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We have studied p-shell nuclei using a two-frequency shell-model approach with an effective inter-
action derived from the Bonn-A nucleon-nucleon potential by means of a G-matrix folded-diagram
method. Shell-model wave functions of two different oscillator constants , h̄ωin and h̄ωout, are em-
ployed, one for the inner 0s core orbit and the other for the outer valence orbits, respectively. The
binding energies, energy spectra, and electromagnetic properties are calculated and compared with
experiment. A quite satisfactory agreement with the experimental data is obtained, which is in
some cases even better than that produced by large-basis shell-model calculations.
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I. INTRODUCTION

The p-shell nuclei have long been the subject of theo-
retical interest. The first shell-model study of these nuclei
was performed by Cohen and Kurath in 1965 [1]. In this
work, which has been a point of reference for later stud-
ies, a successful description of the p-shell nuclei was given
by taking 4He as a closed core and letting the valence nu-
cleons occupy the 0p shell. The fifteen matrix elements
of the two-body interaction and the two single-particle
energies were determined by making a least-squares fit
to selected observed energy levels. From then on, sev-
eral other shell-model calculations have been performed
in the 0p model space employing different kinds of effec-
tive interactions [2-5]. It should be mentioned that the
calculations of Ref. [2] represent the first attempt to use
a realistic effective interaction for these light nuclei.

In recent years, the study of p-shell nuclei has become
a subject of special interest owing to the discovery of new
aspects of their structure. One main result has been the
observation for some neutron-rich nuclei, such as 6He and
11Li, of abnormally large interaction and reaction cross-
sections [6,7]. These nuclei have a very small one- and
two-neutron separation energy and have been described
as having a halo structure [8], namely an extended neu-
tron distribution surrounding a tightly bound inner core.

During the last decade substantial progress in com-
putational techniques has set the stage for more ambi-
tious calculations of the structure of light nuclei. As
regards shell-model studies, calculations in a (0 + 2)h̄ω
model space have been performed in the early 1990s [9-
11]. More recently, larger multi-h̄ω spaces have been
used [12,13]. In particular, large-basis no-core calcula-
tions have been carried out [13] making use of an effec-
tive interaction derived from the Reid 93 nucleon-nucleon
(NN) potential. Alternatively, there has been a variety
of studies in terms of clusters (see Ref. [14] for a com-
prehensive list of references). In this context, three-body
model approaches aimed at describing the structure of

halo nuclei have been developed [14,15].
To end this brief review of the various approaches to

the study of p-shell nuclei, the quantum Monte Carlo cal-
culations of Refs. [16,17] should be mentioned. Within
this approach properties of nuclei with A ≤ 8 are calcu-
lated directly from bare two-nucleon and three-nucleon
forces.

A new approach, the two-frequency shell-model
(TFSM), has been recently proposed in Refs. [18,19].
Within the TFSM, the model space effective interaction
Veff is derived from the free NN potential by way of a G-
matrix folded diagram method. Its peculiar feature con-
sists in calculating the G matrix in a space composed of
harmonic oscillator wave functions with two different os-
cillator constants, h̄ωin and h̄ωout, for the core and the va-
lence orbits, respectively (the length parameters bin and
bout will be also used from now on, with b = (h̄/mω)1/2).
Note that bout is chosen substantially larger than bin.
This idea reflects the fact that the valence nucleons in
p-shell nuclei are spatially more extended than those of
the core. Actually, these nuclei may be thought of as a
4He nucleus with loosely attached outer nucleons. This
feature may be taken into account by including several
major shells in the ordinary one-frequency shell model.
We shall see that the TFSM, allowing different length
parameters for the valence and core orbits, provides a
simple and effective alternative. It may be interesting to
mention that, albeit in quite different contexts, this idea
was also considered in two earlier works [20,21].

The outline of the paper is as follows. In Sec. I the
derivation of the effective interaction from a realistic NN
potential is described. Our results are presented and
compared with the experimental data in Sec. III. Sec.
IV contains a summary of our conclusions.
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II. DERIVATION OF THE EFFECTIVE
INTERACTION

Here, we describe how to derive the effective interac-
tion from a realistic NN potential VNN within the frame-
work of the TFSM.

As usual, one starts from a nuclear many-body prob-
lem of the form HΨµ = EµΨµ with H = T +VNN , where
T denotes the kinetic energy. This many-body problem
can be formally reduced [22] to a model space (usually
referred to as the P -space) problem of the form

HeffPΨµ = EµPΨµ; Heff = H0 + Veff , (1)

where the eigenvalues Eµ are a subset of the eigenval-
ues of the original Hamiltonian in the full space, µ =
1, 2 · · ·d, with d denoting the dimension of the P space.
In Eq. (1) Veff is the model-space effective interaction
and H0 = T + U the unperturbed Hamiltonian, U being
an auxiliary potential introduced to define a convenient
single-particle (sp) basis. This is chosen to be a harmonic
oscillator potential. Note that our P space is defined in
terms of the eigenfunctions of H0.

The model-space effective interaction Veff may be writ-
ten [22] as a folded-diagram series

Veff = Q̂− Q̂
′
∫

Q̂ + Q̂
′
∫

Q̂

∫
Q̂− Q̂

′
∫

Q̂

∫
Q̂

∫
Q̂ · · · ,

(2)

where
∫

denotes a generalized fold, and Q̂
′

and Q̂ rep-
resent the Q̂-box, composed of irreducible valence-linked
diagrams. Q̂′ is obtained from Q̂ by removing first-order
diagrams. Because of the strong repulsive core contained
in all modern NN potentials, as a first step we need to
derive the model-space G-matrix corresponding to the
chosen VNN , and then calculate the Q̂-box from irre-
ducible diagrams with G-matrix vertices. The Brueckner
G-matrix is defined by the integral equation [23,24]

G(ω) = V + V Q2
1

ω −Q2TQ2
Q2G(ω), (3)

where ω is an energy variable, T is the two-nucleon ki-
netic energy and V represents the NN potential. Q2 is
a two-body Pauli exclusion operator, whose complement
P2 = 1−Q2 defines the space within which the G matrix
is calculated. The role of Q2 in Eq. (3) is to prevent
double counting, namely the intermediate states allowed
for G must be outside of the P2 space. Note that our G
matrix has orthogonalized plane-wave functions as inter-
mediate states while the operator Q2 is defined in terms
of harmonic oscillator wave functions as

Q2 =
∑
all ab

Q(ab)|ab〉〈ab|, (4)

where Q(ab) = 0, if b ≤ n1, a ≤ n3, or b ≤ n2, a ≤ n2,
or b ≤ n3, a ≤ n1, and Q(ab) = 1 otherwise. The bound-
ary of Q2 is specified by the three numbers n1, n2, and

n3, each representing a sp orbit (the orbits are numbered
starting from the bottom of the oscillator well). In partic-
ular, n1 is the number of orbits below the Fermi surface
of the doubly magic core, n2 fixes the orbit above which
the passive sp states start, and n3 denotes the limit of
the P2 space.

It should be noted that in the calculation of G the
space of active sp states, i.e. the levels between n1 and
n2, may be different from the model space within which
Veff is defined. Several arguments for choosing the former
larger than the latter are given in Ref. [23]. Generally, n2

is fixed so as to include two major shells above the Fermi
surface. In this paper, we consider the p-shell nuclei with
4He as a core, thus we have n1 = 1. Then we take n2 = 6
so as to include all the five orbits of the p and sd shells
above the Fermi surface. As regards n3, it should be
infinite, but in practice it is chosen to be a large but
finite number. Namely, calculations are performed for
increasing values of n3 until numerical results become
stable. For the present case, we have found that a choice
of n3 = 21 turns out to be quite adequate.

From the above it is clear that the reaction matrix G
depends on the space P2 and will be different for different
choices of this space. In the TFSM approach the P2 space
is defined in terms of harmonic oscillator wave functions
with two different length parameters bin and bout, the for-
mer for the inner core orbits and the latter for the outer
valence orbits. As already discussed in the Introduction,
this choice, with bout larger than bin, allows us to give an
appropriate description of the p-shell nuclei.

The presence of the Pauli operator Q2 adds consider-
able difficulty to the calculation of the above G-matrix.
However, an accurate treatment of it can be carried
out using a matrix inversion method [23,25]. With this
method, the exact solution of the G-matrix equation (3)
reads

G = GF + ∆G, (5)

where the “free” G matrix is

GF (ω) = V + V
1

ω − T
GF (ω), (6)

and the Pauli correction term ∆G is given by

∆G(ω) = (7)

−GF (ω)
1
e
P2

1
P2[1/e + (1/e)GF (ω)(1/e)]P2

P2
1
e
GF (ω),

where e = ω − T .
The central ingredient for calculating the above G ma-

trix are the matrix elements of GF within the P2 space.
As there is no Pauli projection operator for GF , the cal-
culation of its momentum space (k-space) matrix ele-
ments is relatively easy and has been carried out using the
standard momentum-space matrix inversion method [23].
Similarly we have calculated the k-space matrix elements
of 1/e GF , GF 1/e and 1/e GF 1/e. For shell model cal-
culations, however, we need the matrix elements of these
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operators between oscillator basis wave functions. In our
two-frequency approach, sp wave functions of two differ-
ent length parameters are employed, i.e. our basis con-
sists of both φin

n and φout
n , the oscillator wave functions

with length parameters bin and bout, respectively. As a
consequence, we also have to calculate matrix elements
such as 〈φin

1 φout
2 |GF |φout

3 φout
4 〉.

To calculate matrix elements of the above type, a stan-
dard procedure is to first transform the wave functions
to the RCM (relative and center of mass) representation.
For the above matrix element, the two sp wave functions
in the ket |φout

3 φout
4 〉 have identical length parameters.

While the RCM transformation for this state can be eas-
ily carried out using the well-known Moshinsky trans-
formation brackets, this is more complicated for the bra
〈φin

1 φout
2 |, as the two sp wave functions have different

length parameters. We have overcome this difficulty by
expanding φin in terms of φout or vice versa. By way of
illustration, for the above case we have expanded the bra
〈φin

1 φout
2 | as

〈φin
1 φout

2 | =
∑

n=0,N

C1,n〈φout
n φout

2 |. (8)

With this expansion, the above matrix element becomes
a linear combination of 〈φout

n φout
2 |GF |φout

3 φout
4 〉, which

is a one-frequency matrix element and can be readily
evaluated. We have found that this expansion can be
carried out quite accurately by including only a small
number of terms, typically N ≤ 10, in Eq. (8). Similarly,
we have calculated the mixed-frequency matrix elements
of 1/e GF , GF 1/e and 1/e GF 1/e. In this way the G
matrix of Eq. (5) is finally obtained.

A problem inherent in the TFSM may be mentioned.
We must require the sp wave functions φn to form an
orthonormal basis. This requirement is usually not satis-
fied by wave functions of different length parameters. For
instance, φin

0p3/2
is not orthogonal to φout

1p3/2
when bin is not

equal to bout. In the present work we consider nuclei with
several nucleons in the orbits 0p3/2 and 0p1/2 outside the
4He core. We have used a short length parameter bin for
the 0s1/2 orbit and a long length parameter bout for the
orbits mentioned above. In the calculation of the Pauli
correction terms for the G-matrix and in the derivation
of Veff , some higher orbits, such as the 1s1/2 orbit, are
also needed. To ensure their orthogonality with the core
orbit, we have also used bin for the 1s1/2 and higher s
orbits (bout is used for all the other higher orbits). We
shall further discuss this point later.

Using the above G matrix, we can now calculate the Q̂-
box of Eq. (2). This is done by including the seven first-
and second-order irreducibile valenced-linked G-matrix
diagrams [26,27], as shown in Fig. 1. After the Q̂-box
is calculated, Veff is obtained by summing up the folded-
diagram series (2) to all orders by means of the Lee-
Suzuki iteration method [28,29]. This last step can be
performed in an essentially exact way for a given Q̂-box.
Note that the G matrix is energy dependent in that it

depends on the starting energy ω. The folded-diagram
effective interaction given by Eq. (2) is, however, energy
independent [22].

Before closing this section we should remark that in
our derivation of Veff only the calculation of the Q̂-box
requires certain approximations. In fact, we have ne-
glected its G-matrix diagrams beyond the second-order
ones. In Refs. [27] and [30] the role of third-order di-
agrams was investigated within the framework of stan-
dard shell-model calculations. It was shown that for the
sd nuclei the third-order contributions produce a change
of about 10− 15% in the effective interaction, which re-
duces to only 5% or less for heavier nuclei (in this case
only the T = 1 matrix elements were investigated). In
the TFSM approach one expects these higher-order di-
agrams to be even smaller. In fact, the contribution of
the D7 diagram of Fig. 1, which is a second-order core-
polarization diagram and contributes a significant cor-
rection to the G matrix, is rather small when the length
parameter bout becomes significantly larger than bin. Di-
agonal matrix elements of this diagram for the states
|(p3/2)2; T = 1, J = 0〉 and |p3/2p1/2; T = 0, J = 1〉 are
shown in Fig. 2 as a function of the outer length param-
eter bout. This parameter ranges from 1.45 to 2.50 fm
while bin is kept fixed at 1.45 fm. The Bonn-A realistic
NN potential [31] is used. We see that the diagram D7
is already largely suppressed when bout becomes nearly
2.0 fm. We have also calculated several typical third-
order diagrams and have found that their contribution
to the matrix elements of Veff decreases by an order of
magnitude as bout goes from 1.45 to 2.0 fm. This is a
consequence of the fact that increasing bout corresponds
to increasing the average distance between the core and
valence nucleons, thus reducing the overlap between their
wave functions.

We should like to Recall that to ensure the orthogo-
nality we have used the same length parameter bin for
not only the 0s1/2 but also the 1s1/2 and other s orbits.
Using bin only for the core 0s1/2 orbit and bout for the
other s orbits would of course require an orthogonaliza-
tion procedure, which is numerically more involved than
our present treatment. We are currently examining this
point.

III. RESULTS AND COMPARISON WITH
EXPERIMENT

Within the framework of the TFSM we have carried
out calculations for the p-shell nuclei with A ≤ 9. Re-
sults of this study for A = 8 nuclei have already been
presented in [32,33], together with those obtained in a
standard one-frequency shell-model calculation. In these
papers comparison between one- and two-frequency cal-
culations has evidenced the merit of the latter approach
with respect to the former.

We have assumed that the doubly magic 4He is a closed
core and let the valence particles occupy the two orbits
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0p3/2 and 0p1/2. As regards the sp spacing between these
two levels, we have taken it from the experimental spec-
trum [34] of 5He, namely ε1/2 − ε3/2 = 4.0 MeV, while
we have fixed the sp energy ε3/2 at 0.886 MeV, which is
the experimental one-neutron separation energy for 5He
[35]. It should be noted that the excitation energy of the
first 1

2

− state in 5He, which is a very broad resonance,
has a large error bar (±1 MeV). The effective interaction
has been derived from the Bonn-A free NN potential, as
described in Sec. II. All results presented in this paper
have been obtained by using the OXBASH shell model
code [36].

The bin parameter used for the 0s1/2 orbit was fixed at
1.45 fm [18], while bout was allowed to vary from 1.45 to
2.50 fm. In Table I we report the experimental ground-
state binding energies [35] for nuclei with 6 ≤ A ≤ 9 and
compare them with the calculated ones for bout = 1.45,
1.75, 2.00, 2.25, and 2.50 fm. The theoretical values
have been obtained by adding to our calculated ground-
state energies the experimental ground-state binding en-
ergy [35] of 4He and the Coulomb contributions taken
from Ref. [37], where they were determined from a least-
squares fit to experimental data.

Table I shows that all calculated binding energies de-
crease as bout increases. This is an obvious consequence
of the fact that most matrix elements of Veff become less
attractive when increasing bout. As regards the compar-
ison with the experimental data, we see that for the two
lowest values of bout all binding energies are significantly
overestimated by our calculations. A value of bout = 2.0
fm brings the calculated binding energies for Li isotopes
and their corresponding mirror nuclei into good agree-
ment with experiment, the discrepancies ranging from
0.3 to 0.6 MeV. As regards the He isotopes (and their
mirror nuclei) a larger value of bout (2.25 fm) is needed
to reproduce the experimental energies. On the other
hand, by increasing bout from 1.75 to 2.0 fm, the calcu-
lated binding energies of 8,9Be and 9B are shifted from
1-2 MeV above to 4-5 MeV below the experimental val-
ues. This indicates that the optimum value of bout for
these nuclei lies between 1.75 and 2.0 fm. It turns out
that it is 1.9 fm.

Note that in the above analysis we have not tried to
adjust the value of bout for each nucleus, but have been
satisfied with discrepancies of a few hundred keV between
experiment and theory. We would like to point out that
the optimum value of bout is related to the nuclear binding
energy (relative to 4He) per valence nucleon. In fact, this
quantity is almost constant for nuclei which require the
same value of bout. More precisely, it is a few hundred keV
for the He isotopes, about 2-4 MeV for the Li isotopes,
and 6-7 MeV for 8,9Be and 9B. The same situation occurs
for all the corresponding mirror nuclei.

Based on these findings, we have found it appropriate
to calculate the spectra and electromagnetic properties of
the various nuclei reported in Table I by using the values
of bout derived from the above analysis. We have verified

that use of values of bout different from the adopted ones
leads to an overall worse agreement between experimen-
tal and calculated spectra. However, states with T > Tz

require a separate discussion, which will be given at the
end of this Section.

Here we focus attention on 6−8Li and their correspond-
ing mirror nuclei. In Figs. 3-5 we compare the experi-
mental spectra with the calculated ones (bout = 2.0 fm).
While the observed spectra of 7Li and 7Be are quite sim-
ilar (the only significant difference is the absence of a
second 7

2

− state in the latter one), the experimental in-
formation for 8B is very scanty. For this reason, the
following discussion will only concern Li isotopes.

As a general remark, we see that in the considered en-
ergy regions our calculations give rise to all the observed
levels for each of the three nuclei. However, while for
6Li and 7Li no more levels than the observed ones are
predicted by the theory, for 8Li we find several states
without an experimental counterpart.

Let us now make some more specific comments on each
Li isotope separately. The ground state of 6Li is stable
while the first excited state with (Jπ ; T ) = (3+; 0) is just
above the threshold for breakup into α + d and has a
narrow width of 24 keV. The other two T = 0 states
have, instead, fairly large widths (Γ > 1000 keV). The
0+ state at 3.6 MeV is the isobaric analog of the ground
state in 6He and in 6Be, while the 2+ state at 5.4 MeV
is the analog of the first excited state. From Fig. 3 we
see that the first excited state is very well reproduced by
the theory. As regards the other two T = 0 states, our
calculation overestimates the experimental excitation en-
ergies by more than 1 MeV, while the (0+; 1) and (2+; 1)
states are underestimated by about 1.2 and 0.3 MeV,
respectively.

The spectrum of 7Li contains the stable ground state
with (Jπ; T ) = (3

2

−; 1
2 ) and the (1

2

−; 1
2 ) first excited

state, which decays by γ emission. All other excited
states lie above the threshold for breakup into α + t,
but only the (3

2

−; 1
2 ) at 9.8 MeV is a broad resonance

with Γ � 1200 keV. The T = 3
2 state at 11.2 MeV

with a width of 260 keV is the Tz = 1
2 member of an

isobaric quartet. The analog states with |Tz| = 3
2 are

the ground states of 7He and 7B, while the member with
Tz = − 1

2 is the state at 11.0 MeV in 7Be. The quan-
titative agreement between calculated and experimental
excitation energies is very satisfactory for all the levels,
the only exceptions being the second (3

2

−; 1
2 ) state and

the (3
2

−; 3
2 ) state. In fact, the discrepancies are about 1

and 3 MeV for the former and the latter states, respec-
tively, while they are less than few a hundred keV for all
the other states.

Turning to 8Li, the ground and first excited state are
very stable against the breakup, the former decaying by
β− emission. The second excited state lies just above
the threshold for breakup into 7Li + n and is fairly nar-
row with a width of 33 keV. A number of higher ex-
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cited states have been identified, some of them with large
widths. In particular, the (1+; 1) state at 3.2 MeV ex-
citation energy and the ((3); 1) state at 6.1 MeV have
widths Γ � 1000 keV. The (0+; 2) isobaric analog of
the 8He ground state occurs at 10.8 MeV with a width
less than 12 keV. From Fig. 5 we see that not only the
first four calculated levels are in the right order but also
the excitation energies are in very good agreement with
experiment. Above these levels and up to 6 MeV our
calculation predicts four states, three of them without an
experimental counterpart. More precisely, we have two
(2+; 1) states and two states with (Jπ ; T ) = (0+; 1) and
(1+; 1), respectively, while only one experimental level
with spin equal to 0 or 1 is available in this energy re-
gion. Our calculation suggests that this state, which lies
at 5.4 MeV, has Jπ = 1+. Between 6 and 8 MeV three
levels have been observed, and the same number is pre-
dicted by our calculation. Among them only one has a
firm spin-parity assignment and can be safely identified
with the calculated (4+; 1) state, whose excitation energy
is only 80 keV larger than the experimental value. As re-
gards the ((3); 1) level and that at 7.1 MeV with unknown
spin and parity, we propose the assignment (3+; 1) and
(1+; 1), respectively. In this case, the excitation energy
of the latter state is almost exactly reproduced while that
of the former one is overestimated by about 1 MeV. Fi-
nally, we see that the calculated (0+; 2) level lies about 3
MeV below the experimental one.

From the above we can conclude that, as regards the
binding and excitation energies, the overall agreement
between theory and experiment may be considered quite
satisfactory. In fact, significant discrepancies occur only
for the excitation energies of states with fairly large
widths or with T >| Tz |. As regards these latter states
some comments are in order. The (0+; 1), (3

2

−; 3
2 ), and

(0+; 2) states in 6Li, 7Li, and 8Li, respectively, are iso-
baric analogs of the ground states of 6He, 7He, and 8He.
The (2+; 1) in 6Li is a member of the isospin triplet which
is comprised of the first excited state in 6He and in 6Be.
At the beginning of this Section, we have shown that
for the He isotopes a larger value of bout is required as
compared to that adopted for the Li isotopes. We have
then found it appropriate to calculate the energies of
the T >| Tz | states in Li isotopes by making use of
bout = 2.25 fm. It has turned out that all the new cal-
culated excitation energies (relative to the ground-state
energies obtained with bout = 2.0 fm) go in the right
direction largely reducing the discrepancies with the ex-
perimental data.

Let us now come to the electromagnetic observables.
In Table II the measured moments [39] together with the
E2 and M1 transition rates [34] for 6−8Li and 8B are
compared with the calculated values. In our calculations
no effective charge has been attributed to the proton and
neutron, and use has been made of free gyromagnetic
factors. We have also calculated electric and magnetic
effective operators including only diagrams first order in

G [38]. We have found that the results do not signif-
icantly differ from those obtained with bare operators.
This is not surprising, as our effective operators take es-
sentially into account the core-polaritation effects, which,
as pointed out in Sec. II, are largely suppressed for bout

significantly larger than bin.
From Table II we see that the experimental magnetic

moments and the B(M1) values are very well reproduced
by our calculations. As regards the electric observables,
the agreement is not of the same quality. However,
while our calculations underestimate the E2 transition
rates as well as the quadrupole moments, they repro-
duce the signs of the latter quantities (the sign of the the
quadrupole moment of 8B has not been measured).

IV. SUMMARY

In this paper, we have described how to calculate, for
a chosen free nucleon-nucleon potential, the Brueckner G
matrix in a space composed of harmonic oscillator wave
functions of two different length parameters bin and bout,
one for the inner core orbits and the other for the outer
valence orbits. Using this G matrix the model-space ef-
fective interaction Veff is then derived within the frame-
work of the folded-diagram method. Starting from the
Bonn-A potential we have constructed an effective inter-
action for the 0p shell with a G matrix corresponding
to the space specified by bin = 1.45 fm for the 0s core
orbit and a longer length parameter bout for all the va-
lence orbits (see Sec. II). The second-order core polariza-
tion contribution to the effective interaction turns out to
be largely suppressed when bout is sufficently larger than
bin. We have also calculated some typical third-order di-
agrams and we have found that, in this situation, they
are very small. This shows that the effective interaction
can be derived in a very accurate way using the first- and
second-order G-matrix diagrams. Similar suppression of
core polarization effects was also observed in our TFSM
calculation of electromagnetic observables.

By employing this effective interaction we have per-
formed a shell-model study of nuclei with 6 ≤ A ≤ 9.
To start with, we have analyzed the dependence of the
ground-state binding energies on the value of bout. It
turned out that the binding energies for all the consid-
ered nuclei can be quite satisfactorily reproduced by us-
ing three values of bout. In particular, we have found that
nuclei having about the same nuclear binding energy (rel-
ative to 4He) per nucleon require the same value of bout.
We have then focused attention on the spectra of Li iso-
topes and their mirror nuclei, which were calculated by
using bout = 2.0 fm. A good overall agreement between
theory and experiment is obtained, significant discrepan-
cies existing only for the energies of resonant states with
fairly large widths and for states with T > Tz. As re-
gards the latter, we have shown that they can be better
described by making use of a larger value of bout (see dis-
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cussion in Sec. III). Finally, the electromagnetic observ-
ables, calculated using bare operators, were compared
with experiment. While the dipole moments and the M1
transition rates are in remarkably good agreement with
the measured values, the experimental electric observ-
ables are all underestimated by our calculations. Note
that the theoretical values may be brought into agree-
ment with experiment by using an effective proton charge
eeff

p = 1.5e.
To conclude, we have shown that most properties of the

p-shell nuclei can be satisfactorily explained making use
of a realistic effective interaction within the framework
of the TFSM. As already mentioned in the Introduction,
several 0h̄ω shell-model calculations have been performed
for these nuclei since the mid 1960s, the most popular one
being that of Cohen and Kurath [1]. For all the nuclei
considered in the present paper, the agreement with ex-
periment is overall better that that obtained in Ref. [1].
More gratifying, however, is the fact that our study yields
results which are comparable to, and in same cases even
better than, those obtained from large-basis shell-model
calculations. In fact, on the one hand we have obtained
an agreement with experiment which is quite similar to
that of Ref. [10], where a complete (0+2)h̄ω and an em-
pirical effective interaction were used. On the other hand,
our calculations give a more satisfactory description of
the p-shell nuclei than that provided by the large-basis
no-core shell-model calculations of Ref. [13], which make
use of effective interactions derived from a modern NN
potential. This indicates that in the TFSM approach
most of the effects which are not explicitly taken into
account in the model space are included in the effective
interaction.
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[24] H. Müther and P. Sauer, in Computational Nuclear
Physics 2, ed. by K. Langanke, J.A. Maruhn and S.
Koonin, Springer-Verlag 1992, p. 30.

[25] S. F. Tsai and T.T.S. Kuo, Phys. Lett. B 39, 427 (1972).
[26] M. F. Jiang, R. Machleidt, D. B. Stout, and T. T. S.

Kuo, Phys. Rev. C 46, 910 (1992).
[27] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys.

Rep. 261, 15 (1995).
[28] S. Y. Lee and K. Suzuki, Phys. Lett. B 91, 173(1980).
[29] K. Suzuki and S. Y. Lee, Prog. Theor. Phys. 64,

2091(1980).
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FIG. 1. First- and second-order Q̂-box diagrams.

FIG. 2. Dependence of the second-order core-polarization
diagram G3p1h on bout.

FIG. 3. Experimental and calculated levels of 6Li.

FIG. 4. Experimental and calculated levels of 7Li and 7Be.

FIG. 5. Experimental and calculated levels of 8Li and 8B.
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TABLE I. Experimental and calculated ground-state binding energies (MeV). See text for details.

AZ Expt TFSM(1.45) TFSM(1.75) TFSM(2.00) TFSM(2.25) TFSM(2.50)
6He 29.27 32.84 31.53 30.58 29.76 29.13
6Be 26.92 30.48 29.17 28.22 27.40 26.67
6Li 31.99 35.93 33.70 32.25 30.97 29.93
7He 28.82 33.04 31.20 30.16 29.26 28.56
7B 24.72 28.78 26.94 25.90 25.00 24.30
7Li 39.24 46.57 41.78 38.65 35.95 33.83
7Be 37.60 44.91 40.12 36.99 34.29 32.17
8He 31.41 38.85 35.51 33.53 31.79 30.43
8C 24.78 31.89 28.55 26.57 24.83 23.47
8Li 41.28 51.04 44.80 40.96 37.71 35.16
8B 37.74 47.48 41.24 37.40 34.15 31.60
8Be 56.50 67.41 57.62 51.17 45.57 41.13
9He 30.26 37.31 34.20 32.13 30.03 28.26
9Li 45.34 57.57 49.97 45.27 41.15 37.89
9C 39.03 51.31 43.71 39.01 34.89 31.63
9Be 58.16 72.39 60.98 53.88 46.73 42.88
9B 56.31 70.40 59.08 51.98 44.83 40.98

TABLE II. Experimental and calculated B(E2) and B(M1) values (W.u.), Q moments (emb),
and µ moments (nm) in 6−8Li and 8B.

Nucleus Quantity TFSM Expt.
6Li B(E2; 3+

1 → 1+
1 ) 4.8 16.5 ± 1.3

B(E2; 2+
1 → 1+

1 ) 4.5 6.8± 3.5
Q(1+

1 ) -0.60 −0.83 ± 0.08
µ(1+

1 ) +0.87 +0.82 ± 0.00
7Li B(E2; 1

2

−
1
→ 3

2

−
1

) 5.9 19.7 ± 1.2

B(E2; 7
2

−
1
→ 3

2

−
1

) 2.5 4.3

B(M1; 1
2

−
1
→ 3

2

−
1

) 2.50 2.75 ± 0.14

Q( 3
2

−
1

) -24.4 −40.0± 0.3

µ( 3
2

−
1

) +3.81 +3.26 ± 0.00
8Li B(M1; 1+

1 → 2+
1 ) 2.7 2.8± 0.9

B(M1; 3+
1 → 2+

1 ) 0.21 0.29 ± 0.13
Q(2+

1 ) +24 +32.7± 0.6
µ(2+

1 ) +1.52 +1.65 ± 0.00
8B Q(2+

1 ) +44 64.6 ± 1.5
µ(2+

1 ) +1.15 +1.04 ± 0.00
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