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EXTENSIONS OF MINIMAL FLOWS ON MANIFOLDS

WILLIAM PERRIZO1

Abstract. Group extensions of vector field flows for which the orbit closure

map forms a fiber bundle are constructed for the case of minimal flows on

compact manifolds and compact Lie groups. Conditions for which minimal

nontoral extensions exist are studied.

The existence question for minimal sets and minimal extensions of minimal

sets has been studied extensively in topological dynamics. In [5], Ellis consid-

ers the group extension question for minimal homeomorphisms on compact

metric spaces. For real flows on compact manifolds it is well known that the

torus admits a minimal flow but the Klein bottle does not. In fact, Markley

[7] shows that recurrent orbits on the Klein bottle are circles or points. It is

also known that a minimal vector field flow admits a minimal extension

through any torus [1, p. 58]. The purpose of this paper is to prove that a

minimal vector field flow admits a minimal extension beyond a toral exten-

sion. It will follow that any Lie group admits a vector field flow which is

minimal on the product of two distinct maximal tori and that any minimal

vector field flow admits a minimal compact group extension in which the

group is a semidirect product with a torus.

It is also shown that a minimal vector field flow can always be extended so

that the minimal sets form a partition into imbedded submanifolds and the

projection onto the orbit closure spaces forms a fiber bundle.

0. Preliminaries. Definitions and proofs omitted here can be found in [1],

[3] and [4], All manifolds, maps, and transformation groups will be assumed

C °° unless otherwise specified.

If (M, G) is right transformation group, the set {n ■ g\n G N C M, g G G)

will be denoted by N ■ G and the space {n ■ G\n G N C M) with the

quotient topology will be denoted by N/G. If G is the real line and X is the

vector field generating (M, G), we denote (M, G) by (M, X), N ■ G by N ■ X

and N/G by N/X. The symbols G • N and G \ N will be used in case G acts

on the left. If (G, P, M, ir) is a principal G-bundle with base M, bundle space

P and projection ir; (H, P, H \ P, irx) will denote the induced principal

7/-bundle in which irx: P -+ H \ P takes/? to H ■ p. (H \ G, H \ P, M, ir2) will

denote the induced fiber bundle with standard fiber 77 \ G and projection ir2:

H \ P —» M which takes 77 ■ p to ir(p). Note that ir = ir2 ° irx. For any map/,
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/„ will denote the space derivative of /. A vector field Y on P will be called a

lift of a vector field A'onMif77+F=A and a G-lift if it is a lift which is

invariant under the action of G on P. Let (M, G) be a transformation group.

A set A C G is syndetic if there is a compact set K C G such that A ■ K = G.

A point x is G-almost periodic if the set {g E G\x ■ g E U} is syndetic for

each open set U containing x. (M, G) is G-weakly almost periodic (G-uniformly

almost periodic) if for each index a, 3 K compact B: {g E G\x • g E xa} ■ K

= G for each x E M (DxeM{g\xg E xa}K = G). A set A C M is G-

transitive (G-minimal) if x • G = A for some x E N (for all x E A). Fiber

bundles will be denoted (F, F, A/, 77) where F is the fiber, P the bundle

manifold, M the base manifold and 77 the projection.

1. The existence of G-lifts in which the orbit closure partition forms a fiber

bundle.

1.1. Theorem. Let P be compact, (G, P, M, it) a principal bundle, and X a

minimal vector field on M. Given p E P, there exists a G-lift Y such that

(i) {(g'P) ' Y\g E G} partitions P into imbedded submanifolds.

(ii) The sets G  = {g E G\g ■ q Eq • Y} are closed subgroups of G.

(iii) (G' , p ■ Y, M, 77) is a reduction of the bundle (G, P, M, ir).

(iv)  The map <b:  P -» G/Gp, taking q to [g] = g- Gp iff q E(g • p)- Y,

forms a fiber bundle (p ■ Y, P, G/Gp, <#>).

By the structure theorem for compact group extensions of minimal trans-

formation groups [1, p. 46], the orbit closures partition P into minimal sets, Gq

is a closed subgroup, and <b is continuous.

The space p ■ Y is a G -invariant set and G \ p ■ Y = M. By Gleason's

cross section theorem [2], there exist continuous local cross sections of it:

p-Y-^M.

1.2. Lemma. Let Y be a G-lift of X and Gp = {g E G\g-p Ep- Y). The
map o(x) = 772-'(.x) n 7Ti(p ■ Y) of M into G \ P is a continuous cross section.

Proof of 1.2. For each q = lima Yt (p) from

TT-'LOnp7K= w~\x) iXq~Ay = Gq-q,

g E Gq ̂  g ■ q = g ■ lim Yta (p) E q ■ Y = p • Y

«*lim Y,a(g-p) EfJAY

og-p E p- Y^>g E Gp.

Thus, Gq = Gp,Gq- q= Gp- q, and

Ttx(q) = trx(Gp-q) = w,(»_I(*) D T7^) = w, ° *~X(X) (X *,(/>• Y)

=   1TfX(x)  PI   7T,(p-   Y)   =   O(X).

Thus, a is well defined. Locally, a is the composition of a cross section of it

which takes its values in p ■ Y with the map tt,. Thus, a is continuous.

1.3. Lemma. Let (G", P", M, tt") be a reduction of (G, P, M, tr) and let Y"

be a G-lift of X such that p E P" C F, tt" = tt\p», and P" is Y"-invariant. If
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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C7"+1 = {g G G\g-p Gp- Y"), then there is a reduction (Gn+\ Pn+\ M,

irn+l) of (G, P, M, ir) and a G-lift Yn + X of X such that p G Pn + X C P,
ir"+x = ir\P»+x and Pn+X is Yn+l-invariant.

Proof of 1.3. Let a" be the continuous cross section into G"+l \ P as in

1.2. Let 8" be a C°° approximation of o" [3, p. 25]. Define Pn+X

= (irn)x\8n(M)) and define Yn+l to be any G"+1-lift of 8",X. The result

follows.
By iterating  1.3, a sequence of reductions (G, P, M, ir), (G1, F1, M,

■tt1), . . . , (G", P",  M,   ir"), ...   is  obtained  such  that  G D G1 D • • •
^Gn_

1.4. Lemma. There is an n such that G" = Gn+1.

Proof of 1.4. If G" ^ g"+1 and dim(G") = dim(G"+1), then the finite set

G"+l/C is £ G"/C, where C is the identity component of both G"+1 and

G". Thus, G"+1 and G" can differ for at most a finite number of stages.

If Gn+' = G", Y" is minimal on P" and on g • P" for every g G G as well.

Let 8" = o", then Y" is a G-lift of X satisfying (i), (ii), and (iii) of 1.1. The

following lemma completes the proof of 1.1.

1.5. Lemma. If Y is a G-lift of X satisfying (i), (ii), and (iii) of 1.1 and <b:

P —> G/ Gp is the orbit closure map of (iv), then (p ■ Y, P, G/Gp, ap) forms a

fiber bundle.

Proof of 1.5. Let Y: W x Gp^px-\W) and uV: Gp x U^xp~\U) be

local trivializing diffeomorphisms of the bundles (Gp, G, G/Gp, pr) and (Gp,

p ■ Y, M, ir) at the points [g] and x respectively. Define 9: W X p • Y

-+<p-\W) by 9([h], q) = T(\h], e) ■ q. Since <p ° 9 = projection onto the first

factor, 9([h], q) = 9([h'], q') implies [h] = [h']; which implies T([h], e)

= T([h'], e); which implies q = q'. Thus, 9 is one-to-one. An element q G

<P~\W) is in (h-p)- Y for some h G G such that [h] G W. That is, q = hq'

for some q' in p • Y and h = T([h], b). Thus,

9([h], b-q') = T([h], e)-(b- q') = r([A], b)q' = hq' = q.

Thus, 9 is onto. On W X n'x(lJ), 9 is the composition of the following

diffeomorphisms:

id X xp'1: G/Gp X p- Y^ G/Gp X Gp X U,

r X id: G/Gp x Gp X U -* G x U,   xp: G X U -> P,

([h),q)-*([h],b, ir(q)) -» (T([h], b), ir(q)) -* xp(T([h], b), ir(q))

= Ti[h],e)-q=9i[h],q).

Thus, 9 is a local trivializing diffeomorphism for <p at [ g].

1.6. Theorem. Let Y be a G-lift of X as in 1.1. If Z is a vector field on P

such that [Y, Z] = 0, then cb^Z exists. If Z, is a vector field on G/Gp, there

exists Z on P such that <p^Z = Z,. Furthermore, if Zx is G-invariant, Z can be

constructed G-invariant.

Proof of 1.6. If [Y, Z] = 0,
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UZ(Ys(q))) = | (<J> ° Z, ° Ys(q))\,-o = jt (<t> ° Z,(«))l,-o = *.(Z(*))-

Since <J>+Z is a continuous function, it is constant on q ■ Y = <p~l(<f>(q)). Thus,

f>tZ defines a vector field on G/G .

Let {a,: IF, Xp • F-»<^_1(H/)} be a cover of trivializing diffeomorphisms

and let {<5,} be a partition of unity subordinate to {Wt). Given Z, on G/G ,

define Z,. on <#>-'(Wt) as a, (Z„ 0) and define Z as 2(6\ ° </>) ■ Z,. Clearly, [Y,
Z] = 0 and^Z = Z,.      *

2. Extending almost periodicity and transitivity.

2.1. Theorem. Let Y and Z be vector fields on the compact manifold P. If

p E P is Z-almost periodic, (P, Y) weakly almost periodic and [ Y, Z] = 0, then

{a\(p ■ Y) ■ Z is (Y + aZ)-transitive) is a comeager set of real numbers.

2.2. Lemma, (p • Y) ■ Z =(p ■ Y)- Z and if [Y, Z] = 0, this set coincides

with (p~Z) ■ Y =(p-Z)- Y.

Proof of 2.2. Since q E (p ■ Y) ■ Z iff q = Z,(lima Ys (p))

= lima Z, ° YSn(p) and q E(p- Y)Z iff q = lim^ Z,f ° Y°Sa(p),

(p- Y) ■ Z Q(p- Y)-Z. Thus, (p-Y)-Z E(p-Y)-Z. Since (p • Y) ■ Z

D ip- Y) ■ Z,ip- Y) ■ Z D(p- Y)- Z and the lemma follows.

Proof of 2.1. Let {U/\i E 1} be a countable base for the topology of P. If

K, is an open set such that V{ C (/, and Vi■. C\ (p • Z) ■ Y ¥= 0, then

Vt n (p-Z) Y ̂ OandK-y n pZ ?t 0. Let £(1/,) = {a\p ■ (aY + Z) n
(/, ¥= 0}. Each E(U,) is an open set since small perturbations of vector fields

produce small changes in the flow transformations. Since p is Z-almost

periodic, there is a sequence /„ —> + oo such that Zt (p) E Vt ■ Y. Thus,

iaY + Z), ip) = Ya.t  o Z, (p) G F, • y. By passing to a subsequence,

(aY+Z),n(p)^PlEVA-Y.

Since (F, y) is weakly almost periodic, Vt • Y = U ,Gp:? • ^ [6, p. 34]. Thus,

there exists a q E Vt such that p, G 17 • y. Since q is y-almost periodic,

q Epx- Y and 3 5 such that Ys(px) E Ur Passing to a subsequence once

agam, (aY + Z)ln(p) E Y_S(U,).

Given e > 0, choose \b\ < e and r from {tn} such that 5 = bt. It follows

that

((a + b)Y+Z)l(p) = yfcr((ay + Z)t(p)) E Ys(Y_s(Ut)) = U,

Thus, {a\(p ■ Y) • Z is (ay + Z)-transitive} is comeager. Since Y + aZ

= a(a~lY + Z), the result follows.

2.3. Theorem. Let Y and Z be vector fields on P such that [ Y, Z] = 0. If p is

Y-almost periodic, (p ■ Z, Z) is uniformly almost periodic and (P, Z) is weakly

almost periodic, then p is (Y + aZ)-almost periodic.

2.4. Lemma. // p is Y-almost periodic, each point of p ■ Y is Z-almost

periodic, then (q ■ Y) ■ Z =(p • Y) ■ Z for every q E(p • Y)- Z (p is an almost

periodic point of (P, R2) given by p • (s, t) = Z, ° Ys(p)).
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Proof of 2.4. If q Gp- Y, then q^Y = p- Y and (q~Y) ■ Z = jp ■ Y) ■ Z.

If q G (p ■ Y) ■ Z, then q = lima Z^jq') for some q' in p ■ Y. Since

q~Y = q' Z, jq ■ Z) ■ Y = (q" ■ Z) ■ Y = (p ■ Z) ■ Y. Thus,

(q-Z)-Y=ip-Z)-Y. _
Proof of 2.3. Let q be a (F + aZ)-almost periodic point of p ■ (Y + aZ).

By 2.4, p G (p • (Y + aZAfj■ Z = q- {Y + aZ)-Z. Since (P, Z) is weakly

almost periodic, q ■ (Y + aZ) -Z = \J{x ■ Z\x in q ■ (Y + aZ)).Thus,there is

x Gq ■ i Y + aZ) such that/) Gx ■ Z. Since Z is uniformly almost periodic on

p • Z =x ■ Z, there is an element, /, of the enveloping semigroup of (F Z)

which is continuous at x and takes x to p [1, pp. 17, 25]. Suppose /

= lima Zsj then

f(Y + aZ)t(x) = lim Z% • (Y + «Z),(x)

= (7 + oZ),(lim ZSa(x)) = (Y + aZ),(/(*)).

Thus, / takes the (F + aZ)-almost periodic point, x, to a (F + aZ)-almost

periodic point, namely/? [1, p. 11].

3. Applications.

3.1. Theorem. Let (G, P, M, ir) be a principal bundle with P compact, X a

minimal vector field on M and Y a G-lift of X. If Y induces a fiber bundle

(p ■ Y, P, G/Gp, <p) as in 1.1 and Z, is a G-invariant vector field on G/Gp, then

there is a G-lift Yx of X such that for each [h] in G/Gp, <p~ \([h] ■ Z,)) is a

Yx-minimal set.

Proof of 3.1. Let Z be a G-invariant vector field on F such that <f>„Z = Z,

and [Y, Z] = 0 as in 1.6. Z and Y + aZ are pointwise almost periodic since

both are G-lifts of pointwise almost periodic transformation groups. Since

<p-\([h]-Zx))=(q- Y)Z for each q G <p ~\[h]), {a\<p~\([h]-Zx)) is

(Y + aZ)-minimal) is comeager, by 2.1.

3.2. Lemma. Let (G, P, M, ir) be a principal bundle with compact bundle

space, P. Let A be a Lie algebra element of G. A induces a vector field A* on P

with flow A*(p) = exp(At) ■ p which is weakly almost periodic and uniformly

almost periodic on each of its orbit closures. Furthermore, each A * commutes

with each G-lift, Y.

Proof of 3.2. If T = {exp(At)\t real} in G, then T-p = p ■ A* for each

p G P. Let C be closed in F and (F, F, T \ P, irx) be the principal bundle

induced by action of T. Since irx is a continuous closed map, irxiC) and

7r~\irC) = T- C = C ■ A* are closed sets. Thus, (F, A*) is weakly almost

periodic [4, p. 34]. Since A induces an equicontinuous rotational flow on the

torus T and since * : (F, A) —> iT ■ p, A*) is an isomorphism, A * is uniformly

almost periodic on its orbit closure T-p = p ■ A* for eachp in F.

3.3. Corollary. Let (G, P, M, ir) be a principal bundle with compact bundle

space, X a minimal vector field on M and Y a G-lift of X. Given any Lie

algebra element A of G, there exists a lift Yx of X such that each set

(q ■ Y) ■ A* is a Yx-minimal set.
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Proof of 3.3. The corollary follows immediately from 2.1, 2.3, and 3.2.

3.4. Theorem. Let G be a compact Lie group such that the identity com-

ponent is abelian, let P be compact and connected and let (G, P, M, tt) be a

principal bundle. If there exists a ninimal vector field X on M, there exists a

minimal vector field Y on P which is a lift of X.

Proof of 3.4. Let Yx be a G-lift of X which induces a fiber bundle (p • Y,

P, G/Gp, <b) as in 1.1. Since F is connected, <f>(P) = G/Gp is connected. The

canonical projection, pr: G -> G/Gp is a continuous, open and closed map. If

G0 is the identity component of G, pr(G0) is open and closed in G/Gp and is

therefore equal to G/Gp. Thus, G0- G = G. Let A be a Lie algebra element

such that e ■ A = G0; then there is a vector field Y on P such that

(p ■ A*) ■ Yx is y-minimal, by 3.3. Since

(P-a*)- y = (J^aa)- y = (G0-P)- y = <?-'(<;>(g0-p))

and <KG0-p)= G/Gp,(p-A*)- Y = P.

3.5. Corollary. Let G be a semidirect product of a torus and a finite group

and let (G, P, M, tt) be a principal bundle such that P is compact and connected.

If there exists a minimal vector field X on M, there exists a minimal lift of X on

P.

Proof of 3.5. This result follows from 3.4 since the identity component of

G is abelian.

3.6. Corollary. Let T and S be distinct maximal tori in a Lie group G.

There exists a vector field Y on G such that each g • T • S is a Y-minimal set.

Proof of 3.6. Let M = {<?} and (G, G, M, tt) be the trivial principal bundle

on M. Let A and B be Lie algebra elements of G such that A is minimal on S

and B is minimal on T. Define Yx on G to be B. Clearly, Yx is a G-lift of 0

since Lgt- Yx = Yx by definition. Thus, by 3.3, the corollary follows. (Note

A* is right invariant so [B, A*] = 0.)
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