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A self-consistent formalism is presented in order to determine the dispersion equation of the 
coupled electromagnetic modes between a dielectric probe tip of arbitrary shape and a rough 
surface. A microscopic picture of the matter is used for describing the dielectric response of the 
tip, and the coupling with the substrate is introduced from a dynamical matrix expressed in 
terms of propagators. Retardation effects may be included without formal difficulty through 
an appropriate response function describing the surface of the solid (local or nonlocal). An 
advantage of such a calculation lies in the possibility of simulating dielectric tips of arbitrary 
shape without introducing boundary conditions at the surface of the probe. Connection with 
atomic force microscopy and near field detection by local probe will be discussed. 

I. INTRODUCTION 

The interpretation of recent experimental studies per- 
formed near corrugated surfaces from devices using local 
probe detection, represents a fascinating subject. In fact, 
since Binnig and Rohrer’ demonstrated that it was possible 
to move in a controlled way a very thin metallic tip at some 
Angstroms from a surface, a new physics was born and many 
other related techniques2V3 have been developed. Moreover, 
other devices using local scanning probe detection have re- 
vealed interesting behaviors (localized resonances,4 polar- 
ization effects,5 electroluminescence phenomena,6...) and 
specific results have been obtained on many substrates. In 
particular, the concept of using a force at the atomic scale3 
for imaging the topography of a surface, appears as a com- 
plementary tool of the scanning tunneling microscopy 
(STM) for observing the surface of dielectric samples. The 
interpretation of atomic and nanometer size resolution in 
atomic force microscopy ‘-14 (AFM) depends strongly on 
the tip-sample interaction and various theoretical models 
have been already proposed. 15-23 

In scanning near-field optical microscopy (SNOM) ,24 
the radiation from a nanodetector (pointed optical fi- 
t=-, *‘-” metallic subwavelength particle,4...) is analyzed for 
different detector-sample positions and images with a reso- 
lution far beyond the diffraction limit have been obtained. 
Recent progresses in this field have thus stimulated some 
theoretical calculations in order to interpret the relation ex- 
isting between the image and the object.2g-3’ A detailed anal- 
ysis of physical mechanisms appearing in SNOM and in 
atomic force microscopy seems to indicate that the detector 
perturbs the field generated by the isolated surface in a sig- 
nificant way. In other words, the probe tip and the sample 
interact very strongly and the problem can only be treated by 
regarding them as forming a single system. 

There are various ways for determining the eigenfre- 
quencies of a coupled system. Maxwell equations can be 
solved in some specific cases where the boundary conditions 
can be easily defined. In this context Pohl et a/.3’ have pre- 

sented an exact solution of Laplace equation for an hyperbo- 
loid tip interacting with a planar surface. From this contin- 
uous approach these authors have found electric field highly 
localized in the gap region for frequency close to that of the 
resonant modes of the system. A different method based on a 
microscopic description of the matter constituting the detec- 
tor may be considered. In this case, one assumes a discrete 
distribution of elementary microsystems (atoms, small po- 
larizable spheres,...) characterized by a local response func- 
tion. A first model has been recently developed in this con- 
text in view to understand the relation between the image 
and the object in scanning tunneling optical microscopy3’ 
(STOM). In this work, 3o the detector was described as a 
small dielectric sphere treated within the continuous ap- 
proximation whereas surface corrugations were modeled as 
a set of polarizable atoms. 

In this paper, ‘we wish to show that the coupled modes 
method can provide a convenient framework for describing 
the behavior of certain observables measured in local probe 
microscopy (dispersion force, scattered intensity, polariza- 
tion effects,...). Note that since the first experimental studies 
concerned with surface enhanced Raman scattering, many 
similar calculations have been developed to explain the dy- 
namical behavior of molecules or spherical particles inter- 
acting with rough surfaces.3242 In the present work such 
standard methods will be applied in order to present a tracta- 
ble formalism leading to a realistic description of the detec- 
tion processes by taking into account the perturbation in- 
duced by the surface from a propagator mediating the 
information between each part of the tip and the sample. 
Thus all correlations inside the detector and the surface will 
be included from a dynamical matrix allowing to obtain the 
eigenfrequencies of the whole system. As expected, the prin- 
cipal advantage of such a calculation lies in the possibility of 
simulating a dielectric tip of arbitrary shape without intro- 
ducing complexity due to boundary conditions. Neverthe- 
less, one must keep in mind that such an advantage is asso- 
ciated with a new computational difficulty connected to the 
great dimension of the dynamical matrix. However, in most 
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FIG. 1. Geometry of the subwavelength detector interacting with a solid 
surface. The vector R,, = (O,O,Z,) represents the position of the atom 
placed at the apex of the tip. Other atoms are located at the position R, with 
respect to the absolute frame of the surface. 

cases, we will show that it is not necessary to invert this 
matrix and that an expansion may be sufficient (nonreson- 
ant processes). 

The paper will be organized as follows. In Sec. II, we 
define the geometry of the system and the self-consistent 
condition is written. Different forms of dipolar propagators 
are discussed in Sec. III and connections with experimental 
situations will be analyzed in Sets. IV and V. 

II. THE SELF-CONSISTENT CONDITION 

We consider here the problem of a pointed dielectric 
stylus placed in front of a surface (dielectric or metallic) as 
shown in Fig. 1. Moreover, we assume that the tip may be 
described as a set of polarizable microsystems characterized 
by a dynamical linear polarizability a, (w). We calculate 
then the effective electric field acting on each polarizable 
system when the detector is submitted to an external field 
E&( r,w) of arbitrary spatial dependence. Inside the matter, 
each microsystem will play the role of a dipolar scattering 
center excited by the external field E,( Ri ,w) (where Rj rep- 
resents the position vector of the ith microsystem with re- 
spect to the absolute frame). 

A. The effective field inside the detector 

In the absence of surface, the microscopic components 
acquire a fluctuating dipole moment which is modified by 
the dielectric surrounding generated by other induced dipole 
moments. In order to take into account the presence of the 
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FIG. 2. A fluctuating dipole moment placed in front of a rough surface. r 
defines the location of the dipole. 

sample, it is necessary to introduce the feedback effects due 
to a polarization of the surface induced by each scattering 
center. This may be performed by introducing the concept of 
field propagator. Such a quantity noted S( r,r’,w) is defined 
by the following linear relation:4349 

E(r’,w) = S(r’,r,w)*m(w) (1) 
and represents the dipolar propagator giving the electric 
field E( r’,w) at r’ caused by an arbitrary dipole m(w) locat- 
ed at r (Fig. 2). This key quantity of our problem allows us 
to write a self-consistent equation for the effective electric 
field acting on each microscopic component belonging to the 
detector: 

E(Ri,a) =Eo(R,,w) + i S(Ri,Rj,w)*aj(ti)*E(Rj,ti) 
j= I 

+ 2 T(R,,k,)*a, (O)*E(Rj>ti), 
j#i 

(2) 

in which E( R,,o) defines the effective field at the ith site and 
T labels the dipolar propagator in the vacuum: 

T(R,,ko) = exp[ - ik$,i] [T,(R,) 

+ jkoT,(R,) - k:,T,(R,)], (3) 

where k, is the wave vector in the vacuum, R, = Rj - R, 
and the second rank tensors T,, T,, and T, are given by 

T,(r) = [rr - r’?I]r-“, (4) 

T,(r) = [3rr-?I]r-‘“+“, a= (2,3), (5) 

where I represents the identity tensor. Moreover, the third 
term in the right-hand side of Eq. (2) introduces the dipolar 
correlations inside the detector. When the spatial extension 
of the tip is small with respect to the wavelength A = 2r/k, 
of the external field, the two retarded contributions associat- 
ed to T, and T, can be neglected. 
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2058 C. Girard and X. Bouju: Coupled modes between a surface and a tip 

Now in order to solve Eq. (2) it is convenient to intro- 
duce two super-vectors defined by 

F(w) = [E(R,,w),E(R~,~),...,E(R,,~)] (6) 
and 

B(w) = 

ad% a,*(T,,, + S,,, ) ** * 
MT,,, + S,, ) a2-S2, 

F,(w) = [WR,,~L~,(R,,w) ,..., E,(R,,w)]. 
Relation (2) becomes then 

(7) 

F(w) = J%(w) + B(wW(w), 
where B(w) represents a (3n x 3n) matrix given by 

(‘3) 

MT,,,, + S,, 1 ----- --- 

r 

an-CT,,,, + % 

in which one has put ai=ai(w), T,rT(Ri - R,,k,) and 
S,rS(R,,R,,o). The diagonal terms of B(w) describe the 
direct tip-sample coupling while the off-diagonal terms are 
responsible for the substrate mediated interactions inside the 
system. The solution of the nonhomogeneous self-consistent 
Eq. (8) can be written as a very compact form, 

F(w) = [I - B(w)]-‘*F,(w). (10) 
Thus from the knowledge of the field distribution E,( R, ,w) 
this relation allows us to determine the true field in any point 
inside the detector. 

B. The coupled modes of the tip-sample system 

Now if the source field contained in the supervector 
F,(w) vanishes, we obtain the following eigenvalue equa- 
tion: 

F(w) = B(o)*F(w). (11) 
Consequently, the allowed coupled modes are given by the 
solutions of the dispersion equation 

D(w) = det[I - B(o)] = 0, (12) 

the positive roots of which determine the possible eigenfre- 
quencies of the tip-sample for a given spatial configuration. 
As shown in a further section this result may be of practical 
interest for the calculation of the dispersion energy. Now for 
going further, it is necessary to specify more precisely the 
form of the tensor S appearing in the matrix B(w). 

III. DESCRIPTION OF THE SURFACE 

The propagator S(r,r’,w) called also field susceptibility 
allows to know how a dipolar source field is modified at the 
immediate proximity of the surface of a solid. This feature 
can be clearly expressed by the linear relation ( 1). In the 
framework of a quantum description of the matter this quan- 
tity may be derived from the potential susceptibility& of the 
solid (cf. Ref. 48). Another possibility lies in the research of 
the response field of the surface to a fluctuating dipole mo- 

I 
a, l S,, 

(9) 

ment. In the particular case of a solid (dielectric or metallic) 
limited by a perfectly planar surface, various theoretical 
methods have been developed for building this tensor. The 
analytical form of this response function depends on the na- 
ture of the surface over interest. For example, to treat a given 
(a,b,c) face of an ionic crystal it is more convenient to use a 
discrete atomic representation of the solid structure.50 Con- 
versely, when one deals with a metal surface this quantity 
may be modeled from a continuous approach in order to take 
account into the delocalized character of the response of the 
free electrons. In this section we calculate such a propagator 
near a corrugated surface. Our approach is based on that of 
Marvin and Toigo. ” It is also closely related to the treat- 
ment of Rahman and Maradudin.52 

A. The source field of a dipole moment 
From the Maxwell equations we can write 

(A -I- ki)E(r,a) = -4?r{k~m(w) + V[V*m(w)]) 

X&r - ra 1, (13) 
where r, represents the vector position of the dipole. The 
nonhomogeneous solution of Eq. ( 13) is53 

E, (r,w) = {kgm(o) + V[m(w)Vl} 

Xexp[ik,]r - r,]] ]r - re I-r, (14) 
where, due to the symmetry of the problem, the Green func- 
tion 

G,(r-r,) =exp[ik,)r-r,)] ]r-r,]-’ (15) 
must be expanded in a Weyl series.53 One obtains then 

E, (r,w) = ?j; 
IS 

2 (kZm(w) + Vlm(w)*Vll 

Xexp[ik&l-11,) +iw&-z,j] (16) 
with r = (1,~)) r, = (1, ,z, ) , and 

w’=k;-k*. (17) 
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B. Perfectly planar surface K = (k,/k, k/k, - k/q,), (19) 
Let us consider a planar surface at z = 0. We assume K’ = (k;/w,) ( - k,,/k, k,/k, 0), (19’) 

that the medium occupied just below this surface is charac- 
terized by a complex frequency-dependent dielectric con- 

and 

stant e(w). In the following this quantity will be assumed f(r,r,,w) =exp[Wl-la) +iw,(z+z,)]. (20) 
isotropic. The retarded response field of the surface to the Moreover, in Eq. ( 18) the two reflection coefficients are 
excitation m(w) can be obtained from standard calculations defined by 
involving appropriate boundary conditions at the surface 
z = 0: A = w-E(W)W,, . w - wo 

P w + E(W)Wo ’ 
A,=-, (21) 

w i- w, 

dkf(r,ra,u) {A,K [km,(w) 
with 

w= [c(u)k; -k*]“*. (22) 

where 

wok, 
+ k ---q(w) + wok 

- m, (0) 
Now by identifying Eqs. ( 18) and ( 1 ), one gets the di- 

k polar propagator of the planar surface 

%m,(o) -%m,(ti) , II (18) 
S(r,r’,w) = $ 

‘S 
dkf(r,r’,w)N(k,o), (23) 

where N represents a second rank tensor which contains the 
dynamical information about the surface 

N(k,w) = [ !+ [Apwo I “t:] ‘P;ft ‘sz: 

Apk 
- 

APkY 

A, wok : A k2k2 -s kXkY Aski 
k2 wok2 k2 

Apwo+- WC3 1 Apk 
(24) 

In this last equation the retarded character of the infor- 
mation is contained in the factors wand w,. When the light 
velocity c-+ CO one recovers the expression of S in the electro- 
static limit.4” 

C. Corrugation effects 

The general problem of the electromagnetic response of 
rough surfaces has been the object of many investigations. 
This problem has been treated by using integral equation and 
perturbative techniques in Ref. 52. In this context Rahman 
and Maradudin 52 have calculated the response field to a 
point charge located near a rough dielectric vacuum inter- 
face. Corrections to the results for a perfectly planar surface 
were obtained in terms of Fourier transform of the corruga- 
tion function limiting the surface. In this part we show how it 
is possible to include such effects in our approach. We will 
thus define a corrugation propagator labeled S ( r,r’,o) tak- 
ing into account the real profile of the surface. Since in 
SNOM and in AFM the detection of surface roughness must 
be performed at a very small-distance from the surface a 
nonretarded expression for S(r,r’,w) will be sufficient. 
Within this approximation the research of S includes the 
following well known steps: 

-Expansion of electric potential in plane waves. 
-Application of boundary conditions for the electric 

I 

potential and the induction vector at the surface 
z = C(l). 

-Perturbative resolution of the integral equation con- 
necting various Fourier amplitude of the problem. 

After some algebra the response potential of the surface 
appears as a sum of two contributions 

#,(r,w) = $,(r,w) + $,(r,m) (25) 
with, for the continuous part 

$,(bw) = &(::z: L :)lk-‘dkm(w)*Q 

Xexp[Wl-la) -k(z+z,)] (26) 
and for the corrugation contribution 

$Jrw) - 1 [E(W) - 11 
47? [E(W) + 112 s s 

dk dk’ m(kWk):Q’ 

x [c(w)kk’ + k*k’]&k - k’) 

xexp[zk*(l-lo) -k(z+z,)] (27) 
with 

Q = (ik,k) Q’ = (X,k’) (28) 
and c(q) represents the 2D Fourier transform of {( 1) : 

$39) = s 
dl exp( - iql)g(l). (29) 

J. Chem. Phys., Vol. 95, No. 3,1 August 1991 
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2060 C. Girard and X. Bouju: Coupled modes between a surface and a tip 

The propagator g(r,r’,w) may be easily derived from 
Eq. (27). One finds 

1 [E(O) - 11 S( r,r’,w ) = - 
479 Idw) + 11* 

dkdk’ 

X exp (ik.1 - lk*1’ - kz + k ‘z’) 

l(k - k')Q*Q'; 
(30) 

the tensorial character of this response function is contained 
in the symbol Q*Q’. Note that this result corresponds to the 
first order contribution with respect to c(q). Higher order 
terms including nonlinear contributions with respect to g(q) 
have been neglected. 

IV. TIP-SAMPLE DISPERSIVE FORCE 

Dispersion forces play a dominant role in the interaction 
between neutral material bodies. It is well known that the 
existence of such long range forces can be inferred from the 
correlations between the fluctuations of the charge densities 
inside the two partners.s”s6 In the last decades many theo- 
retical methods have thus been developed for explaining ex- 
perimental data obtained by measuring the van der Waals 
force between quasiplanar surfaces. Theoretical expressions 
of this energy are available for specific geometries on1y’sVs6 
(sphere-sphere, sphere-plane, cylinder-plane,... ) and little 
work23 has been devoted to arbitrary configurations such as 
tip-sample system considered in this paper. The object of 
this section is twofold. First, a general expression of the tip- 
sample dispersive force relevant in AFM will be derived 
from the self-consistent method developed in previous sec- 
tions. Application to specific systems will be discussed in a 
second part. 

A. The interaction energy 

The knowledge of the dispersion equation ( 12) is suffi- 
cient for determining the free energy of interaction5’ 

(31) 

where T represents the absolute temperature, 6, 
= 2n-nk, T/?i, and q is a positive integer. The prime on the 

summation indicates that the term for (q = 0) must be 
weighted with a factor l/2. After replacing the Eq. ( 12) into 
Eq. (3 1) the energy may be expressed as 

BUWL~) = 

V,(R,) = k,TC’logCdet[I - IV&)]). 
% 

(32) 

For standard interatomic distances between each atom in- 
side the tip and for tip-sample separation chosen far beyond 
the repulsive regime, every matrix element of B(w) remains 
small with respect to the unit. It is then possible to perform 
the following expansion: 

Vd(IW = - k,T)$ m$, iTr[B’“‘(i&)], (33) 

in which B’“‘(w) represents the matrix product of mth or- 
der. 

It may be seen that the first term (m = 1) corresponds 
to the direct coupling between each element inside the tip 
and the surface. This term gives the main contribution to the 
dispersive energy. From Eq. (9 ), it may be expressed as 

= -k,TC’ ~aj(i~~):S(R,+ri,R,+rj,i~~), 
& i=l 

(34) 

where ri = Ri - R, represents the position of the ith atom 
with respect to the apex of the tip located at R, = (O,O,Z,). 
As expected, this equation does not take account of the many 
body effects inside the detector. Such contributions are in- 
cluded in higher order terms (m > 1). Finally, let us note 
that in Eq. (33) and (34) retardation and corrugations ef- 
fects can be introduced by using Eqs. (23) and (30). 

B. Connection with substrate mediated energy (SME) of 
two adsorbed atoms 

When a pair of atoms or molecules is placed near a sur- 
face, a supplementary contribution called substrate-mediat- 
ed energy must be taken into account. The study of such an 
alteration of the magnitude of the interatomic potential has 
been the subject of many theoretical investigations.47*s7-59 In 
a recent contribution,” it is shown that a discrete description 
of the substrate can increase the magnitude of SME occur- 
ring between rare gas atoms with respect to the result ob- 
tained through a continuum approach. The aim of this part 
is to show that our general result [ Eq. (33) ] contains SME 
as a special case. When the multiatomic tip reduces to only 
two atoms of polarizability al(w) and a2(o) located at the 
positions R, and R, the dynamical matrix B (0) becomes 

‘a$;; a,S;f a,SE a,H;“; a,H;: a,HE 

a2S?;; a,SC a,SE a,Hf$ a,H?i a2HZ 
a,SZ aIS;‘; aPFl a&Z a2HT”2 a2HE 
a&Z a&Z’ a&Z a2SZ a2S Z; a2SE 
a,H;T a,H$T a,H,Y: a$;; a2S ;; a,S Zy; 

.alH5; a&E a,HZ a,% a,% a2SZ _ 

J. Chem. Phys., Vol. 95, No. 3,1 August 1991 
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with 

Hti = S, -I- Tii . (35’) 
In this case the second order contribution of Eq. (33) 

~~*‘(R,,R,) 

= - y 2’ Tr[WR,,R&, )*NLR2,i~q I] (36) 
h 

leads to 

Vi2’(R,,R,) = - 7 (1 +P,,) i’Tr[a,(&) 
6, 

k,T - 

.az(j~~).S(R2,R,,j~~)] , (37) 

which recovers the well known results of SME given in Refs. 
58 and 59. In Eq. (37) P,2 defines the permutation operator. 
Thus this connection brings some consistency between our 
self-consistent approach and other theories. 

C. Application to specific systems 

Calculation of the magnitude of dispersive force derived 
from V, [ Eq. (33) ] requires the knowledge of ai (y) and 
E( ig) both evaluated at imaginary frequency. In this section 
we present a numerical study based on the relation (33) for 
systems of experimental interest: a diamond tip interacting 
with a planar dielectric surface (mica) and metallic sub- 
strates. 

7. The detector 
It will be modeled as an ensemble of n carbon atoms of 

dipolar polarizability 

do)o; cl(g) = -, 
a: +$$’ 

(38) 

where a(0) and w0 label the static polarizability and the 
effective frequency associated to carbon atoms of the probe. 
These two quantities may be connected to the C, dispersion 
coefficient between a pair of atoms. Note that a more in- 
volved description could be introduced through an expan- 
sion of the dynamical polarizability expressed in terms of 
Cauchy moments. Such improvements will be included in a 
further calculation. 

2. The substrate 
It is well known that dielectric data may be obtained 

from electron energy loss spectroscopy and by analysis of 
reflexivity measurements. In a theoretical study of van der 
Waals forces between mica and quartz plates, Chan and 
RichmondhO have shown how, by using such data, it was 
possible to build a dielectric function E( L$‘) available for dis- 
persive force computation. For mica and quartz E( ig) may 
be expressed as a function of three parameters E,, , o,, and 7: 

64 

55- 
(a 

50 - 
45 - 
40- 

‘5=- 
E” JO - 
925 - 

20 - 
15 - 

10 - 

S- 

O 
1 2 3 4 5 

zJ.4 

140 

2 
(6 

P’ a 
2 

Ol 
I I I 

2 3 
z&i, 

+ 5 6 

FIG. 3. Interaction between a monoatomic tip and a mica sample: (a) dis- 
persion energy as a function of the approach distance; (b) the total attrac- 
tive dispersion force; (c) the second order contribution to the dispersion 
force as given in Eq. ( 33). 

e(y) = 1 + 
E -1 

1 + WG + (5vrl)’ 
(39) 

From relations (33), (38), and (39) we have calculated 
the magnitude of the interaction force between a diamond 
tip placed near a dielectric (mica) or a metallic (Au, Ag, 
Cu) surface. For the metallic case we have used the data of 
Vidali and Cole6’ in which the reflection coefficient of the 
surface is based on the knowledge of two fitted parameters 
(g,, and w, ) . The corresponding data used for this numerical 
study are given in Refs. 22, 61, and 62 and results obtained 
from these values are presented in Figs. 3 to 5 for various size 
of the probe. In Fig. 3, the force and the energy experienced 
by a monoatomic tip placed above a planar mica sample are 
plotted as a function of the approach distance 2,. At about 3 
A from the surface, the energy and the corresponding force 
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1 2 3 4 5 8 7 

a(A) 

FIG. 4. Magnitude of the dispersion energy for a tip formed of four carbon 
atoms interacting with a mica sample. The straight line corresponds to the 
dispersive cohesive energy of the isolate tip. 

are found equal to 15 meV and to 0.25 X lo-*’ N, respective- 
ly [cf. Figs. 3 (a) and 3 (b) 1. Moreover, on the curve given in 
Fig. 3(c), it may be seen that the second order contribution 
force F2 ( Zo) corresponding to multiple reflections between 
the tip and the sample introduces a weak contribution to the 
total force. This result is consistent with the fast spatial de- 
pendence of such terms in which the propagator of the sur- 
face appears at a power m > 1. Consequently, this term be- 
comes negligible at distances greater than 2.5 A. 

Figure 4 represents the behavior of the dispersion ener- 
gy when a four-atom tip is placed in front of a mica sample. 
In this case, one remarks that V, (Z,) does not vanish when 
the tip-sample separation increases. In fact, the present for- 
malism takes into account the whole van der Waals energy of 
the system. Consequently, when Z,--t CO, the asymptotic val- 
ue of V, corresponds to the van der Waals cohesive energy of 
the atoms forming the tip. 

Figures (5) and (6) give the magnitude of the disper- 
sion force experienced by a multiatomic tip (20 carbon 
atoms). In the case of mica substrate the force reaches 
0.4~ lo-” N at an approach distance Z, = 3 A while for 
noble metal surfaces (Fig. 6) one finds about 0.58 X lo-” N 
at the same distance. Such magnitude orders are in good 
agreement with those measured in AFM working in attrac- 

FIG. 5. Dispersion force experienced by a tip formed of 20 carbon atoms 
placed near a mica sample. 

(I 

FIG. 6. Magnitude of the dispersion force ofa tip formed of 20 carbon atoms 
interacting with noble metals. 

tive regime. Note that a detailed numerical study of this 
problem by introducing corrugation effects from corruga- 
tion propagator Sgiven in Sec. III C is left for a forthcoming 
paper. 

V. COUPLED MODES AND SNOM 

Recent experimental studies based on the use of a local 
optically transparent detector have allowed to image various 
forms of subwavelength structures lying on dielectric sur- 
faces. 24-28 A complete review of this field has been recently 
proposed.24 In this work, it is indicated that theoretical de- 
scriptions of SNOM properties, such as resolution and con- 
trast, need models for describing the whole light-matter in- 
teraction between a tip and a corrugated surface. Thus very 
recently a self-consistent treatment3’ in which the probe is 
approximated as a polarizable sphere has provided various 
theoretical images of nanometric infinite tracks. 

The aim of this section is to show that the present de- 
scription allows us to remove the spherical approximation 
used in Ref. 30 by including the real profile of the tip from 
the discrete scheme given in Sec. II. Moreover, from above 
relations we will analyze the role played by the coupled 
modes of the tip-sample system on the efficiency of the near 
field-radiative field transfer. This discussion will be per- 
formed in the framework of the total reflection configuration 
introduced in SNOM by Reddick et al.‘= and by Courjon et 
aLz6 In these devices, a transparent sample is illuminated so 
that total reflection occurs at the surface of the object. Note 
that our formalism could also be used for modeling other 
experimental configurations such as the one applied in re- 
flection optical near field microscopy. This point will not be 
considered here. 

Let us consider a plane wave falling on the boundary 
between two homogeneous media (air and glass interface). 
In the case of total reflection, the evanescent field in the half- 
space z > 0 is given by 

E,(r,w) = E,(k,8) exp(X**r) 
with 

Eo(k@ = [Eo, bWMoy (k,@,& (W)] 
and 

(40) 

(41) 
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K’ = k,[ sin &O,i(sin’ 8 - sin2 8,) 1/2] , (42) 
where 0 is the incident angle and 8,) the limit angle of refrac- 
tion. In the absence of probe, the field distribution in any 
point R, above the surface is given by the (3n) supervector 
F,(w) [Cf. Eq. (7)] defined by 

F,(w) = &(B,k) [exp(K’*R,) ,..., exp(zK’.R,)] . (43) 
The knowledge of this relation and Eq. (10) allows one to 
obtain the real field distribution experienced by each micro- 
scopic component of the detector. The general solution giv- 
ing the effective field on each microsystem can then be writ- 
ten in the form 

Ep(Rj,O) = C detT;1.81cfj I &, (kRexp(l~‘*Ri) , 
i,a 

(4.4) 
where the denominator is the determinant of the dynamical 
coupling matrix [I - B(w) ] and the numerator represents 
the cofactor of the (ai,@) element of this matrix. Finally, 
from this relation it is easy to determine the scattered intensi- 
ty of the radiative field inside the upper part of the tip. In a 
first step, one writes the field emitted by the ( j)th compo- 
nent at a distance Rb from the tip extremity 

J$‘)(%~,w) =TI(%b -Rj)*a,(a)*E(Rj,o)ki 

X exp( - fkol &, --RjI) 
which leads to an intensity proportional to 

(45) 

&w4 
c4 ]det[I -‘B(a) 11’ 

TlaD(& - Rj )A,,, (a)aj (WI 
2 

X&,(f%k) exp(rK’*R,) . (46) 

This quantity which is the relevant observable in the experi- 
ment situation described in Refs. 25 and 26 contains all the 
dynamical and structural informations about the surface 
and the tip through the properties ofthe matrix B( w). More- 
over, it may be seen on this relation that the efficiency of the 
tip-sample coupling depends on the relative magnitude of 
the eigenfrequencies w, with respect to the one of the exter- 
nal field. In the particular case where we deal with a metallic 
tip, metallic protuberance included in a dielectric stylus or a 
metallic substrate it is possible to excite in an efficient way a 
given mode w, with an optical field. Indeed, when 

Re{det[I - B(w)]} = 0, (47) 
the detected intensity exhibits a resonance for a given tip- 
sample configuration. Such resonant effects have been re- 
cently observed by generating surface plasmons on a metal- 
lic detector placed near a solid.4 In the near field zone (at 
about 100 nm from the surface) extremely narrow reson- 
ances vs the approach distance were observed. 

VI. CONCLUSION 

In this paper we have described a microscopic approach 
allowing a qualitative and quantitative discussion of physical 

mechanisms connected to local probe microscopy experi- 
ments ( AFM, SNOM, * * s ). In this context, we have shown 
that the coupled modes of the system govern different obser- 
vables measured in experimental situations (dispersion en- 
ergy, scattered intensity,. * * ) . These normal modes are de- 
rived by including all dipolar correlations inside the detector 
and the surface (plane or corrugated). Consequently, this 
formalism appears as a convenient tool for modeling nano- 
meter size detector of arbitrary shape. Another advantage of 
the method lies in the use of propagators. Such a formulation 
thus opens a direct way of investigating various types of sur- 
faces through the appropriate propagators available in liter- 
ature [nonlocal metallic surfaces, (a,b,c) faces of an ionic 
crystal, semiconductor- . * 1. For example, corrugation ef- 
fects introduced in our formalism through the tensors allow 
to include the real profile of a given surface without formal 
difficulty. This feature will be useful for studying the image 
shapes obtained in reflection near field optical microscopy. 
Finally, as it stands, the present description could be gener- 
alized in more involved situations (two dimensional lattice 
of metallic spheres deposited on a planar substrate, study of 
the influence of higher order multipolar moments in the 
framework of the spherical tensor analysis,...). 
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