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ABSTRACT. We investigate the notion of uniformly distributed sequences in

locally compact groups. Our main result is the following: A locally compact group

G possesses a uniformly distributed sequence if and only if it possesses a se-

quence whose homomorphic images are dense in each of the compact quotients of

G.

Introduction. H. Weyl [10] introduced and studied the notion of a uniformly

distributed sequence on the closed interval [0, l]. This notion was extended to

compact groups and investigated by Eckmann [3]. Rubel [9] extended this idea to

locally compact groups. Under Rubel's definition, a sequence \gv\ is uniformly

distributed in a locally compact group G if its homomorphic images are uniformly

distributed in all compact quotients of G. By a compact quotient we mean a com-

pact quotient of the form G/H where AY is a closed normal subgroup of G. We say

that H is of compact index in G, see [9]. We denote by cpH the natural homomor-

phism mapping G onto G/H.

"Uniformly distributed" will be abbreviated u.d.

Other definitions for a u.d. sequence are possible. For example, S. Hartman

[5] introduced a notion of a u.d. sequence on noncompact groups which is not

equivalent to Rubel's definition. For a comparison of these two definitions on

locally compact abelian groups see Berg, Rajagopalan, and Rubel [1, p. 443].

We say a locally compact group G is K-separable if it possesses a sequence

jx^i whose homomorphic images are dense in each of the compact quotients of G,

compare with [1, p. 437], We say that the sequence {x^i is K-dense in G, com-

pare with [l, p. 441],

This paper contains a generalization to locally compact groups of some re-

sults concerning uniformly distributed sequences on locally compact abelian

groups of Berg, Rajagopalan, and Rubel [l]. In the first section we present some
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preliminary definitions and theorems and we include discussions of those immedi-

ate consequences which are useful for investigating uniformly distributed sequences

in locally compact groups. Among those consequences, we have an extension of

the Weyl criterion to locally compact groups and a discussion of the periodic re-

presentations (those representations which may be considered as representations

of compact quotients) of locally compact groups.

The following lemma is fundamental to the proof of our theorem. It is the tool

we use to construct uniformly distributed sequences on K-separable locally com-

pact groups.

Key lemma. Let G be a locally compact group and H a countable subgroup.

Let S be a set of finite dimensional irreducible unitary representations of G and

suppose that each nontrivial p in S is nontrivial and irreducible as a representa-

tion of H, Then there exists a sequence \hv\ in H such that

for all nontrivial p in S.

The second section contains a discussion of an example which plays a cru-

cial role in the proof of the key lemma and which illustrates some of the difficul-

ties characteristic of nonabelian groups which arise in the proof of this lemma.

Because of these difficulties (which basically stem from the fact that we are

dealing with finite dimensional representations as opposed to 1-dimensional rep-

resentations in the abelian case), the proof involves a rather complicated con-

struction of the desired sequence. The proof of the validity of this sequence in-

cludes the introduction of the notion of F-index of a finite dimensional unitary

representation of a locally compact group. The notion of F-index is a refinement

of the idea of a fixed point free representation which was used by Eckmann [3] in

his study of uniformly distributed sequences on compact groups.

The third section contains the completion of the proof of the key lemma. The

proof of our main theorem follows as a consequence of the key lemma and the Weyl

criterion for locally compact groups.

1. Preliminary definitions and results. We present some basic definitions

concerning uniform distributions on compact and locally compact groups.

(1.1) Notation, Let G be a locally compact group, / a complex-valued func-

tion on G, and \gv] a sequence of elements in G. By (/, \gy\) we mean the fol-

lowing limit if it exists:
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(1.2) Definition (Eckmann [3]). If K is a compact group, the sequence \gv\ in

K is uniformly distributed if for each continuous complex-valued function / on

K, (f, \gv\) = fx/dp where p is normalized Haar measure on K.

(1.3) We recall that a representation of a locally compact group G is a homo-

morphism from G into the operators on a Hilbert space. A finite dimensional re-

presentation p of G of dimension m is a homomorphism from G into the opera-

tors on an m-dimensional Hilbert space. We shall assume all our representations

are continuous and refer to them simply as representations. We note that with re-

spect to some basis, each finite dimensional representation p of G of dimension

m may be considered as the mum matrix [p^] where each p.. is a continuous

complex-valued function on G.

(1.4) Definition. We call each function p{. a minimal almost invariant func-

tion associated with the finite dimensional representation p and we shall use

the abbreviation m.a.i.

(1.5) Notation. Let \gv\ be a sequence in G and let p be a finite dimen-

sional representation of G of dimension ttj. By (p, \gv\) we mean the m xm ma-

trix [{p.., lgv!>] provided (p.., \gv\) exists for each pijt

(1.6) Theorem (Eckmann [3]). A sequence \gv\ is u.d. in a compact group K

if and only if (p, \gv\) = 0 for each nontrivial irreducible representation p of K.

This theorem is the analogue for compact groups of a necessary and sufficient

condition due to H. Weyl [10] that a sequence of real numbers be u.d. in the

closed interval [0, l]. We shall refer to Theorem 1.6 as the Weyl criterion for com-

pact groups.

(1.7) Definition. A representation p of G is periodic if it is constant on the

cosets of some closed normal subgroup H of compact index. We then say that p

is of period H, compare with Berg and Rubel [2, p. 85]. We observe that the

choice of period for p is not in general unique.

An irreducible periodic representation p of G is finite dimensional. Indeed,

we consider p as a representation of G/H tot some closed normal subgroup H of

compact index and define p(4>Hig)) = pig) for each g e G. If p as a representa-

tion of G is irreducible then it is irreducible as a representation of G/H. But

then p is an irreducible representation of a compact group and hence must be fi-

nite dimensional [6, Theorem 22.13].

Suppose p is an irreducible periodic representation of G of period H. Since

any irreducible representation of a compact group is equivalent to a unitary re-

presentation, p as a representation of G/H is equivalent to a unitary representa-

tion a. We extend a to all of G in the natural way. Obviously, a as a representa-

tion of G is unitary and equivalent to p. There is no loss of generality then, if

we restrict ourselves to irreducible periodic representations of G which are unitary.
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(1.8) Notation. Let R(,G) denote the set of equivalence classes of the finite

dimensional irreducible unitary representations of G. When no confusion is likely,

we shall frequently speak of a representation p in R{G). Depending upon the con-

text in which it is used, it will be clear whether we mean a particular representa-

tion p or the equivalence class which contains p.

(1.9) Notation. Let P denote the set of periodic irreducible unitary represen-

tations of G.

As a result of the preceding definitions and discussion we easily obtain the

extension of Theorem 1.6 to locally compact groups.

(1.10) Theorem (Weyl criterion for locally compact groups). Let G be a lo-

cally compact group. The sequence \gv\ is u.d. in G if and only if for each non-

trivial peP, <p, \gv\)= 0.

2. An example. Part of the proof of the key lemma depends upon the idea of

generating in a locally compact group G a sequence which averages a single re-

presentation p e R(G) to 0 from some given sequences in G which average cer-

tain m.a.i. functions of p to 0. We now give the construction which we shall use

for generating a new sequence from a collection of sequences which are already

given. We shall use this general construction once in this section and twice in the

next section.

(2.1) Suppose that we have a countable collection of sequences of elements

jc(l, v)}, {c(2, v)), • • •, {c(k, v)}, • • • in a locally compact group G. For the purposes

of the present section we may think of G as a nontrivial irreducible group of m x

m unitary matrices. In some cases which follow the collection of distinct se-

quences will actually be finite. We use these sequences to generate a new se-

quence \cv\ in G which we construct in stages. The first stage is c(l, 1). The

second stage is c(2, l)c(l, l), c(2, l)c(l, 2), c(2, 2)c(l, l), c(2, 2)c(l, 2). The

third stage is c(3, l)c(2, l)c(l, 1), c(3, l)c(2, l)c(l, 2), c(3, l)c(2, l)c(l, 3),

c(3, l)c(2, 2)c(l, 1), c(3, l)c(2, 2)c(l, 2), c(3, l)c(2, 2)c(l, 3), c(3, l)c(2, 3)e(l, 1),

•••,c(3, l)c(2, 3)c(l, 3), c(3, 2)c(2, l)c(l, l),...,c(3, 2)c(2, l)c(l, 3),..-,

c(3, 2)c(2, 3)c(l, l),...,c(3, 2)c(2, 3)c(l, 3), c(3, 3)c(2, l)c(l, 1),...,

c(3, 3)c(2, 3)c(l, 3). The nth stage is all terms c{n, tn)c(n - 1, tn_ j) • • • c(l, r j)

where t. runs from 1 to n, j = 1, 2, • • • ,n ordered in a manner which we shall now

describe. The subscript ij runs from 1 to b and recycles while the other /. re-

main constant. The subscript t2 runs from 1 to n in blocks of n and then recycles

while tj to tn remain constant. In general, /. runs from 1 to n in blocks of n7~1

and then (provided /' / n) recycles while r.+J through <n remain constant. The or-

dering of the terms in the nth stage is the natural ordering of the numbers

tntn-l '" 'l w"tteri ia tne base « using as digits the integers 1 through n.



UNIFORMLY DISTRIBUTED SEQUENCES. I 153

There are n" such numbers. Thus there are nn terms in the nth stage of the se-

quence \cv\. Let cn denote the «th stage.

The counting function for jc^j is given in terms of an n-tuple (<n, t    j, • • •,

*,)by

1=1 7=2

however, we find in discussing particular terms of the sequence that it is more

convenient to specify the B-tuples (tn, t   t,• • •,/,) than to specify the subscripts

v.

For a fixed positive integer n and any positive integer q it is convenient to partition

C*n + 9 into (n + q)q blocks B(z, ff, «). We define the blocks B(z', q, n) in terms of

the (« + </)-tuples (tn+q, 1'"'1 <'/< « + ?» 7 = *> 2, • • • ,w + o. A

block B(i, a, n) consists of those members c(n + q, I    ) • • • c(», '„)••• c(l, t j)

of the c„+9 stage for which the indices '„»•••i'j cycle from 1 to n + q while

the remaining indices are fixed. The ordering within the block is the natural one

induced by the ordering in the Cn+q stage. In general, B(i, q, n) is

„•<<.( . , are constant and

and

tc»eC«+JW '.♦«-!»       'n+1      constant and *=f„+1!   if f = 1

with the natural ordering of the cn+^ stage. There are {n + q)9 different q -tuples

(<n+9, • • • »<n+i)' Consequently, i runs from 1 to (» + a)*. The increasing order of

the blocks B(z', q, n) is the one induced by the natural ordering of the numbers of

the form *n+? *n+9_ j • • • <n+1 written in the base n + q using as digits the in-

tegers 1 through n + q. There are (« + q)n terms in each block.

(2.2) Definition. For a fixed integer n we shall call each of the blocks

B(i, q, n) an nth stage-like block.

We now consider an example of a sequence {c^j of elements which we con-

struct according to (2.1) in an irreducible group G of m x m unitary matrices. The

consideration of this example forms a fundamental part of the proof of the key

lemma.

(2.3) Notation. If B is a set, by n{B) we mean the number of elements in B.

(2.4) Notation. For any sequence \cv\ in an irreducible group K of m x m
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unitary matrices let (|c I) denote the following limit provided it exists:

<|cj> = lim if; v

(2.5) Definition. Suppose that d is the m x m unitary matrix [d..]. By \\d \\

we mean max ||«\ . ||.

In Lemma (2.6) (which is actually a result about a bounded sequence of num-

bers constructed according to (2.1)) we obtain some sufficient conditions which are

fairly easy to verify and which guarantee that (\cv |) = 0. These conditions are

that the average of \cv\ over all nth stages and nth stage-like blocks must be

suitably small in norm for all n sufficiently large. This lemma is the primary tool

we use for proving that the sequences we generate average certain sets of repre-

sentations to 0.

(2.6) Lemma. Let Jc^j be a sequence in K which is constructed in stages

according to (2.1). Suppose that for each e > 0 there exists N such that for all n >

N we have

(i)

(")

1 ^
—   / c

n v
n c eC

v n

II

(«+ ?)" c eBU.g.n)

<e/4,

< e/4,      1 < i < (n + q)q

for each positive integer q. Then there exists an integer M so that for all p > M,

Proof. Let n > N and fix it. There exists a positive integer Qn so that for

all q > QQ, the number of terms in an nth stage-like block B(z, q, n) divided by the

number of terms in the sequence {c^l up to and including those in B(i, q, n) is

less that e/4. Set

M = max 1 S/S?.'}
Let p be any integer greater than M and let D = Icj, c2, • • •        We parti-

tion D into subsets determined by the stages in the formation of je I. Since D

is finite, there is a stage, say Cn    , of which D O Cfl + <? is a proper subset but

D fl C;. = C. for /' m I, 2, • • • ,n + 9 - 1 and D n C. = 0 for 7 > n + «. We parti-

tion Cn+9 into blocks B(i, », n). For some integer i0, 1 < «0 < (n + «)*, D D

ß(«0» °» ") *s a ProPer subset of ß('0» q, n). We have
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ö " v
v= 1

fn-1 n+9-1

-JZ Z c„ + Z   Z c„

'0

+ z z

1n_1

p Z Z cv
«-1 (» + /r+y+ Z —:—
y=o

1 y

c eC ..
v     n +;

(« + fl)" c  e 8(7,9,n)

? 2r cveB(i0.9.»i)nD

<- T i' + h T —-—
*h 4/to >

7=1 (« +        c 6B(7,0,rt)

1 z
Ct)EB(i0,«,«i)nD

by (i) and the fact that each matrix cy is unitary. By the choice of p > M and by

assumption (ii) we have

1 V
~p Z cv
^ v= 1

v   «(B(/0, ?, «))

<!—?—■

Since p > M, it follows that q > QQ. Thus

1 ^
- > c

^ v= 1



156 LEONORA BENZINGER

From Lemma (2.6) we have sufficient conditions in terms of averages over nth

stages and nth stage-like blocks for a sequence \cv\ in K constructed according

to (2.1) to average to 0. The construction of {c^l is not complete, however, because

we have not specified the generating sequences jc(l, v)\, {c(2, v)\, • • •, \c(k, v)\,

... for \cv\ which will satisfy the hypotheses of Lemma (2.6). The next lemma en-

ables us to obtain these generating sequences for the sequence {c^j in K.

(2.7) Definition. If a € K, then the fixed subspace of a is \x e Cm \ ax = x\

and is denoted by Ffl.

(2.8) Lemma. Let K be an irreducible group of m x m unitary matrices. Tben

there exists a finite subset of K, \a^, a2, • • • »a^l with 1 < / < m such that F' (1

F   n...nF„ ={oi.

Remark. The proof of Lemma (2.8) follows from two observations. We note first

that for each finite subset {a., a,, • • • ,a,\ of K, F„ nFw  O • • • O F„, is a
i'   l'      '  i '    a\       «2 **/

vector space. Secondly, if Fa^ n Fa^ n ••• 4 {0}, then because K is ir-

reducible, we can find a, , in K for which F„ HFa  n--. nF„.    is apro-

per subspace of Fflj n Ffl2 O • • • n Fa^. Another approach would be to take the

set of vectors which a given member of K moves and try to enlarge this set. This

does not appear to work, however, because the set of such vectors is not a vec-

tor space.

(2.9) Definition. Let the F-index of K be the smallest positive integer / for

which there exist elements at, a2,...,al in K with the property that Ffl n

Fa2n—OFa/ = {01'

Remark. The notion of F-index allows us to classify irreducible groups of

m xm unitary matrices according to the number of distinct group elements neces-

sary to generate a sequence {c^j with the property that (Ic^i) = 0. By Lemma

(2.8), the F-index of an irreducible group of m x m unitary matrices exists and is

bounded above by m. When there exists a matrix in K with no eigenvalue 1, then

K is of F-index 1. This is the case, for example, when K is a nontrivial sub-

group of the circle group or the group U{m). Let p denote the 3-dimensional ir-

reducible unitary representation of A4, the alternating group on 4 elements, see

[7, p. 49]. It is a straightforward but somewhat tedious matter to verify that the

irreducible group of 3 x 3 unitary matrices given by p(Ä^) (with respect to some

basis) is an example of a group of F-index 2.

We can easily find a sequence \cv\ in an irreducible group of m x m unitary

matrices K of F-index 1 such that Oc^I) = 0. Indeed, if K is of F-index 1, there

exists a matrix a e K such that Ffl = {0[. Then <{avl) = 0. Since every element of

an irreducible group of m x m unitary matrices of F-index 2 or more has 1 as an

eigenvalue, no sequence of powers of a single element will average to 0. We now

construct a sequence {c^j in an irreducible group of m x m unitary matrices of
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F-index /, 1 < / < m, with the property that {{cv\) = 0.

(2.10) Suppose that the F-index of K is some positive integer /, 1 < / < m.

By Lemma (2.8) there exist elements flj, a^, • • •, al in K with {Of as the common

fixed subspace. Using construction (2.1) we obtain a sequence \cv\ in K where the

generating sequences \c(k, v)\, k = 1, 2, 3,       are given by \c{k, v)\ = JaVj and

As =/(mod/), 1 </'</.

We illustrate the construction of \c^\ in p{Aj. It is easy to verify that

FP«123)) n FP((12)(34)) = *0'- Let *c(*' v^ = JpCCl23))*'l when k is even and let

\c(k, v)} = |p((12)(34))t'i when k is odd. Now construct \cv\ according to (2.1).

We observe that when K is of F-index 1 the sequence jc^i is slightly more

complicated than the obvious sequence \av\ of powers of an appropriate element

a in K such that Ffl = {Ol; however, the sequence \c^\ still has only one gener-

ator.

We shall prove that the sequence jc^} in an irreducible group K of m x m

unitary matrices of F-index / has the property that (ic^l) = 0. The technique in-

volves proving that the average of jc^l over all nth stages and nth stage-like

blocks is suitably small for all sufficiently large n. The average of the sequence

\cv\ over an nth stage is essentially a product of projections F;F^_j •"P-l

raised to a power dependent on n. The sequence \cv\ is constructed so that the

projections P{, P;_ j, • • •,P. have no nonzero common fixed subspace. This im-

plies that the operator P; P{_ j • • • P l has norm 8 where 0 < 5 < 1. We then make

the norm of the average over an nth stage of {c^} suitably small by making n

sufficiently large.

The following theorem is a slight modification of the ergodic theorem as

stated in Haimos [4].

(2.11) Theorem [4]. // U is an isometry on a finite dimensional inner product

space and if M is the space of all solutions of Ux = x, then the sequence defined

by V = n~1 (U + U2 + • • • + U") converges as n -»+ oo to the perpendicular pro-

jection of M.

(2.12) Notation. Let P^n) = n" and let P. = limn_ Pf(n), i = 1,

2,"', I. We recall that the elements a., a.,-" ta, of K generate the sequence

By Theorem (2.11), P. exists for each i and is a projection of Cm onto F .

(2.13) Lemma. Let the F-index of K be I and let the elements <Zj, «2,...,

flj of K have \0\ as their common fixed subspace. Then there exists a, 0<a<l,

suchthat \\P[Pl_l"' F,||<a.

Proof. The lemma is obvious when / = 1. If / > 2 then we have ||P^ P^_ j • • •

Pj || = sup ||Pj • • • PjX II where the supremum is taken over all x, ||x|| = 1. It fol-

lows that ||Pj ••• Pj|| = sup ||Pj • • • P2x|| where the supremum is taken over all
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x e Fa , \\x || = 1. We continue until we have \\P[ ••• Pj | ■ sup \\Pf || where the«1

supremum is taken over all x e F O ■nF„      of norm 1. Let x e F O.. n

Ffl^ and suppose ||x || = 1. Then x = s + r where s € Fa[ and t £ F^ so that

1V» = It is a straightforward matter to show that for all y € F    such that

||y I = 1, there exists a, 0 < a< 1, such that |(x, y)\ < a. It follows that

\{x, s)\ < a\\s\\. Furthermore, ||s||2 = |(s + t, s)\ = |(x, s)|. Thus ||s|| < a. There-

fore ||P, Pj| <a< 1.

The next lemma states that the sequence \c^\ constructed in K according to

(2.10) has the property that averages over all complete nth stages for all sufficiently

large n ate small.

(2.14) Lemma. Let the F-index of K be I and let the elements a^, «2,

a{ of K have {0j as their common fixed subspace. Let {c^l be the sequence con-

structed in K according to (2.10). Given t > 0 there exists M so that for all n> M,

nn c eC
<e/4.

Proof. By Lemma (2.13), ||P; • • • P x || = 8 for some 8, 0 < 5 < 1. For each i,

1 < i < /, ||P •(«) || < 1 for each positive integer n. It follows that there exists an

integer Mj so that for all n > Mj, \\P ( • • • Pj - P t(n) ... Pj(n) || < (1 - 8)/2.

Therefore \\P({n) .. • P Ml •< (1 + 8)/2. Let e > 0 be given. Since (1 + 8)/2 < 1,

there exists M2 so that for all n > M2, ((1 + S)/2)(n~< (/A. Let M =

maxiMj, M2i and n > M. Then, for some integer k, 1 < k < I, n = &(mod /), we

have

1 z - n Z   Z (.*"
i= 1 /.= 1

')(«;- t 'i

- IIPA(») ••• p,(«)(p/«) ••• p1(«))(M-*>'/ll

<f/4.

The lemma which follows states that the sequence \cv \ as constructed in K

according to' (2.10) has the property that averages over all nth stage-like blocks

for all sufficiently large n are small.

(2.15) Lemma. Let \cv\ and M be as in Lemma (2.14). Let n be a fixed inte-

ger greater than M. For each positive integer q,

1
Z ct

(«+ q)n cveßii,q.n)

<f/4

for each i, 1 < i < (n + q)n.
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Proof. For some integer k, 1 < k < I, n = k{mod I). Let q be any positive in-

teger and suppose n + q m s (mod /), 1 < S < /. For any i, 1 < «' < (n + q)q,

\n+ q)   c eß (,,«,,„)

1        "   " q     t t

(»+«)",= ! «.= 1

(«5"+«"-.«i a\n*"-s-1)...      ... a'1)

< || Pfe(n + c?) ... P j(« + 9)|| || P/n + 9) ... P,(« + ?)||

Since n > M, HP^n + t/) • •. Pj(n + 9)|| < (1 + 5)/2. Therefore,

<((l + S)/2)(B-"//<e/4.

(«-*)//

(n+ q)n cv€B(i,q,n) *

We now extend the notion of F-index to finite dimensional irreducible unitary

representations of a locally compact group.

(2.16) Definition. Let peR(G). The F-index of p is the F-index of p(G).

(2.17) Notation. Let $y = \p e R(G) | F-index of p is /'}, /' = 1, 2, 3, —. Let

0Q be the subset of R{G) containing only the trivial representation.

Remark. If G is a locally compact abelian group, $Q and <f> { exhaust R{G).

We now state and prove the final result of this section.

(2.18) Lemma. Let G be a locally compact group and H a countable subgroup

with the property that each nontrivial representation p of some subset S C R(G)

is nontrivial and irreducible as a representation of H. Let p be a nontrivial mem-

ber of S of dimension m. Then there exists a sequence [h } in H {dependent on

p) with at most m generators such that (p, \hv\) = 0.

Proof. Since p is a nontrivial member of S of dimension m, it follows that

p{H) is a nontrivial irreducible group of m x m unitary matrices. The F-index of

p is / where 1 < / < m. Therefore there exist elements      a2f',al in p(H)

with |0| as their common fixed subspace. We use construction (2.1) to obtain \cv\

in p{H) where the generating sequences \c{k, v)\, k = 1, 2, 3, • • •, are given by

\c(k, v)l = {aVJ where /fe=/'(mod/), 1 </</. From Lemmas (2.6), (2.14), and (2.15) we

see that (Ic^l) = 0. Let k{ be an element of p'K«,-), i = 1, 2, •••,/. We construct

a sequence \hv \ in H generated by k( with the property that (p, 1^1) = 0.

Remark. We are still far from the proof of the key lemma in the lemma just

proved. The sequence \h^\ in Lemma (2.18) averages out a single representation to

0, while the key lemma asserts under the same hypotheses as Lemma (2.18) the ex-

istence of a single universal sequence \h^\ in H which averages all nontrivial

representations p in S to 0. The assumption of the countability of H is not nec-

essary in Lemma (2.18) but becomes crucial in the construction of the universal se-

quence in §3.
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3. The main theorem. In this section we complete the proof of the key lemma.

Using this lemma, we prove that a locally compact group possesses a u.d. se-

quence if and only if it is K-separable.

(3.1) Lemma. Let G be a locally compact group. Let H be a countable sub-

group with the property that each nontrivial p in some subset S of R(G) is non-

trivial and irreducible as a representation of H. Then for each integer / > 1 there

exists a sequence \cv\ in H such that (p, [cv\) = 0 for each peS r\<t>..

Proof. If S n $. = 0, then let \cv\ be the sequence whose terms are the

identity e of H.lt p e S D <t>y, then, by Lemma (2.8) there exists a /-tuple of ele-

ments of H, (h j, &2,..., b!), with the property that Fp(h ̂  f~l F; fl ••• O

F      = |0}. Furthermore, by Lemma (2.18) the sequence |c i generated according
P(oy) v

to (2.10) from the sequences of powers {b"\, \b" ],..., {h" \ has the property that

<P, icj)=0.

Because H is countable, there are at most countably many /-tuples of ele-

ments of H. Let HQ be a set of /-tuples {pj, p2,...,p.,... j of elements of H

such that:

(i) For each p in 5 O     there is a /-tuple pfe of elements of H in HQ and

a sequence \c(k, v)\ in H generated by the components of pk with the property

that (p, \c(k, v)\) = 0.

(ii) Each /-tuple pk in HQ corresponds to a sequence {c(k, v) \ in H gener-

ated by the components of pk and (p, {c(&, i>)i) = 0 for some p in Sn$..

We now have a collection of sequences |c(l, tv)j, {c(2, v)\, • • •, {c(£, v)i, •. •

corresponding to the elements pk, k = 1, 2, • • • of HQ. Using the sequences

jc(l, f)|, {c(2, tv)}, • • •,\c{k, v)], ••• as generators, we construct a new sequence

{c^l in H and hence in G according to (2.1). The construction we recall is in

stages. The first stage is Cjj. The second stage is c(2, l)c(l, 1), c(2, l)c(l, 2),

c(2, 2)c(l, 1), c(2, 2)c(l, 2). The nth state is all terms of the form

c(n, t )c(n - 1, t    .) ... c(l, t,) where /. runs from 1 to n, i = 1, 2. •• •,«. For

more details refer to (2.1). If HQ happens to be finite, say HQ = [p^, p2, • • •, pk\,

let c(/, v) be the identity c of H for all positive integers v and all positive in-

tegers I, l> k. This completes the construction of the sequence {c^}.

Let p be an arbitrary element of 5 n Of.. Let pk - (h(i j), h{i2), • • •, mo) be

the first /tuple in HQ for which Pplb(il)) n P^.^O • • • n P^jj = {0}. In

the construction of \c^\ we use the sequence {c{k, v)\ in generating (c^}. The se-

quence {c(k, v)\ we recall is generated by the sequences of powers of fe(z'j),

h{i2), • • .,b(i ). In addition, \c(k, v)} has the property that for any e > 0 there ex-

ists N0 such that for all n > yVn,
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i £ p(cU. v))\

v= 1

Set N = maxIS^j i\ 2*=1 i' j and let n > N. We have

«   c eC n   i= 1 t{n 1

c(A, <fe)        c(l, tfi

~   Z    Z p(c(«.^"-^+l.^+1))

i £ p(cu *„».
*-l n

-r^r Z Z p(c(*-l,«jk_,)-- e(l,0)
«*    «=i «,= i

The matrices p(c(n, • • • c(& + 1, + and p(c{k - 1, <(t_ t) • • • r j)) are

unitary for all permissible values of tj, '2»" *       1» in Thererore

(i)
i     S PK)

f n

We recall that B(z, «7, n) is an «th stage-like block of {c^j, see (2.1). Assume

n > N and let q be any positive integer. Let 1 < i < (« + £/)*. Then

+
1 z 7^— Z "z pW»+«. <„+,>••• '!»

(« + q)n u i ,/= ,(» + ?)" ^£ß(ii?,a)

< ||p(c(« + q, tn+q)--- dn+ 1, <n+1))||

n      n + q

~I   Z    Z p(cU/„)••• c(A+l,^+1))
(«+ <,)"-*/=*+1 t/= l

ft Q

-L- £ p(cU, /.))
n + q k

V1

A-ln+9

,   \k l Z Z pWa-i.O"-^,,,))

The matrices p(c{n + q, tn   ) • • • c(n + 1, *n+1)), p(c(«, *„)••• c(A + 1, <fe+1))»

and p(c(& - 1,      j) • • • c(l, /     are unitary for all permissible values of tn ,

'"' '*+!'      i» * * * i *!- Therefore,
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(ü) Z rfO
(»+ q)n ceB(i.q.n)

< 1 • 1
n

n + ^
Z   p(cU, t.)) Kf.

By inequalities (i) and (ii) it follows that the sequence Ipfc^)! satisfies the hy-

potheses of Lemma (2.6). By Lemma (2.6), (p, |cvl) = 0.

Remark. The countability of H is crucial in the construction of the sequence

|c !; however, the number of finite dimensional irreducible unitary representations

of F-index ;' is unrestricted. For example, let G be R, the reals in the usual

topology. The rationals form a countable subgroup with the property that each

nontrivial character of R is nontrivial as a character on the rationals. Using the

construction just given, we can find a sequence of real numbers which averages

all nontrivial characters on R to 0. We observe that R has uncountably many

nontrivial characters; that is, R has uncountably many finite dimensional irredu-

cible unitary representations of F-index 1.

We now state and prove our key lemma.

(3.2) Lemma. Let G be a locally compact group and H a countable subgroup.

Suppose that for each nontrivial p in some subset  S of R(G), p is nontrivial

and irreducible as a representation of H. Then there exists a sequence jc^j in

H such that (p, \cv\) = 0 for all nontrivial p in S.

Proof. By Lemma (3-1) there exist countably many sequences \c(k, v)}, k = 1,

2, 3, • • ■, in H with the property that (p, \c{k, v)\) = 0 for every p in S n 4>fc. If

S O      =0, then let c(k, v) be the identity of H for all possible values of v.

Using (2.1), we construct a new sequence Ic^l in stages. We use the sequences

\c(k, v)\, k = 1, 2, 3,from Lemma (3-1) as generators. The first stage is

c(l, 1). The second stage is c(2, l)c(l, 1), c(2, l)c(l, 2), c(2, 2)c(l, 1),

c(2, 2)c(l, 2). The nth stage is all terms of the form c(n, t^)c(n - I, tB_j) •••

c(l, ij) where t, runs from 1 to n, i = 1, 2, • • • ,n. For more details see (2.1).

Let p be a nontrivial member of S. It follows that p £ S O $. for some inte-

ger ;' > 1. By the construction of \cv\, one of the generating sequences {c(;, v)\

tor \cv\ has the property that there exists A/Q such that for all n > Nn,

1 "
" Z PW/'. v))

Set N = max{Sf° , i\ S^i'j and let n > N. Then

(i) <e.

c eC
v n

Also, for each n > N, it follows that for each positive integer q,
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(ii) —— £ pic )

\n+q)   c eBU.q.n)

for each /', 1 < i < (« + q)q. We omit the proof of the two preceding inequalities

since it is somewhat similar to the proof of inequalities (i) and (ii) of Lemma

(3.1). By Lemma(2.6),(p, \cj) = 0.

The remarks which follow allow us to generalize Lemma (3-2). As a special

case of this generalization, we obtain a reformulation of Lemma (3.2) which is

very similar to the analogue [1, Lemma 2.1] in the abelian case.

Remark. It is a straightforward matter to show that a finite dimensional uni-

tary representation p of a locally compact group G has no nonzero fixed vector

if and only if for each m.a.i. function / of p (independent of basis) there exists

g e G such that /(g) ^ 1.

Remark. We observe that Lemma (2.8) holds under the weaker hypothesis that

K is a group of to x m unitary matrices (not necessarily irreducible) which fixes

no nonzero vector in Cm. We are still assured of the existence of a set \a {, a2,

• - •, a,\ in K, 1 < / < to, such that F    nF„ O • • • OF   = |0l. Thus we may ex-
'   I '    —   —   * a i       ei2 a[

tend the notion of F-index to a group of to x to unitary matrices which has no

nonzero fixed vector. Furthermore, we may define, in the natural way, the F-index

of any m-dimensional unitary representation of a locally compact group which fixes

no nonzero vector in Cm.

Remark. Let G be a locally compact group and let p be a finite dimensional

(not necessarily irreducible) unitary representation of G. Then any nontrivial

m.a.i. function / of p is orthogonal to 1. Indeed, we may consider any nontrivial

m.a.i. function / as a m.a.i. function of the representation p on the Bohr compac-

tification of G. We may decompose p into a direct sum of irreducible unitary rep-

resentations on the Bohr compactification, see [6, Theorem 21.40]. The function

/ is then a finite linear combination of m.a.i. functions from nontrivial irreducible

unitary representations of the Bohr compactification and hence is orthogonal to 1.

The preceding remarks enable us to generalize Lemma (3-2) as follows.

(3.3) Lemma. Let G be a locally compact group and S a subset of the set of

finite dimensional (not necessarily irreducible) unitary representations of G. Let

H be a countable subgroup with the property that for each nontrivial m.a.i. func-

tion f from a representation p in S there exists h in H such that f (h) 4 I. Then

there exists a sequence {c^j C H such that (/, \cy\) = 0 for each nontrivial m.a.i.

function from any representation p in S.

As a special case of Lemma (3-3) we have the following.
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(3.4) Lemma. Let G be a locally compact group and H a countable subgroup

of G. Let S be a subset of R(G) and suppose that for each nontrivial m.a.i. func

tion f from a representation in S there exists b in H such that f (h) ^ 1. Then

there exists a sequence \cv\ in H such that (p, {cv\) = 0 for all nontrivial p in H.

We now state the analogue to Lemma (3-2) in the abelian case. We note the

similarity between [l, Lemma 2. l] and our Lemma (3-4). It is also of interest to

compare a result of Hlawka concerning sequences on compact groups [8, Theorem

7] and Lemma (3.4).

(3.5) Lemma [l, Lemma 2.1]. Let G be a locally compact abelian group and

S a subset of the character group G . Let H be a countable subgroup of G with

the property that for each nontrivial character p in S there is an element h in H

such that p[b) ^ 1. Then there is a sequence \bv\ of elements of H such that

(p, \hv\) - 0 for all nontrivial p in S.

We now characterize in terms of K-separability those locally compact groups

which admit uniformly distributed sequences. It would be interesting, of course, to

have a characterization in terms of group structure. In the abelian case, for ex-

ample, in [l, Theorem 3] Berg, Rajagopalan, and Rubel relate the existence of

u.d. sequences to the cardinality of the set of periodic characters.

(3.6) Theorem. A locally compact group G possesses a u.d. sequence if and

only if it is K-separable.

Proof. Suppose G has a u.d. sequence Igvl. Let H be any closed normal sub-

group of compact index in G. Then l<pH(gv)l is u.d. in G/H, a compact group. But

a sequence which is u.d. in a compact group is dense so G is K-separable.

Assume that G is /(-separable. Then G possesses a /(-dense sequence {g l.

Let H be the countable subgroup of G generated by \gv\. Let p be a nontrivial

member of P, the irreducible periodic unitary representations of G. We may con-

sider p as an irreducible unitary representation of G/W for some closed normal

subgroup W of compact index in G. Since p(G) = p(tpu/(G)), p{H) = p(cf>w{H)).

Furthermore, p is irreducible as a representation of <f>w(G). It follows from the

continuity of p and the fact that <f>w{H) is dense in <f>w{G) that p is irreducible

as a representation of <pw(H). Therefore p is irreducible as a representation of H.

By similar reasoning, it follows that p is also nontrivial as a representation of H.

In Lemma (3-2), let S = P. Then there exists a sequence \hv\ in H such that

(p, \hv\) = 0 for every nontrivial p in P. By the Weyl criterion for locally compact

groups, \hv\ is u.d. in G.
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