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The generalized Szekeres family of solution for quasi-spherical space-time of higher dimensions
are obtained in the scalar tensor theory of gravitation. Brans-Dicke field equations expressed in
Dicke’s revised units are exhaustively solved for all the subfamilies of the said family. A particular
group of solutions may also be interpreted as due to the presence of the so-called C-field of Hoyle
and Narlikar and for a chosen sign of the coupling parameter. The models show either expansion
from a big bang type of singularity or a collapse with the turning point at a lower bound. There is
one particular case which starts from the big bang, reaches a maximum and collapses with the in
course of time to a crunch.

PACS numbers: 98.80.Cq, 04.20.Jb, 98.80.Hw

I. INTRODUCTION

The first step to solve the Einstein equations for the metric belonging to Szekeres family[1]

ds2 = dt2 − e2αdr2 − e2β(dx2 + dy2) (1)

was taken by Szekeres [1] with dust and Λ = 0. Here α and β are in general functions
of (t, r, x, y). Szekeres’ result was generalized by Szafron et al [2] without any further as-
sumption except for non-zero pressure. In further generalizations the perfect fluid has been
replaced by a fluid with heat flow [3], viscosity [4] and also electromagnetic field [5]. Also
Barrow et al [6] gave solutions for dust model with a cosmological constant and recently
Chakraborty et al [7] gave solutions for perfect fluid model with a cosmological constant in
(n+2)-D space-time. We are not aware of any generalization of the above class in more than
4 dimensions in Brans-Dicke scalar tensor theory of gravitation. In this paper, we work out
solutions for dust in the presence of the cosmological constant (Λ 6= 0) and the Brans-Dicke
scalar field. We consider the scalar tensor theory in the Dicke’s [8] revised version after unit
transformation. In the revised version, G does not vary while the masses of the elementary
particles are varying. In this version, the trajectories of particles are not geodesics and the
energy momentum tensor holds for combined matter and the scalar field. Suitable transfor-
mation of units used by Dicke are ḡµν = λgµν , m̄ = λ−1/2m, ds̄ = λ1/2ds and the scalar
field λ = φ/φ0, where bars indicate the variables in the revised units, λ is the scalar field in
the new unit and φ0 is a constant. The field equations in the revised units are

Rµν − 1

2
gµνR = 8πG(Tµν + Sµν) + Λgµν (2)

where Sµν = (2ω+3)
16πG

(

CµCν − 1
2gµνClC

l
)

and the scalar C = ln λ = ln (φ/φ0).

In what follows we consider a more general (n+2)-dimensional Szekeres space-time, which
can be expressed by the following metric form [7]

ds2 = dt2 − e2αdr2 − e2β
n
∑

i=1

dx2
i (3)
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where α and β are now functions of all the (n+ 2) space-time variables i.e.,

α = α(t, r, x1, ..., xn), β = β(t, r, x1, ..., xn).

It is to be noted here that in the presence of the non-zero scalar field it is necessary to
make at least one assumption in order to solve the field equations. We can either assume
the form of scalar field or of the metric co-efficients. Here we have assumed β′

xi
= 0. Then

there are two possibilities. In one of these cases the scalar field is in general a function of r
and t, whereas in the second case the scalar field may either be a function of r or a function
of t alone. In fact the differential equation obtained in terms of the metric co-efficients for
C = C(t, r) is apparently not solvable. So in the next section we present exact solutions in
the following different cases:

(i) β′ 6= 0, β̇xi
= 0, C = C(t, r),

(ii) β′ 6= 0, β̇xi
= 0, C = C(t),

(iii) β′ = 0, β̇xi
= 0, C = C(t).

The case C = C(r) is not consistent with the field equations. In all the above cases the
asymptotic behaviour of the dust density ρ and the shear scalar σ are obtained in the limits.
The cosmological models described in all the cases mentioned above are all inhomogeneous
models.

The special cases of our solutions in the absence of the scalar field lead to those of
Szekeres as shown in the subsequent sections. At this point one must note that Szek-
eres solutions are however given in co-ordinates different from those used in the present text.

In the last section an alternative interpretation is given for the above mentioned solutions
in the special case of C as a linear function of time. In this particular case the scalar field
C may be interpreted as the creation field first proposed by Hoyle and Narlikar [9] in order
to obtain a steady state cosmology or later a quasi steady state cosmology.

II. FIELD EQUATIONS IN THE REVISED VERSION OF THE
BRANS-DICKE THEORY AND THEIR EXACT SOLUTIONS

The Einstein’s field equations in the presence of the cosmological constant Λ follow from
(2) (we choose 8πG = 1, see [7]):

nα̇β̇ +
1

2
n(n− 1)β̇2 − e−2β

n
∑

i=1

{

α2
xi

+
1

2
(n− 1)(n− 2)β2

xi
+ (n− 2)αxi

βxi
+ αxixi

+(n− 1)βxixi
}+ e−2α

{

nα′β′ − 1

2
n(n+ 1)β′2 − nβ′′

}

= Λ+ ρ− 1

2
f
(

Ċ2 + e−2αC′2
)

(4)

1

2
n(n+ 1)β̇2 + nβ̈ − 1

2
n(n− 1)e−2αβ′2 − e−2β

n
∑

i=1

{

1

2
(n− 1)(n− 2)β2

xi
+ (n− 1)βxixi

}

= Λ +
1

2
f
(

Ċ2 + e−2αC′2
)

(5)

α̇2 + α̈+ (n− 1)α̇β̇ +
1

2
n(n− 1)β̇2 + (n− 1)β̈ + e−2α

{

(n− 1)α′β′ − 1

2
n(n− 1)β′2−
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(n− 1)β′′} − e−2β
n
∑

i6=j=1

{

α2
xj

+
1

2
(n− 2)(n− 3)β2

xj
+ αxjxj

+ (n− 2)βxjxj
+ (n− 3)αxj

βxj

}

− e−2β

{

(n− 1)αxi
βxi

+
1

2
(n− 1)(n− 2)β2

xi

}

= Λ +
1

2
f
(

Ċ2 + e−2αC′2
)

(6)

αxj
(−αxi

+ βxi
) + βxj

(αxi
+ (n− 2)βxi

) − αxixj
− (n− 2)βxixj

= 0, (i 6= j) (7)

α̇β′ − β̇β′ − β̇′ = − 1

n
fĊC′ (8)

− α̇αxi
+ β̇αxi

− α̇xi
− (n− 1)β̇xi

= 0 (9)

αxi
β′ − β′

xi
= 0 (10)

where dot, dash and subscript stands for partial differentiation with respect to t, r
and the corresponding variables respectively (e.g., βxi

= ∂β
∂xi

) with i, j = 1, 2, ..., n and

f = − 1
2 (2ω + 3).

From equations (8) and (10) after differentiating with respect to xi and t respectively, we
have the integrability condition

β̇xi
β′2 = − 1

n
fĊC′β′

xi
, i = 1, 2, ..., n (11)

This equation cannot be solved without any specific assumption either on the metric
co-efficients or on the scalar field C. Such an assumption is however necessary to obtain
exact solutions for all the variables. One of such assumption is β′

xi
= 0, which leave us two

possibilities: (i) β′ 6= 0 so that β̇xi
= 0, (ii) β′ = 0. The second choice in view of eq.(8)

leads us to the condition ĊC′ = 0, which implies that C can not be a function of both the
co-ordinates r and t. For general C = C(t, r), first of all we consider β′ 6= 0, β̇xi

= 0. So
we obtain from the field equations (8) and (10), the metric co-efficients are in the following
form:

eβ = R(t, r) eν(r,x1,...,xn) (12)

and

eα =
R′ +Rν′

S(t, r)
(13)

where R and S are function of t, r only. Now from the field equations (5) and (6) using
equations (12) and (13), we have the differential equations for R and S:

2RR̈+ (n− 1)(Ṙ2 − b2R2) − 1

n
[2Λ + f(Ċ2 + e−2αC′2)]R2 = (n− 1)K(r) (14)
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and

f

2n
e−α ∂

∂r
[Ċ2 + e−2αC′2] =

Ṡ

RS2

∂

∂t
(RṠe2α) (15)

where K is a function of r only. Since β′
xi

= 0, so α is a function of t, r only and the
form of eν suggests

e−ν = A(r)

(

n
∑

i=1

(x2
i + xi) + 1

)

(16)

where A(r) is arbitrary function of r alone satisfying (n − 4)A2(r) = K(r). It is to be
noted that when n 6= 4 then K(r) 6= 0 and n = 4 implies K(r) = 0, which shows that
K(r) must vanish when we consider a six dimensional space-time. In other cases, however
K(r) 6= 0. The field equation (7) is automatically satisfies by the above solutions. Also from
the field equation (4), the expression for the energy density ρ is

ρ(t, r, x1, ..., xn) = − n

n− 1
(α̈+ nβ̈ + α̇2 + nβ̇2) +

2Λ

n− 1
+

nf

n− 1
(Ċ2 + e−2αC′2) (17)

and the expression for the shear scalar is

σ2 =
n

2(n+ 1)

(RṘ′ − ṘR′)2

R2(R′ +Rν′)2
(18)

Now eliminating the terms containing the derivative of the scalar field C between (14)
and (15) we obtain the differential equation in R and S as

∂

∂r

[

1

R2

{

2RR̈+ (n− 1)(Ṙ2 − S2 −K)
}

]

= 2eα Ṡ

RS2

∂

∂t
(RṠe2α) (19)

This differential equation in R and S is quite complicated and is apparently not solvable
in closed form. For general C = C(t, r), it is not possible to find out any exact solutions.
So we may consider C is a function of t or r alone. For C = C(t), we arrive the following
two cases from equation (11) in order to obtain explicit form of the metric co-efficients: (i)

β′ 6= 0, β̇xi
= 0, (ii) β′ = 0.

Case I: β′ 6= 0, β̇xi
= 0 (i = 1, 2, ..., n), C = C(t) :

With the above condition being used we obtain from the field equations (8) and (10), the
metric coefficients in the following form [7]:

eβ = R(t, r) eν(r,x1,...,xn) (20)

and

eα = R′ +R ν′ (21)

Now using the relation (20) and (21) in equation (5), we obtain a differential equation for
R as follows

2RR̈+ (n− 1)Ṙ2 − 1

n
(2Λ + fĊ2)R2 = (n− 1)K (22)
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and the solution for ν can be expressed as

e−ν = A

n
∑

i=1

x2
i +

n
∑

i=1

Bixi +D . (23)

There is, however, the following restriction

n
∑

i=1

B2
i − 4AD = K − 1 (24)

where K, A, Bi’s and D are all functions of the co-ordinate ‘r’ alone.

The first integral of the equation (22) may be given by

Ṙ2 = K +
F

Rn−1
+

2Λ

n(n+ 1)
R2 +

1

n
fR1−n

∫

Ċ2RnṘdt (25)

where F is an arbitrary functions of ‘r’ and f is a constant which is already expressed
earlier in terms of Brans-Dicke parameter ω.

The following situations are considered separately:

(i) C = C0t, K 6= 0 and n = 3, that is this satisfied λ = eC0t where C0 is a constant.

The integration of the equation (25) in the next step yields

2zR2 +K = (4zF −K2)1/2 Sinh{2z1/2(t− t0)}, z > 0 (26)

and

2|z|R2 −K = (K2 + 4|z|F )1/2 Sin{2|z|1/2(t− t0)}, z < 0 (27)

In the above solution for R is another arbitrary function of r and z is a constant given

by z =
(2Λ+fC2

0 )
n(n+1) .

(ii) C = C0t, K = 0, n is arbitrary:

The solution is given by

R
n+1

2 =

(

F

z

)1/2

Sinh{1

2
(n+ 1)z1/2(t− t0)}, z > 0 (28)

and

R
n+1

2 =

(

F

|z|

)1/2

Sin{1

2
(n+ 1)|z|1/2(t− t0)}, z < 0 (29)

Here of course there is another possibility. If F < 0, we can obtain from (25) on integration
a different solution expressed as

R
n+1

2 =

( |F |
z

)1/2

Cosh{1

2
(n+ 1)z1/2(t− t0)}, z > 0 (30)

The solutions (28) and (30) have different properties and will be discussed subsequently.
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(iii) C = C0t
a, K = 0, ‘a’ being a constant parameter. We put R = G2/(n+1) in the

equation (22) so that we obtain

4nS−1G̈− (n+ 1)(2Λ + fĊ2) = 0

which on assume Λ = 0 may also be written as

G̈− yt2a−2G = 0 (31)

where y = (n+1)
4n fC2

0a
2. In equation (31) after integration finally yields the following

solution for the variable R,

G ≡ R
n+1

2 = t1/2
[

A1(r) I 1
2a

[y1/2ta/a] +A2(r) I− 1
2a

[y1/2ta/a]
]

, y > 0 (32)

and

G ≡ R
n+1

2 = t1/2
[

A1(r) J 1
2a

[|y|1/2ta/a] +A2(r) J− 1
2a

[|y|1/2ta/a]
]

, y < 0 (33)

It may be noted that when a = 1, the solutions (32) reduces to either (28) or (30) but
solution (33) reduces to (29) only. As usual Jm(x) and Im(x) respectively stand for Bessel
function and modified Bessel function of first kind of order m.

The expressions for the density ρ and the shear scalar σ are obtained from (17) and (18)
and are given by

ρ(t, r, x1, ..., xn) = − n

(n− 1)

[

R̈′ + R̈ν′

R′ +Rν′
+
nR̈

R

]

+
(2Λ + nfĊ2)

(n− 1)
(34)

and

σ2 =
n

2(n+ 1)

(RṘ′ − ṘR′)2

R2(R′ +Rν′)2
(35)

The explicit forms of (34) and (35) are apparently very complicated. However one can
discuss the behaviour of different models in the limits t → t0 and t → ∞. In fact t0(r)
depends the initial moment of evolution in each case. The evolution may or may not begin
with a big bang singularity. Again since t′0 6= 0 the instant of singularity if it exists will be
position dependent. These are apparent from the following facts.

In case (i) with K 6= 0 the dust density and the shear scalar both are finite at t→ t0 but
in the other extreme limit that is as t → ∞ the dust density ρ remains finite but the shear
scalar σ vanishes.

In case (ii), ρ → ∞ and σ → ∞ at the initial instant t → t0 but in course of time as
t → ∞ the dust density remains finite, whereas σ → 0. This is true for the solution (28).
On the other hand if we concentrate our attention on the solution (30). We find that the
density ρ remains finite throughout the evolution, whereas the shear starts from a finite
magnitude and gradually disappear in course of evolution.

In case (iii), we note that there is singularity (R = 0) for the solution in equations (32)
and (33) provided we choose arbitrary constants A2(r) = 0. Also asymptotically for large
t, R oscillates infinitely for the solution (33) while R becomes infinite for the solution
(32). In this case, for 0 ≤ a ≤ 1, ρ and σ both explode initially whereas they attain finite
magnitudes in course of evolution as t→ ∞.
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Case II: β′ = 0, C = C(t):

In this case, for only the above choices, the exact solutions can not be found from
the field equations (that shown by Szekeres [1]). So we need further assumption like

β̇xi
= 0 (i = 1, 2, ..., n), in order to obtain the exact solutions.

Now from the field equations we obtain the metric coefficients in the form

eβ = R(t) eν(x1,x2,...,xn) (36)

and

eα = R(t) η(r, x1, x2, ..., xn) + µ(t, r) (37)

Then as before from the field equation (5), we have similar differential equations in R as

2RR̈+ (n− 1)Ṙ2 − 1

n
(2Λ + fĊ2)R2 = (n− 1)K (38)

and the solution for ν as

e−ν = A

n
∑

i=1

x2
i +

n
∑

i=1

Bixi +D (39)

along with the restriction

n
∑

i=1

B2
i − 4AD = K (40)

Here K, A, Bi’s and D are all arbitrary constants.

Now from the field equation (7) we have the solution for η as

e−νη = u
n
∑

i=1

x2
i +

n
∑

i=1

vixi + w (41)

and the resulting differential equation in µ is

Rµ̈+ (n− 1)Ṙµ̇+ µ

[

R̈− 1

n
(2Λ + fĊ2)R

]

= g(r) (42)

with

g(r) = (n− 1)

[

2(uD + wA) −
n
∑

i=1

viBi

]

(43)

where u, vi’s and w as arbitrary functions of the co-ordinate ‘r’ alone.

For simplicity, let us choose C = C0t, n = 3. In this case the solutions of R (as before)
and µ are

2zR2 +K = (4zF −K2)1/2 Sinh{2z1/2(t− t0)}, z > 0, (44)
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2|z|R2 −K = (K2 − 4zF )1/2 Sin{2|z|1/2(t− t0)}, z < 0 (45)

and

2zµR+ g(r) =
√

4z2h(r) − g2(r) Sinh
{√

2z (t− t1(r))
}

, z > 0, (46)

2|z|µR− g(r) =
√

g2(r) − 4z2h(r) Sin
{

√

2|z| (t− t1(r))
}

, z < 0, (47)

where t0, F are arbitrary constants, h(r), t1(r) are arbitrary functions of ‘r’ only and
z = 1

12 (2Λ + fC2
0 ). The solutions (44) and (45) is identical with (28) and (29) except for

the fact that now F and t0 are no longer functions of r.

In this case the expressions for the density and the shear scalar are given by

ρ(t, r, x1, ..., xn) = − n

(n− 1)

[

µ̈+ R̈η

µ+Rη
+
nR̈

R

]

+
(2Λ + nfĊ2)

(n− 1)
(48)

σ2 =
n

2(n+ 1)

(Rµ̇− Ṙµ)2

R2(µ+Rη)2
(49)

There are two distinct cases for either K 6= 0 or K = 0. In the former case with K < 0
both the dust density and the shear scalar remain finite when t→ t0, but they are infinitely
large at this instant in the second case K = 0. On the other hand as t → ∞ the density
is finite even though the shear vanishes in course of evolution. When K > 0 the situation
differs. Here the density and shear explode at same initial instant other than t = t0.

Next if we consider C = C(r) then from equation (11), we may get also two possibilities:

(i) β′ 6= 0, β̇xi
= 0, (ii) β′ = 0. In these cases the form of metric co-efficients are similar to

case I and Case II, but the differential equations (22) and (38) are slightly different i.e.,

2RR̈+ (n− 1)Ṙ2 − 1

n
(2Λ + fe−2αC′2)R2 = (n− 1)K

This equation can not be solved because α is a function of all space-time co-ordinates.
So we are not going to further discussion on the choice C = C(r).

III. ALTERNATIVE INTERPRETATION OF THE SOLUTIONS IN
TERMS OF C-FIELD COSMOLOGY

It is appropriate at this stage to interpret some of the previously described solutions as
due to the presence of the creation field first introduced by Hoyle and Narlikar [9]. The field
equations in this case are exactly identical with (2) except for the replacement of Sµν by

T
(c)
µν , where

T (c)
µν = −f

(

CµCν − 1

2
gµνClC

l

)

(50)

where Cµ = C,µ and f (> 0) is a coupling constant. The additional feature in C-field
cosmology is that one must confirm that the C-field satisfies the source equation

fCµ
; µ = jµ

; µ (51)

with jµ = ρdxµ

ds .

It is not difficult to check that the Bianchi identity and the source equation (51) lead to

the relation Ċ = 1, which determines the expression of the C-field scalar C = t+ ψ(r). So
for obvious reasons all the previous solutions with the scalar field C = ln λ expressed as a
linear function of time are also solutions of the C-field cosmology.
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IV. DISCUSSIONS

One must note that in all the models presents above some are singularity free and some
have big bang type singularities at the starting point. Particularly for the function K = 0
those which show the turning point (Ṙ = 0) at some stage represent only the lower bound

(since R̈ > 0) as are evident from from the equations (22) and (38). The singularity
occurs in each case at an instant which is not fixed for different shells of different r. In
fact, the singularity R = 0 is position dependent in all the cases described above and the
reason is that the system is inhomogeneous which is the limit of spherical dust reduces to
Tolman-Bondi space-time. There is one particular case given by the solution (29) where
there is an initial singularity at t = t0. Subsequently R(t, r) increases and reaches a
maximum followed by a collapse to a crunch.

Another interesting point to observe is that for a few solutions such as (26), (28), (44)

etc, we have R̈ initially less than zero but becomes positive in course of time indicating
that the expansion starts from decelerating phase to an accelerating phase at late stage.
It is to be noted that in the above set of solutions is a kind of singularity given by

eα = 0 or equivalently
(

eβ
)′

= 0, which are analogous to the shell crossing singularity
in Tolman-Bondi [10] models. In this case also the density ρ diverges. Finally it can be
mentioned that one can obtain Szekeres 4 dimensional solutions from our solutions if we
put n = 2,Λ = 0 and C = 0. In fact the differential equations in R (see equations (22)
and (38)) after the above simplification becomes identical to the corresponding differential
equations in Szekeres solutions [1]. Therefore our solutions are generalization of Szekeres
solutions.
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