties of the software based on it.

2.1. Background on Cone Programming

A nonempty closed convex cone K ⊆ Rm is a closed set which is convex, i.e., for any x, y ∈ K and
0 ≤ θ ≤ 1 we have

θx + (1− θ)y ∈ K,

and is a cone, i.e., for any x ∈ K and θ ≥ 0 we have

θx ∈ K;

for example, Rn
+ is a closed convex cone. Cone Programming is a far-reaching generalization of Linear

Programming, which may contain so-called generalized inequalities: For a fixed closed convex cone
K ⊆ Rm, the generalized inequality “a ≤K b” denotes b − a ∈ K for any a, b ∈ Rm. Recall the
primal-dual pair of Linear Programming. The primal problem is,

minimize cTw

subject to Aw = b

Gw ≤ h

(2)

over variable w ∈ Rn, where A ∈ Rm1×n, G ∈ Rm2×n, c ∈ Rn, b ∈ Rm1 , and h ∈ Rm2 . Its dual problem is,

maximize − bTη − hTθ

subject to − ATη − GTθ = c

θ ≥ 0.

(3)

Entropy 2018, 20, 271 4 of 19

over variables η ∈ Rm1 and θ ∈ Rm2 . There are two properties that the pair (2) and (3) may or may not
have, namely, weak and strong duality. The following defines the duality properties.

Definition 1. Consider a primal-dual pair of the Linear Program (2) and (3). Then, we define the following,

1. A vector w ∈ Rn (respectively, (η, θ) ∈ Rm1 ×Rm2) is said to be a feasible solution of (2) (respectively,
(3)) if Aw = b and Gw ≤K h (respectively, −ATη − GTθ = c and θ ≥ 0), i.e., none of the constraints
in (2) (respectively, (3)) are violated by w (respectively, (η, θ)).

2. We say that (2) and (3) satisfy weak duality if for all w and all (η, θ) feasible solutions of (2) and (3),
respectively,

−bTη − hTθ ≤ cTw.

3. If w is a feasible solution of (2) and (η, θ) is a feasible solution of (3), then the duality gap d is

d := cTw + bTη + hTθ.

4. We say that (2) and (3) satisfy strong duality when the feasible solutions w and (η, θ) are optimal in (2)
and (3), respectively, if and only if d is zero.

Weak duality always holds for a Linear Program, however strong duality holds for a Linear
Program whenever a feasible solution of (2) or (3) exists. These duality properties are used to certify
the optimality of w and (η, θ). The same concept of duality exists for Cone Programming, the primal
cone problem is

minimize cTw

subject to Aw = b

Gw ≤K h,

(P)

over variable w ∈ Rn, where A ∈ Rm1×n, G ∈ Rm2×n, c ∈ Rn, b ∈ Rm1 , and h ∈ Rm2 . The dual cone
problem is,

maximize − bTη − hTθ

subject to − ATη − GTθ = c

θ ≥K∗ 0,

(D)

where K∗ := {u ∈ Rn | uTv ≥ 0 for all v ∈ K} is the dual cone of K. The entries of the vector η ∈ Rm1

are called the dual variables for equality constraints, Aw = b. Those of θ ∈ Rm2 are the dual variables for
generalized inequalities, Gw ≤K h. The primal-dual pair of Conic Optimization (P) and (D) satisfies weak
and strong duality in the same manner as the Linear Programming pair. In the following, we define
the interior point of a Cone Program which is a necessary condition for strong duality (see Definition 1)
to hold for the Conic Programming pair.

Definition 2. Consider a primal-dual pair of the Conic Optimization (P) and (D). Then, the primal problem
(P) has an interior point x̃ if,

• x̃ is a feasible solution of (P).
• There exists ε > 0 such that for any y ∈ Rn, we have y ∈ K whenever ‖h− Gx̃− y‖2 ≤ ε.

Theorem 1 (Theorem 4.7.1 [12]). Consider a primal-dual pair of the Conic Optimization (P) and (D). Let w
and (η, θ) be the feasible solutions of (P) and (D), respectively. Then,

1. Weak duality always hold for (P) and (D).
2. If cTw is finite and (P) has an interior point w̃, then strong duality holds for (P) and (D).

If the requirements of Theorem 1 are met for a conic optimization problem, then weak and strong
duality can be used as guarantees that the given solution of a Cone Program is optimal.

Entropy 2018, 20, 271 5 of 19

One of the closed convex cones which we use throughout the paper is the exponential cone, Kexp,
(see Figure 1) defined in [13] as

{(r, t, q) ∈ R3 | q > 0 and qer/q ≤ t} ∪ {(r, p, 0) ∈ R3 | r ≤ 0 and t ≥ 0}, (4)

which is the closure of the set

{(r, t, q) ∈ R3 | q > 0 and qer/q ≤ t}, (5)

and its dual cone, K∗exp, (see Figure 1) is

{(u, v, w) ∈ R3 | u < 0 and − u · ew/u ≤ e · v} ∪ {(0, v, w) | v ≥ 0 and w ≥ 0}, (6)

which is the closure of the set

{(u, v, w) ∈ R3 | u < 0 and − u · ew/u ≤ e · v}. (7)

When K = Kexp in (P), the Cone Program is referred to as “Exponential Cone Program”.

(a) (b)

Figure 1. The Kexp cone and its dual: (a) Kexp for −2 ≤ r ≤ 0 and 0 ≤ q, t ≤ 2.; and (b) K∗exp for
−2 ≤ u ≤ 0 and 0 ≤ w, v ≤ 2.

2.2. The Exponential Cone Programming Model

The Convex Program (CP) which computes the bivariate partial information decomposition can
be formulated as an Exponential Cone Program. Consider the following Exponential Cone Program
where the variables are r, t, q ∈ RX×Y×Z.

minimize − ∑
x,y,z

rx,y,z

subject to qx,y,∗ = px,y,∗ for all (x, y) ∈ X× Y

qx,∗,z = px,∗,z for all (x, z) ∈ X× Z

q∗,y,z − tx,y,z = 0 for all (x, y, z) ∈ X× Y× Z

(−rx,y,z,−tx,y,z,−qx,y,z) ≤Kexp 0 for all (x, y, z) ∈ X× Y× Z.

(EXP)

The first two constraints are the marginal equations of (CP). The third constraints connects the
t-variables with the q-variables which will be denoted as coupling equations. The generalized inequality
connects these to the variables forming the objective function.

Entropy 2018, 20, 271 6 of 19

Proposition 1. The exponential cone program (EXP) is equivalent to the Convex Program (CP).

Proof. Let ¶CP(b) and ¶exp(b) be the feasible region of (CP) and (EXP), respectively. We define the
following

f : ¶CP(b)→ ¶exp(b)

qx,y,z → f (qx,y,z) :=

(qx,y,z ln q∗,y,z
qx,y,z

, q∗,y,z, qx,y,z) if qxyz > 0

(0, q∗,y,z, qx,y,z) if qx,y,z = 0.

(8)

For qx,y,z ∈ ¶CP, we have

(−1, 0, 0)T · f (qx,y,z) =

qx,y,z ln qx,y,z
q∗,y,z

if qxyz > 0

0 if qxyz = 0

and since conditional entropy at qx,y,z = 0 vanishes, then the objective function of (CP) evaluated at
q ∈ ¶CP is equal to that of (EXP) evaluated at f (q). If (r, t, q) ∈ ¶exp\ Im(f), then there exists x, y, z
such that rx,y,z < qx,y,z ln tx,y,z

qx,y,z
and so

− ∑
x,y,z

rx,y,z > ∑
x,y,z

qx,y,z ln
qx,y,z

tx,y,z
.

The dual problem of (EXP) is

maximize −∑
x,y

λx,y px,y,∗ −∑
x,z

λx,z px,∗,z

subject to ν1
x,y,z = −1 for all (x, y, z) ∈ X× Y× Z (9a)

− µx,y,z + ν2
x,y,z = 0 for all (x, y, z) ∈ X× Y× Z (9b)

− µ∗,y,z − λx,y − λx,z + ν3
x,y,z = 0 for all (x, y, z) ∈ X× Y× Z (9c)

(ν1
x,y,z, ν2

x,y,z, ν3
x,y,z) ≥K∗exp

0 for all (x, y, z) ∈ X× Y× Z (9d)

Using the definition of K∗exp the system consisting of (9a)–(9d) is equivalent to

λx,y + λx,z + µ∗,y,z + 1 + ln(−µx,y,z) ≥ 0 for all (x, y, z) ∈ X× Y× Z

and so the dual problem of (EXP) can be formulated as

maximize −∑
x,y

λx,y px,y,∗ −∑
x,z

λx,z px,∗,z

subject to λx,y + λx,z + µ∗,y,z + 1 + ln(−µx,y,z) ≥ 0 for all (x, y, z) ∈ X× Y× Z
(D-EXP)

Proposition 2. Strong duality holds for the primal-dual pair (EXP) and (D-EXP).

Proof. We assume that px,y,∗, px,∗,z > 0. Consider the point s̃ with s̃x,y,z = (r̃x,y,z, t̃x,y,z, q̃x,y,z) such that

r̃x,y,z := q̃x,y,z log
p̃x,y,z

q̃x,y,z
− 100

t̃x,y,z := q̃∗,y,z

q̃x,y,z :=
px,y,∗ · px,∗,z

px,∗,∗
.

(10)

Entropy 2018, 20, 271 7 of 19

s̃ is an interior point of (EXP). We refer to [14] for the proof. Hence, by Theorem 1, strong duality holds
for the primal-dual pair (EXP) and (D-EXP).

Weak and strong duality in their turn provide a measure for the quality of the returned solution,
for more details see Section 3.4.

3. The BROJA_2PID Estimator

We implemented the exponential cone program (EXP) in Python and used a conic optimization
solver to get the desired solution. Note that we are aware of only two conic optimization software
toolboxes which allow solving Exponential Cone Programs, ECOS and SCS. The current version of
BROJA_2PID utilizes ECOS to solve the Exponential Cone Program (EXP). ECOS (we use the version
from 8 November 2016) is a lightweight numerical software for solving Convex Cone programs [9].

This section describes the BROJA_2PID package form the user’s perspective. We briefly explain
how to install BROJA_2PID. Then, we illustrate the framework of BROJA_2PID and its functions.
Further, we describe the input, tuning parameters, and output.

3.1. Installation

To install BROJA_2PID, you need Python to be installed on your machine. Currently, you need
to install ECOS, the Exponential Cone solver. To do that, you most likely pip3 install ecos. If
there are troubles installing ECOS, we refer to its Github repository https://github.com/embotech/
ecos-python. Finally, you need to gitclone the Github link of BROJA_2PID and it is ready to be used.

3.2. Computing Bivariate PID

In this subsection, we will explain how BROJA_2PID works. In Figure 2, we present a script as an
example of using BROJA_2PID package to compute the partial information decomposition of the AND

distribution, X = Y AND Z where Y and Z are independent and uniformly distributed in {0, 1}.

1 # test_and_gate.py
2 from BROJA_2PID import pid, BROJA_2PID_Exception
3

4 # AND gate
5 andgate = dict()
6 andgate[(0,0,0)] = .25
7 andgate[(0,0,1)] = .25
8 andgate[(0,1,0)] = .25
9 andgate[(1,1,1)] = .25

10

11 print("Starting BROJA_2PID.pid() on AND gate.")
12 try:
13 returndata = pid(andgate)
14

15 msg = """
16 Shared information: {SI}
17 Unique information in Y: {UIY}
18 Unique information in Z: {UIZ}
19 Synergistic information: {CI}
20 Primal feasibility: {Num_err[0]}
21 Dual feasibility: {Num_err[1]}
22 Duality Gap: {Num_err[2]}"""
23

24 print(msg.format(∗∗ returndata))
25

26 except BROJA_2PID_Exception:
27 print("Cone Programming solver failed to find (near) optimal
28 solution. Please report the input probability density
29 function to abdullah.makkeh@gmail.com")
30

31 print("The End")

Figure 2. Computing the partial information decomposition of the AND gate using BROJA_2PID.

https://github.com/embotech/ecos-python
https://github.com/embotech/ecos-python

Entropy 2018, 20, 271 8 of 19

We will go through the example (Figure 2) to explain how BROJA_2PID works. The main function
in BROJA_2PID package is pid(). It is a wrap up function which is used to compute the partial
information decomposition. First, pid() prepares the “ingredients” of (EXP). Then, it calls the
Cone Programming solver to find the optimal solution of (EXP). Finally, it receives from the Cone
Programming solver the required solution to compute the decomposition.

The “ingredients” of (EXP) are the marginal and coupling equations, generalized inequalities,
and the objective function. Thus, pid() needs to compute and store px,y,∗ and px,∗,z, the marginal
distributions of (X, Y) and (X, Z). For this, pid() requires a distribution of X, Y, and Z. In Figure 2,
the distribution comes from the AND gate where X = Y AND Z.

Distributions are stored as a Python dictionary data structure in which the random variable (x, y, z)
is a triplet key and the probability at this point is the value. This provides an associate memory structure
where the value of the random variable is a reference to the probability at that point. For example,
the triplet (0, 0, 0) occurs with probability 1/4 and so on for the other triplets. Thus, AND distribution
is defined as a Python dictionary, andgate=dict() where andgate[(0,0,0)]=0.25 is
assigning the key “(0, 0, 0)” a value “0.25” and so on.

Note that the user does not need to add the triplets with zero probability to the dictionary since
pid() will always discard such triplets. In [5], the authors discussed in details how to handle the
triplets with zero probability. The input of pid() is explained in details in the following subsection.

Now, we briefly describe how pid() proceeds to return the promised decomposition.
pid() calls the Cone Programming solver and provides it with the “ingredients” of (EXP) as a part
of the solver’s input. The solver finds the optimal solution of (EXP) and (D-EXP). When the solver
halts, it returns the primal and dual solutions. Using the returned solutions, pid() computes the
decomposition based on (1). The full process is explained in Figure 3.

Figure 3. BROJA_2PID workflow: (Left) the flow in pid(); and (Right) the flow in ECOS. The arrows
with oval tail indicate passing of data, whereas the ones with line tail indicate time flow.

Finally, pid() returns a Python dictionary, returndata containing the partial information
decomposition and information about the quality of the Cone Programming solver’s solution.
In Section 3.4, we give a detailed explanation on how to compute the quality of the solution and
Table 3 contains a description of the keys and values of returndata.

Entropy 2018, 20, 271 9 of 19

For example, in the returned dictionary returndata for the AND gate, returndata[’CI’]
contains the quantity of synergistic information and returndata[’Num_err’][0] the maximum
primal feasibility violation of (EXP).

Note that conic optimization solver is always supposed to return a solution. Thus, BROJA_2PID

will raise an exception, BROJA_2PID_Exception, when no solution is returned.

3.3. Input and Parameters

In BROJA_2PID package, pid() is the function which the user needs to compute the partial
information decomposition. The function pid() takes as input a Python dictionary.

The Python dictionary represents a probability distribution. This distribution computes the vectors
px,y,∗ and px,∗,z for the the marginal expressions in (EXP). A key of the Python dictionary is a triplet of
(x, y, z) which is a possible outcome of the random variables X, Y, and Z. A value of the key (x, y, z) in
the Python dictionary is a number which is the probability of X = x, Y = y, and Z = z.

The Cone Programming solver has to make sure while seeking the optimal solution of (EXP)
that w and (η, θ) are feasible and (ideally) should halt when the duality gap is zero, i.e., w and (η, θ)

are optimal. However, w and (η, θ) entries belong to R and computers represent real numbers up to
floating precision. Thus, the Cone Programming solver considers a solution feasible when none of the
constraints are violated, or optimal, duality gap is zero, up to a numerical precision (tolerance). The
Cone Programming solver allows the user to modify the feasibility and optimality tolerances along
with couple other parameters which are described in Table 1.

Table 1. Parameters (tolerances) of ECOS. The parameter reltol is not recommended to be set higher.
For more explanation, see https://github.com/embotech/ecos.

Parameter Description Recommended Value

feastol primal/dual feasibility tolerance 10−7

abstol absolute tolerance on duality gap 10−6

reltol relative tolerance on duality gap 10−6

feastol_inacc primal/dual infeasibility relaxed tolerance 10−3

abstol_inacc absolute relaxed tolerance on duality gap 10−4

reltol_inacc relaxed relative duality gap 10−4

max_iter maximum number of iterations that “ECOS” does 100

To change the default Cone Programming solver parameters, the user should pass them to pid()
as a dictionary. For example, in Figure 4, we change the maximum number of iterations which the
solver can do. For this, we created a dictionary, parms=dict(). Then, we set a desired value,
1000, for the key ’max_iter’. Finally, we are required to pass parms to pid() as a dictionary,
pid(andgate,∗∗parms). Note that, in the defined dictionary parms, the user only needs to define
the keys for which the user wants to change the values.

1 parms = dict()
2 parms[’max_iter’] = 1000
3 pid(andgate,cone_solver ="ECOS",
4 output = 2, ∗∗ parms)

Figure 4. Tuning parameters.

The parameters output determines the printing mode of pid() and is an integer in {0, 1, 2}.
This means that it allows the user to control what will be printed on the screen. Table 2 gives a detailed
description of the printing mode.

https://github.com/embotech/ecos

Entropy 2018, 20, 271 10 of 19

Table 2. Description of the printing mode in pid().

Output Description

0 (default) pid() prints its output (python dictionary, see Section 3.4).

1 In addition to output=0, pid() prints a flags when it starts preparing (EXP).

and another flag when it calls the conic optimization solver.
2 In addition to output=1, pid() prints the conic optimization solver’s output.

(The conic optimization solver usually prints out the problem statistics and the status of optimization.)

Currently, we only use ECOS to solve the Exponential Cone Program but in the future we will add
the SCS solver. Thus, the user should determine which solver to use in the computations. For exmple,
setting cone_solver="ECOS"will utilize ECOS in the computations.

3.4. Returned Data

The function pid() returns a Python dictionary called returndata. Table 3 describes the
returned dictionary.

Table 3. Description of returndata, the Python dictionary returned by pid().

Key Value

’SI’ Shared information, SI(X; Y, Z).
(All information quantities are returned in bits.)

’UIY’ Unique information of Y, UI(X; Y\Z).

’UIZ’ Unique information of Z, UI(X; Z\Y).

’CI’ Synergistic information, CI(X; Y, Z).

’Num_err’ information about the quality of the solution.

’Solver’ name of the solver used to optimize (CP).
(In this version, we only use ECOS, but other solvers might be added in the future.)

Let w, η, and θ be the lists returned by the Cone Programming solver where wx,y,z = [rx,y,z, tx,y,z, qx,y,z],
ηx,y,z = [λx,y, λx,z, µx,y,z], and θx,y,z = [νx,y,z]. Note that w is the primal solution and (η, θ) is the dual
solution. The dictionary returndata gives the user access to the partial information decomposition,
namely, shared, unique, and synergistic information. The partial information decomposition is
computed using only the positive values of qx,y,z. The value of the key ’Num_err’ is a triplet
such that the primal feasibility violation is returndata[’Num_err’][0], the dual feasibility
violation is returndata[’Num_err’][1], and returndata[’Num_err’][2] is the duality
gap violation. In the following, we will explain how we compute the violations of primal and dual
feasibility in addition to that of duality gap.

The primal feasibility of (EXP) is

qx,y,∗ = px,y,∗

qx,∗,z = px,∗,z

q∗,y,z = tx,y,z

(−rx,y,z,−tx,y,z,−qx,y,z) ≤Kexp 0

(11)

We check the violation of qx,y,z ≥ 0 which is required by Kexp. Since all the non-positive qx,y,z are
discarded when computing the decomposition, we check if the marginal equations are violated using
only the positive qx,y,z. The coupling equations are ignored since they are just assigning values to
the tx,y,z variables. Thus, returndata[’Num_err’][0] (primal feasibility violation) is computed
as follows,

Entropy 2018, 20, 271 11 of 19

q′x,y,z =

{
0 if qx,y,z ≤ 0

qx,y,z otherwise

returndata[’Num_err’][0] = max
x,y,z

(
∣∣∣q′x,y,∗ − px,y,∗

∣∣∣, ∣∣q′x,∗,z − px,∗,z
∣∣,−qx,y,z)

The dual feasibility of (D-EXP) is

λx,y + λx,z + µ∗,y,z + 1 + ln(−µx,y,z) ≥ 0 (12)

For dual feasibility violation, we check the non-negativity of (12). Thus, the error
returndata[’Num_err’][1] is equal to

min
x,y,z

(λx,y + λx,z + µ∗,y,z + 1 + ln(−µx,y,z), 0)

When w is the optimal solution of (EXP), we have

− ∑
x,y,z

rx,y,z = ∑
x,y,z

qx,y,z log
qx,y,z

q∗,y,z
= −H(X | Y, Z).

The duality gap of (EXP) and (D-EXP) is

− H(X | Y, Z) + λTb, (13)

where
λTb = ∑

x,y
λx,y px,y,∗ + ∑

x,z
λx,z px,∗,z.

Since weak duality implies H(X | Y, Z) ≤ λTb, we are left to check the non-negativity of (13) to
inspect the duality gap. Thus, returndata[’Num_err’][2] is given by,

max(−H(X | Y, Z) + λTb, 0)

4. Tests

In this section, we test the performance of BROJA_2PID on three types of instances. We describe
the instances that BROJA_2PID is tested against, report the results, and finally compare the performance
of other estimators on the same instances. The two estimators that we compare the performance of
BROJA_2PID to, which produce reasonable results and we are aware of, are COMPUTEUI and IBROJA.
The first two types of instances are used as primitive validation tests. However, the last type of
instances is used to evaluate the accuracy and efficiency of BROJA_2PID in computing the partial
information decomposition. We used a computer server with Intel(R) Core(TM) i7-4790K CPU (4 cores)
and 16GB of RAM to compute PID for the instances. All computations of BROJA_2PID and COMPUTEUI
were done using one core, whereas IBROJA used multiple cores.

4.1. Paradigmatic Gates

The following set of instances have been studied extensively throughout the literature. The partial
information decomposition of the set of instances is known [2]. Despite their simplicity, they acquire
desired properties of shared or synergistic quantities.

4.1.1. Data

The first type of instances is based on the “gates” (RDN, UNQ, XOR, AND, RDNXOR, RDNUNQXOR,
and XORAND) described in Table 1 of [1]. Each gate is given as a function (x, y, z) = G(W) which

Entropy 2018, 20, 271 12 of 19

maps a (random) input W to a triple (x, y, z). The inputs are sampled uniformly at random, whereas,
in Table 1 of [1], the inputs are independent and identically distributed.

4.1.2. Testing

All the gates are implemented as dictionaries and pid() is called successively with different
printing modes to compute them. The latter is coded into the script file at the Github directory
Testing/test_gates.py. The values of the partial information decomposition for all the gates
distributions (when computed by pid()) were equal to the actual values up to precision error of
order 10−9 and the slowest time of computations is less than a millisecond.

4.1.3. Comparison with Other Estimators

Both estimators, COMPUTEUI and IBROJA, produced values of the partial information decomposition
for all the gate distributions equal to the actual values up to precision error of order 10−10 but the
slowest time of computations is more than ten milliseconds for COMPUTEUI and 12 s for IBROJA.

4.2. COPY Gate

The COPY gate requires a large number of variables and constraints—see below for details. Thus,
we used it to test the memory efficiency of the BROJA_2PID estimator. Since its decomposition is
known, it also provides to some extent a validation for the correctness of the solution in large systems.

4.2.1. Data

COPY gate is the mapping of (y, z) chosen uniformly at random to a triplet (x, y, z) where
x = (y, z). The COPY distribution overall size scales as |Y|2 × |Z|2 where y, z ∈ Y× Z. Proposition 18
in [1] shows that the partial information decomposition of COPY gate is

CI(X; Y, Z) = 0

SI(X; Y, Z) = MI(Y; Z)

UI(X; Y\Z) = H(Y | Z)

UI(X; Z\Y) = H(Z | Y)

Since Y and Z are independent random variables, then UI(X; Y\Z) = H(Y) and
UI(X; Z\Y) = H(Z) and SI(Y; Z) = 0.

4.2.2. Testing

The COPY distributions is generated for different sizes of Y and Z where Y = [m] and Z = [n] for
m, n ∈ N\{0}. Then, pid() is called to compute the partial information decomposition for each pair
of m, n. Finally, the returndata dictionary is printed along with the running time of the BROJA_2PID

estimator and the deviations of returndata[’UIY’] and returndata[’UIZ’] from H(Y)
and H(Z), respectively. The latter process is implemented in Testing/test_large_copy.py.
The worst deviation was of percentage at most 10−8 for any m, n ≤ 90.

4.2.3. Comparison with Other Estimators

The IBROJA estimator failed to give a solution to any instance since the machine was running
out of memory. The computeUI estimator could solve instance of size less than or equal to 2.5 exp 7,
but, for larger instances, the machine was running out of memory. COMPUTEUI was slower than
BROJA_2PID by at least a factor of 40 and at most factor of 113; see Figure 5 for comparison.

Entropy 2018, 20, 271 13 of 19

Figure 5. For each 10 ≤ m ≤ 60 and 10 ≤ m ≤ 90, the time for estimator COMPUTEUI and BROJA_2PID

for computing BROJA PID for the COPY gate with Y = n and Z = m is shown. The instances were
arranged in increasing order with respect to the value of m2n2.

4.3. Random Probability Distributions

This is the main set of instances for which we test the efficiency of BROJA_2PID estimator. It has
three subsets of instance where each one is useful for an aspect of efficiency when the estimator is used
against large systems. This set of instances had some hard distributions in the sense that the optimal
solution lies on the boundary of feasible region of the problem (1).

4.3.1. Data

The last type of instances are joint distributions of (X, Y, Z) sampled uniformly at random over
the probability simplex. We have three different sets of the joint distributions depending on the size of
X, Y, and Z.

(a) For Set 1, we fix |X| = |Y| = 2 and vary |Z| in {2, 3, . . . , 14}. Then, for each size of Z, we sample
uniformly at random 500 joint distribution of (X, Y, Z) over the probability simplex.

(b) For Set 2, we fix |X| = |Z| = 2 and vary |Y| in {2, 3, . . . , 14}. Then, for each value of |Y|, we sample
uniformly at random 500 joint distribution of (X, Y, Z) over the probability simplex.

(c) For Set 3, we fix |X| = |Y| = |Z| = s where s ∈ {8, 9, . . . , 18}. Then, for each s, we sample
uniformly at random 500 joint distribution of (X, Y, Z) over the probability simplex.

Note that, in each set, instances are grouped according to the varying value, i.e., |Y|, |Z|, and s,
respectively.

4.3.2. Testing

The instances were generated using the Python script Testing/test_large_randompdf.py.
The latter script takes as command-line arguments |X|, |Y|, |Z| and the number of joint distributions
of (X, Y, Z) the user wants to sample from the probability simplex. For example, if the user
wants to create the instance of Set 1 with |Z| = 7, then the corresponding command-line is
python3 test_large_randompdf.py 2 2 7 500. The script outputs the returndata
along with the running time of BROJA_2PID estimator for each distribution and finally it prints the
empirical average over all the distributions of SI(X; Y, Z), UI(X; Y\Z), UI(X; Y\Z), CI(X; Y, Z), and
of the running time of BROJA_2PID estimator.

In the following, for each of the sets, we look at UI(X; Y\Z) to validate the solution,
the returndata[’Num_err’] triplet to examine the quality of the solution, and the running
time to analyze the efficiency of the estimator.

Validation. Sets 1 and 2 are mainly used to validate the solution of BROJA_2PID. For Set 1,
when |Z| is considerably larger than |Y|, the amount of unique information that Y has about X is
more likely to be small for any sampled joint distribution. Thus, for Set 1, the average UI(X; Y\Z) is

Entropy 2018, 20, 271 14 of 19

expected to decrease as the size of Z increases. For Set 2, UI(X; Y\Z) is expected to increase as the
size of Y increases, i.e., when |Y| is considerably larger than |Z|. BROJA_2PID shows such behavior of
UI(X; Y\Z) on the instances of Sets 1 and 2 (see Figure 6).

(a) (b)

Figure 6. For each group of instances in Sets 1 and 2: (a) UI(X; Y\Z) of Set 1; and (b) UI(X; Y\Z) of
Set 2 show the instance with the largest UI(X; Y\Z), the average value of UI(X; Y\Z) for the instances,
and the instance with the smallest UI(X; Y\Z).

Quality. The estimator did well on most of the instances. The percentage of solved instances to
optimality was at least 99% for each size in any set of instances. In Figure 7, we plot the successfully
solved instances against the maximum value of the numerical error triplet returndata[’Num_err’].
On the one hand, these plots show that, whenever an instance is solved successfully, the quality of the
solution is good. On the other hand, we noticed that the duality gap, returndata[’Num_err’][2],
was very large whenever the Cone Programming solver fails to find an optimal solution for an
instance, i.e., the primal feasibility or dual feasibility or the duality gap is violated. In addition, even
when BROJA_2PID fails to solve an instance to optimality, it will return a solution. (BROJA_2PIDraise
an exception if the conic optimization solver fails to return a solution.) Thus, these results reflect the
reliability of the solution returned by BROJA_2PID.

(a) (b)

Figure 7. Cont.

Entropy 2018, 20, 271 15 of 19

(c)

Figure 7. For each group of instances in Sets 1, 2, and 3: (a) maximum numerical error of Set 1;
(b) maximum numerical error of Set 2; and (c) maximum numerical error of Set 3 show the instance
with the largest ε, the average value of ε for the instances, and the instance with the smallest ε; where ε

is the maximum numerical error.

Efficiency. To test the efficiency of BROJA_2PID in the sense of running time, we looked at Set 3
because Sets 1 and 2 are small scale systems.Set 3 has a large input size mimicking large scale systems.
Testing Set 3 instances also reveals how the estimator empirically scales with the size of input. Figure 8
shows that the running time for BROJA_2PID estimator against large instances was below 50 minutes.
Furthermore, the estimator has a scaling of |X| × |Y| × |Z|, so, on Set 3, it scales as N3 where N is the
size of input for the sampled distributions such that |X| = |Y| = |Z| = N.

(a) (b)

(c)

Figure 8. For each group of instances in Set 3: (a) t1/6 versus s; (b) t1/3 versus s; and (c) t/103 versus
s show the slowest instance, the average value of running times, and the fastest instance; where the
running time of BROJA_2PID, t (secs), is scaled to t1/6, t1/3, and t/103, respectively.

Entropy 2018, 20, 271 16 of 19

4.3.3. Comparison with Other Estimators

We compare the BROJA_2PID estimator with the COMPUTEUI estimator and IBROJA against the
instance of the same type of Set 3 for s = {2, . . . , 17}.

ComputeUI: We ran COMPUTEUI with the default parameters, which are the ε-far from optimality
10−7, maximum outer iterations 1000, and maximum inner iteration 1000, for more details, see [7].
The estimator COMPUTEUI was slower than BROJA_2PID on the instances of sizes |X| = |Y| = |Z| ≤ 12
and faster on the larger instances. For |X| = |Y| = |Z| ≤ 12, COMPUTEUI was slower than BROJA_2PID

by at least a factor of 1.4 and at most factor of 1330; see Figure 9 for the actual running times.
For 13 ≤ |X| = |Y| = |Z| ≤ 17, COMPUTEUI was faster than BROJA_2PID by at least a factor of 3.2 and
at most factor of 39; see Figure 9 for the actual running times. The comparison shows that COMPUTEUI
scales better than BROJA_2PID on large instances, whereas on the regime |X| = ||Y| = |Z| ≤ 12,
which is needed in practice, BROJA_2PID scales better than COMPUTEUI.

(a) (b)

Figure 9. For each group of instances in Set 3: (a) t versus 2 ≤ s ≤ 12; and (b) t versus 13 ≤ s ≤ 17
show the running times of COMPUTEUI and BROJA_2PID; where the running time t is in seconds.

Even though the optimality criterion of COMPUTEUI is 10−7, the solution of BROJA_2PID was
closer to the optima with a magnitude of 10−5 more than that of COMPUTEUI which concludes that
BROJA_2PID produces more enhanced solutions than those of COMPUTEUI. The test is implemented
in Testing/test_from_file_broja_2pid_computeUI.py where the distributions in the
folder randompdfs/ are the inputs.

Ibroja: The estimator IBROJA is slower on any instances than BROJA_2PID. For |X| = |Y| = |Z| ≤ 7
IBROJA was slower than BROJA_2PID by at least a factor of 206 and at most factor of 6626. Note that
the factor was increasing as |X| = |Y| = |Z| increases. We did not compute the instances of sizes
|X| = |Y| = |Z| ≥ 8 since IBROJA started taking immensely long time to obtain the solutions for
these instances.

The solution of BROJA_2PID was closer to the optima with a magnitude of 10−3 for instances
with s = ... more than that of IBROJA. Note that the results of this comparisons aligns with the claims
imposed in [5] that first order methods are not suitable to tackle this problem. The test is implemented
in Testing/test_from_file_dit.py where the distributions in the folder randompdfs/ are
the inputs.

5. Cone Programming Model for Multivariate PID

Chicharro [8] introduced a multivariate PID measure using the so-called tree-base decompositions.
The measure is similar to the bivariate BROJA PID measure yet it is not an extension of the BROJA
PID measure. In this section, we show how to model some of the trivariate PID quantities using the
exponential cone. Thus, with some modification, the BROJA_2PID can be extended to compute some of

Entropy 2018, 20, 271 17 of 19

the trivariate PID quantities. Note that, due to time constraint, we could not check whether the other
trivariate PID quantities can be also fitted into the exponential cone.

Let S, X, Y, Z be random variables with finite range, where S is the target and X, Y, Z are the
sources. Chicharro [8] defined the quantity of synergistic information that the sources X, Y, Z hold
about the target S as:

CI(S; X1, X2, X3) = max(MI(S; X, Y, Z)−MI(S′; X′, Y′, Z′)) (14)

where the maximum extends over the triples of random variables (S′, X′, Y′, Z′) with the same
12,13,14-marginals as (S, X, Y, Z), i.e., P(S = s, X = x) = P(S′ = s, X′ = x) for all s, x,
P (S = s, Y = y) = P(S′ = s, Y′ = y) for all s, y, and P(S = s, Z = z) = P(S′ = s, Z′ = z) for
all s, z. The objective function of (14), given the marginal conditions, is equal, up to a constant not
depending on S′, X′, Y′, Z′, to the conditional entropy H(S′ | X′, Y′, Z′). Thus, we find that (14) is
equivalent to the following Convex Program:

minimize ∑
s,x,y,z

qs,x,y,z ln
qs,x,y,z

q∗,x,y,z
over q ∈ RS×X×Y×Z

subject to qs,x,∗,∗ = ps,x,∗,∗ for all (s, x) ∈ S× X

qs,∗,y,∗ = ps,∗,y,∗ for all (s, y) ∈ S× Y

qs,∗,∗,z = ps,∗,∗,z for all (s, z) ∈ S× Z

qs,x,y,z ≥ 0 for all (s, x, y, z) ∈ S× X× Y× Z.

(15)

Hence, the following Exponential Cone Program where the variables are r, t, q ∈ RS×X×Y×Z:

minimize − ∑
s,x,y,z

rs,x,y,z

subject to qs,x,∗,∗ = ps,x,∗,∗ for all (s, x) ∈ S× X

qs,∗,y,∗ = ps,∗,y,∗ for all (s, y) ∈ S× Y

qs,∗,∗,z = ps,∗,∗,z for all (s, z) ∈ S× Z

q∗,x,y,z − ts,x,y,z = 0 for all (s, x, y, z) ∈ S× X× Y× Z

(−rs,x,y,z,−ts,x,y,z,−qs,x,y,z) ≤Kexp 0 for all (s, x, y, z) ∈ S× X× Y× Z.

(16)

Proposition 3. The exponential cone program in (16) is equivalent to the Convex Program (15).

Proof. The proof follows in the same manner to that of Proposition 1.

The dual problem of (16) can be formulated as

maximize −∑
s,x

λs,x ps,x,∗,∗ −∑
s,y

λs,y ps,∗,y,∗ −∑
s,y

λs,z ps,∗,∗,z

subject to λs,x + λs,y + λs,z + µ∗,x,y,z + 1 + ln(−µs,x,y,z) ≥ 0 for all (s, x, y, z) ∈ S× X× Y× Z.
(17)

Proposition 4. Strong duality holds for the primal-dual pair (16) and (17).

Proof. The proof follows in the same manner to that of Proposition 2.

Chicharro [8] defined the quantity of unique information that the sources X hold about the target
S as:

UI(S; X\Y, Z) = min MI(S′; X′, Y′, Z′)−min MI(S′; Y′, Z′) (18)

Entropy 2018, 20, 271 18 of 19

where both minimums extend over the triples of random variables (S′, X′, Y′, Z′) with the same
12,13,14-marginals as (S, X1, X2, X3), i.e., P(S = s, X = x) = P(S′ = s, X′ = x) for all s, x,
P(S = s, Y = y) = P(S′ = s, Y′ = y) for all s, y, and P(S = s, Z = z) = P(S′ = s, Z′ = z) for
all s, z. Analogously, he defines the unique information UI(S; Y\X, Z) and UI(S; Z\X, Y). Computing
UI(S; X\Y, Z) consists of solving two optimization problems. The first problem in (18) can be
formulated as (15) and the second problem can be formulated as follows:

minimize ∑
s,y,z

qs,∗,y,z ln
qs,∗,y,z

q∗,∗,y,z
over q ∈ RS×X×Y×Z

subject to qs,x,∗,∗ = ps,x,∗,∗ for all (s, x) ∈ S× X

qs,∗,y,∗ = ps,∗,y,∗ for all (s, y) ∈ S× Y

qs,∗,∗,z = ps,∗,∗,z for all (s, z) ∈ S× Z

qs,x,y,z ≥ 0 for all (s, x, y, z) ∈ S× X× Y× Z.

(19)

Hence, the following Exponential Cone Program where the variables are r, t, q ∈ RS×Y×Z:

minimize − ∑
s,y,z

rs,y,z

subject to qs,x,∗,∗ = ps,x,∗,∗ for all (s, x) ∈ S× X

qs,∗,y,∗ = ps,∗,y,∗ for all (s, y) ∈ S× Y

qs,∗,∗,z = ps,∗,∗,z for all (s, z) ∈ S× Z

q∗,∗,y,z − ts,y,z = 0 for all (s, y, z) ∈ S× Y× Z

(−rs,y,z,−ts,y,z,−qs,∗,y,z) ≤Kexp 0 for all (s, y, z) ∈ S× Y× Z.

(20)

Similarly, we can prove the equivalence of (20) and (19) and that strong duality holds for (20) and
its dual.

6. Outlook

We are aware of one other Cone Programming solver with support for the Exponential Cone,
SCS [10]. We are currently working on adding the functionality to our software. When that is completed,
giving the parameter cone_solver="SCS" to the function pid() will make our software use the
SCS-based model instead of the ECOS-based one. (The models themselves are in fact different: SCS
requires us to start from the dual exponential cone program (D-EXP).) SCS employs parallelized
first-order methods which can be run on GPUs, so we expect a considerable speedup for large-scale
problem instances.

We may note that other information theoretical functions can also be fitted into the exponential
cone. Thus, with some modification, the model can be used to solve other problems.

Thanks

The authors would like to thank Patricia Wollstadt and Michael Wibral for their feedback on
pre-production versions of our software. In addition, we thank Daniel Chicharro for fruitful discussions
and pointing us to applications of our approach to estimate multivariate formulations of PID.

Acknowledgments: This research was supported by the Estonian Research Council, ETAG (Eesti Teadusagentuur),
through PUT Exploratory Grant #620. R.V. also thanks the financial support from ETAG through the personal
research grant PUT1476. We also gratefully acknowledge funding by the European Regional Development Fund
through the Estonian Center of Excellence in in IT, EXCITE.

Author Contributions: A.M. and D.O.T. conceived and designed the experiments; A.M. performed the experiments;
A.M. and D.O.T. analyzed the data; R.V. contributed reagents/materials/analysis tools; and A.M. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Entropy 2018, 20, 271 19 of 19

References

1. Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J.; Ay, N. Quantifying unique information. Entropy 2014, 16,
2161–2183.

2. Griffith, V.; Koch, C. Quantifying synergistic mutual information. In Guided Self-Organization: Inception;
Springer: Berlin, Germany, 2014; pp. 159–190.

3. Harder, M.; Salge, C.; Polani, D. Bivariate measure of redundant information. Phys. Rev. E 2013, 87, 012130.
4. Williams, P.L.; Beer, R.D. Nonnegative decomposition of multivariate information. arXiv 2010, arXiv:1004.2515.
5. Makkeh, A.; Theis, D.O.; Vicente, R. Bivariate Partial Information Decomposition: The Optimization

Perspective. Entropy 2017, 19, 530.
6. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
7. Banerjee, P.K.; Rauh, J.; Montúfar, G. Computing the Unique Information. arXiv 2017, arXiv:1709.07487.
8. Chicharro, D. Quantifying multivariate redundancy with maximum entropy decompositions of mutual

information. arXiv 2017, arXiv:1708.03845.
9. Domahidi, A.; Chu, E.; Boyd, S. ECOS: An SOCP solver for embedded systems. In Proceedings of the

European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013, pp. 3071–3076.
10. O’Donoghue, B.; Chu, E.; Parikh, N.; Boyd, S. SCS: Splitting Conic Solver, Version 1.2.7, 2016. Available

online: https://github.com/cvxgrp/scs (accessed on 26 November 2017).
11. Luenberger, D.G.; Ye, Y. Linear and Nonlinear Programming; Springer: Berlin, Germany, 1984; Volume 2.
12. Gärtner, B.; Matousek, J. Approximation Algorithms and Semidefinite Programming; Springer: Berlin, Germany, 2012.
13. Chares, R. Cones and Interior-Point Algorithms for Structured Convex Optimization Involving Powers

Andexponentials. Ph.D. Thesis, UCL-Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2009.
14. Makkeh, A. Applications of Optimization in Some Complex Systems. Ph.D. Thesis, University of Tartu,

Tartu, Estonia, 2018, forthcoming.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/cvxgrp/scs
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Cone Programming Model for Bivariate PID
	Background on Cone Programming
	The Exponential Cone Programming Model

	The BROJA_2PID Estimator
	Installation
	Computing Bivariate PID
	Input and Parameters
	Returned Data

	Tests
	Paradigmatic Gates
	Data
	Testing
	Comparison with Other Estimators

	Copy Gate
	Data
	Testing
	Comparison with Other Estimators

	Random Probability Distributions
	Data
	Testing
	Comparison with Other Estimators

	Cone Programming Model for Multivariate PID
	Outlook
	References

