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Abstract

The stationary phase technique is used to calculate asymptotic
formulae for SO(4) Relativistic Spin Networks. For the tetrahedral
spin network this gives the square of the Ponzano-Regge asymptotic
formula for the SU(2) 6j symbol. For the 4 simplex (10j-symbol) the
asymptotic formula is compared with numerical calculations of the
Spin Network evaluation. Finally we discuss the asymptotics of the
SO(3,1) 10j symbol.

1 Introduction

Spin networks have been used to develop discrete models of quantum gravity
called state sum models. The original state sum model due to Ponzano and
Regge [1] used tetrahedral spin networks for the group SU(2) (6j-symbols)
glued together to form a three-dimensional space-time manifold. The state
sum model has a partition function which is determined by summing over
the spin labels or parameters in the 6j-symbols, forming a discrete analogue
of the functional integral for quantum gravity. These models were extended
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to four-dimensional manifolds by considering spin networks based on a four-
simplex (‘10j-symbol’), and simultaneously changing the group to SO(4), and
later, the Lorentz group SO(3,1): the ‘relativistic’ spin networks [3] [12].

A useful tool for analysing the physical content of these models is the
analysis of the asymptotics of the 6j and 10j symbols. This involves deriving
a formula for the behaviour of the values of the spin network when all the spin
labels are simultaneously made large. Ponzano and Regge [1] conjectured a
beautiful formula for the asymptotics of the 6j symbol expressed in terms of
the geometry of the tetrahedron associated to the spin labels. This formula
is essentially the Einstein-Hilbert action for the geometric tetrahedon, thus
making an explicit connection between the state sum model and quantum
gravity, at least in the asymptotic regime. The formula was later proved by
Roberts [2] using the methods of geometric quantization.

The asymptotic analysis for the 10j symbol was begun in [6], which anal-
ysed only some of the contributions in a stationary phase approximation
(the non-degenerate ones, see below). Baez, Christensen and Egan [8] [9]
[10] performed some numerical calculations which gave a different scaling be-
haviour, indicating that the remaining contributions (the degenerate ones)
not analysed in [6] must be important.

In this paper we consider a fuller asymptotic analysis of the SO(4) 10j
symbol, including the degenerate configurations, to give a complete picture of
the asymptotics, thus explaining the numerical results in [10]. Some similar
results to ours were recently obtained independently in [11].

The paper develops some general machinery for evaluating the asymp-
totics of relativistic spin networks. This machinery is applied to two specific
cases: the tetrahedral network, and the 4-simplex (10j symbol). The im-
portance of considering the tetrahedal network is that the result is already
known, since the relativistic tetrahedral spin network (for SO(4)) is just the
square of the SU(2) 6j-symbol. Our asymptotic formula turns out to be ex-
actly the square of the Ponzano-Regge asymptotic formula. Thus this gives
essentially a simpler proof of the Ponzano-Regge formula than that given by
Roberts. An interesting feature of our analysis, carried out using the station-
ary phase approximation to an integral, is that it has both ‘degenerate’ and
‘non-degenerate’ geometrical configurations. In this tetrahedral case, these
two types of configurations have the same amplitude and decay at the same
rate in the asymptotic region.

Moving on to the SO(4) 10j symbol, we apply a similar analysis but
find the degenerate configurations dominate in the asymptotic region with a
slower decay rate; this explains the numerical results of [10]. We analyse the
different types of possible stationary points in detail, giving the corresponding
decay rates for the asymptotics. Some of the types of stationary point occur
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for generic values of the spin labels on the 4-simplex while other types are
non-generic. In some non-generic cases the degenerate configurations no
longer dominate and we identify some of the other configurations which can
dominate the asymptotic formula.

The final section discusses the differences between the SO(4) (Euclidean)
and the SO(3,1) (Lorentzian) 10j-symbol. The stationary points of the Eu-
clidean case all have analogues in the Lorentzian case; in particular there con-
tinue to be non-degenerate stationary points for the Lorentzian 10j-symbol
corresponding to geometric 4-simplexes in Minkowski space with spacelike 3-
dimensional faces. However in the generic case the degenerate configurations
still dominate the asymptotic formula.
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2 Tetrahedron

2.1 Evaluating SO(4) 6j-symbols

We begin by calculating the evaluation of the Relativistic Spin Network
Tetrahedron. The Relativistic Spin Network is the graph shown in figure 1
with edges labelled by half-integer spins.
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Figure 1: Relativistic Spin Network Tetrahedron

The evaluation of this network, a real number, is defined in terms of SU(2)
spin networks by

R

:=
SU(2) SU(2)

SU(2) SU(2) SU(2) SU(2)

.

(1)

In this equation the subscript R indicates a relativistic spin network, and
SU(2) indicates an SU(2) spin network. Labels are omitted from the above
equation but the edges on both SU(2) tetrahedra have the same labels as the
relativistic one on the left hand side. The four theta symbols are formed by
connecting each of the four vertices of the tetrahedron to themselves.



ASYMPTOTICS OF RELATIVISTIC SPIN NETWORKS 5

The definition of the SU(2) 6j-symbol gives

{6j}2
SU(2) =

SU(2) SU(2)∣∣∣∣∣
SU(2) SU(2) SU(2) SU(2)

∣∣∣∣∣
(2)

so that the SU(2) 6j-symbol is related to the relativistic spin network evalu-
ation by

{6j}2
SU(2) = (−1)

∑
k<l 2jkl

R. (3)

Ponzano and Regge gave an asymptotic formula for the 6j-symbol [1].
Using notation {6j} for the value of the 6j-symbol and PR for the Ponzano-
Regge approximation we write {6j} ∼ PR to denote that {6j} is asymptot-
ically equal to PR as all the spins are scaled upwards. Ponzano and Regge
were not too specific about which scalings of the spins the formula should be
valid for. For the formula to be useful it would be necessary to formulate this
scaling in the most general possible way that is compatible with proving the
result. However this paper is somewhat more preliminary as we are interested
in establishing the asymptotic formulae in a restricted set of circumstances
to give an outline of the asymptotic behaviour. The scaling that we use is
to replace 2jkl + 1 everywhere by α(2jkl + 1) for fixed jkl, allowing α → ∞
through values where this makes sense (e.g. when α is an integer).

The asymptotic formula means that limα→∞({6j} − PR)α3/2 = 0. The
Ponzano-Regge formula is as follows

PR =
1√

12πV ′ cos

(∑
k<l

(
jkl +

1

2

)
θkl +

1

4
π

)
(4)

where V ′ is the volume of the tetrahedron with edge lengths j + 1
2
, and θkl

is the angle between the normal vectors to the faces k and l.
Squaring this formula we obtain

PR2 =
1

3πV

(
1 + cos

(∑
k<l

(2jkl + 1) θkl +
1

2
π

))
(5)

where V is the volume of the tetrahedron with edge lengths 2j + 1.
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Notice that PR2 is composed of two parts, a cosine term and a constant
term, both of which have the same amplitude. We call the cosine term
(PR2)cos and the constant term (PR2)const so that

PR2 = (PR2)const + (PR2)cos. (6)

The evaluation of the relativistic spin network can also be computed using
the integral formula [4]

I = (−1)
∑

k<l 2jkl

∫
x∈SU(2)4

∏
k<l

Tr(ρkl(xkx
−1
l )dx (7)

where ρkl is the representation of SU(2) on edge kl and xk is an element of
SU(2). We integrate over four x’s, one at each vertex of the tetrahedral spin
network. The integration uses the Haar measure, normalised to unity. We
calculate I ′ = I(−1)

∑
k<l 2jkl so that I ′ = {6j}2.

In the next sections we will rewrite the integral in such a way that the
stationary phase formula can be used. Each stationary phase point is a
certain configuration for a geometrical tetrahedron (or a generalisation of
this). We will show how the different configurations give the two terms in
equation (6).

2.2 Kirillov Character Formula

We begin by rewriting (7) using the Kirillov character formula.

Tr(ρkl(xkx
−1
l )) =

(2jkl + 1)rkl

sin(rkl)

∫
ykl∈S2

ei(2jkl+1)ξkl.ykl
dy

4π
(8)

where ξkl is an element of the Lie algebra of SU(2) defined by

exp(ξkl) = xlx
−1
k , (9)

and rkl = |ξkl|. The ambiguity in the definition of ξ is fixed by requiring
rkl = |ξkl| to be the angle between xk and xl thought of as vectors in S3 ∼=
SU(2). This gives a unique ξ for all angles 0 ≤ r < π. The case r = π, when
two x’s are anti-parallel, requires special treatment, as the Kirillov formula
does not work directly there. One could use a simple modification of the
Kirillov formula which would work in a neighbourhood of r = π. However
consideration of the cases in which r = π can be effectively bypassed, as
discussed below.
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Carrying out the integral in equation (8) gives the Weyl character formula
used by Barrett and Williams [6] to find the non-degenerate stationary points.

Tr(ρkl(xkx
−1
l )) =

sin((2jkl + 1)rkl)

sin(rkl)
(10)

It is important here to use the Kirillov formula, rather than the Weyl formula,
as it enables us to evaluate the contribution from geometries where rkl = 0.

S

S

x

x

2

3

3

2

23ξ

Figure 2: Interpretation of the Kirillov Character formula

Considering elements xk of SU(2) as vectors in S3, and replacing 2jkl + 1
by α(2jkl + 1) to examine the asymptotics when α →∞, we obtain

I ′ =
1

(4π)6(2π2)4
(11)

∫
x∈(S3)4

∫
y∈(S2)6

(∏
k<l

α(2jkl + 1)rkl

sin(rkl)

)
eiα

∑
k<l(2jkl+1)ξkl.ykldydx

We call the exponent
∑

k<l(2jkl + 1)ξkl.ykl in equation (11) the action, and
denote it by S.

We consider the integration to be performed in two parts, firstly fixing
x1 to be at the north pole of S3, x2 to be in a plane containing x1, and x3
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to be in a 3 dimensional hyperplane containing the plane. The second part
is to integrate over the symmetry of the integrand (which only depends on
relative angles), rotating all the x’s and y’s at once.

The symmetry group SO(4) is 6 dimensional, the original integration was
over 24 dimensions, so the first part of the integral is over 18 dimensions.
Integrating over the symmetries will multiply the result by a volume factor.

2.3 Method of Stationary Phase

We use the method of stationary phase [5] to calculate the asymptotic contri-
butions to the first part of the integral. The general stationary phase formula
is∫

a(x)eikφ(x)dx =

(
2π

k

)n/2 ∑
x|dφ(x)=0

a(x)eikφ(x) eiπsgn(H)/4√| detH(x)| + O(k−n/2−1)

(12)

where H(x) is the Hessian matrix for φ(x), and sgn(H) is the number of
positive eigenvalues minus the number of negative eigenvalues of H .

Writing I ′a for the asymptotic approximation to I ′ i.e. I ′ ∼ I ′a, this gives

I ′a =
24π4

(4π)6(2π2)4

(
2π

α

)18/2 ∑
x,y|dS=0

(∏
k<l

α(2jkl + 1)rkl

sin(rkl)

)
ei(αS+πsgn(H)/4)√| detH|

(13)

where 24π4 is the volume of the space we have quotiented out of the integral
to remove the SO(4) symmetry. The assumption is that in the remaining
integral the stationary points are discrete. Notice that all terms in this
formula will scale as α−3.

We must find the stationary points of the action

S =
∑
k<l

(2jkl + 1)ξkl.ykl (14)

with respect to varying xi and ykl, remembering that each ξkl depends on the
x’s via equation (9).

There are a number of types of solutions for which the action is stationary.
Firstly the solutions can be classified by the dimension of the linear subspace
which is spanned by the unit vectors xi. Secondly, there is a qualitative
difference between solutions for which no pair of these vectors are parallel,
i.e. xi 6= ±xj for all i 6= j, and solutions in which at least one pair are
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parallel. The former will be called ‘non-parallel’ solutions and the latter
‘partly parallel’ if not all xi are parallel, and ‘totally parallel’ if xi = ±xj for
all i, j. Both of these classifications measure the amount of degeneracy of
the solutions, and there is some relation between them. In the two examples
considered below, the highest possible dimension solutions for a given spin
network are necessarily non-parallel. These solutions will be called ‘non-
degenerate’. At the other end of the scale, the totally parallel solutions are
clearly the same as the one-dimensional solutions.

For the parallel solutions, one only needs consider the cases when xi = xj .
Replacing xk by −xk has a very simple effect on the value of the integrand
in (7): it is multiplied by the factor

(−1)
∑

l6=k 2jkl.

The factor is equal to 1 if the parity admissibility condition is satisified, and
−1 otherwise. This means that if the admissibility condition is not satisfied,
then the contributions from stationary points at xk and −xk always cancel
and so the asymptotic formula always gives zero. If the condition is satisfied
then one only need consider one of these two possibilities, and one can always
choose xi = xj rather than xi = −xj . Thus one never needs to do a detailed
calculation of the contribution of stationary points for which the angle r = π.

2.4 Results

The following sections show that whenever the spins are the edge lengths of
a Euclidean tetrahedron the stationary phase formula has discrete stationary
points which are one of two types, either non-degenerate, or one-dimensional.
Accordingly, the stationary phase formula can be written

I ′a = Cnon−deg + C1−d.

The contribution from non-degenerate configurations, Cnon−deg, gives exactly
the oscillatory part of the Ponzano-Regge squared formula

Cnon−deg = (PR2)cos. (15)

The contribution from one-dimensional configurations, C1−d, gives exactly
the constant part of the Ponzano-Regge squared formula

C1−d = (PR2)const. (16)

Putting these two results together, this shows that the asymptotic formula
for the relativistic spin network tetrahedron agrees exactly with the square
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of the Ponzano-Regge formula whenever we have a tetrahedron which can be
embedded into 3-dimensional Euclidean space,

I ′a = PR2. (17)

2.5 Non-parallel configurations

Varying the action with respect to the y’s we find that the action is stationary
when ykl is parallel or antiparallel to ξkl. In other words,

ykl = εkl
ξkl

|ξkl| , (18)

with εkl = ±1.
Varying the action with respect to the x’s, and using a Lagrange multiplier

λi for the constraint xi.xi = 1 we obtain four equations, one for each face of
a tetrahedron.

ε12(2j12 + 1)x2 + ε13(2j13 + 1)x3 + ε14(2j14 + 1)x4 =λ1x1

ε12(2j12 + 1)x1 + ε23(2j23 + 1)x3 + ε24(2j24 + 1)x4 =λ2x2

ε13(2j13 + 1)x1 + ε23(2j23 + 1)x2 + ε34(2j34 + 1)x4 =λ3x3

ε14(2j14 + 1)x1 + ε24(2j24 + 1)x2 + ε34(2j34 + 1)x3 =λ4x4

(19)

The equations show that there is at least one linear relation between the
x’s and so require the x’s to lie in a 3-dimensional hyperplane. Taking vkl to
be the unit vector in the direction xk × xl (using the vector cross product in
the 3d hyperplane) gives

ε12(2j12 + 1)v12 + ε13(2j13 + 1)v13 + ε14(2j14 + 1)v14 =0

−ε12(2j12 + 1)v12 + ε23(2j23 + 1)v23 + ε24(2j24 + 1)v24 =0

−ε13(2j13 + 1)v13 − ε23(2j23 + 1)v23 + ε34(2j34 + 1)v34 =0

−ε14(2j14 + 1)v14 − ε24(2j24 + 1)v24 − ε34(2j34 + 1)v34 =0

(20)

2.5.1 Three-dimensional configurations

Now consider the case of a three-dimensional solution. Setting Vkl = εkl(2jkl+
1)vkl, the above equations show that the Vkl are the edge vectors of a tetra-
hedron with edge lengths 2jkl + 1. Each equation describes the face of a
geometrical tetrahedron as shown in figure 3. Notice that the four equations
are not linearly independent - the sum of the first three gives the fourth
equation.
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Figure 3: Non-degenerate stationary point

Each xi is a normal vector to a face of the tetrahedron; it could be inward
or outward pointing. Let ni be the outward normal to the i-th face. Then
xi = aini with ai = ±1.

In figure 3 the edge vectors for the tetrahedron are given by the expression
±(2jkl +1)nj ×nk = ±(2jkl +1)ajakvjk, with ± indicating one overall choice
of sign. This means that, for figure 3, the ε are determined by εkl = λakal,
with λ = ±1. This means that many choices of εkl give no solutions at all.

Every stationary point is of this form. Consider any set of x’s and ε’s
satisfying equations (20), then this corresponds to a geometric tetrahedron.
By acting on the x vectors with an element of SO(4) this tetrahedron can be
rotated to correspond to the tetrahedron drawn in figure 3, possibly with all
of the arrows indicating the directions of the V reversed.

Given one stationary point {xi, εkl} we can generate all of the others using
combinations of two operations. The first operation is to swap the sign of
one or more of the x’s. Since x1 is fixed at the north pole we are not at
liberty to swap its sign. For σi = ±1,

x1 → x1

x2 → σ2x2

x3 → σ3x3

x4 → σ4x4

εkl → σkσlεkl.
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The second operation is to simultaneously swap the sign of all of the ε
whilst leaving the x unchanged

xi → xi

εkl → −εkl

If
∑

vertex jkl is an integer, each of the 8 stationary points related by the
first operation gives the same contribution to the integral. The stationary
points which are related to these by the second operation give the complex
conjugate contribution.

If
∑

vertex jkl is not an integer (i.e. is an odd half-integer), the stationary
points for the x’s cancel and there is no contribution from the non-degenerate
stationary points. This corresponds to the admissibility condition for spin
networks. For a spin network to be called admissible the j’s labelling the
edges incident to each vertex must sum to an integer (and satisfy triangle
inequalities). The admissible spin networks are the only ones with non-
zero evaluation. If the admissibility condition is not met there will be no
stationary point contribution. The stationary phase calculations also give the
triangle inequalities for spin networks, since to be able to form the triangular
faces of a tetrahedron each spin in a face must not be greater than the sum
of the other two.

The Hessian is an 18 × 18 matrix with components Hkl = ∂2S
∂uk∂ul

where
u1 . . . u18 are the coordinates we are integrating over. The Hessian in the
ε’s all positive case has 2 positive eigenvalues and 16 negative eigenvalues.
Hence sgn(H) = −14. The ε’s all negative case has sgn(H) = 14.

These contributions will combine to give an asymptotic expression of the
form

Cnon−deg =
A

2

(
ei(
∑

k<l(2jkl+1)rkl−14π/4) + ei(−∑k<l(2jkl+1)rkl+14π/4)
)

= A cos

(∑
k<l

(2jkl + 1)rkl + π/2

)
(21)

The determinant of the Hessian can be evaluated using computer algebra
for any particular 6j-symbol. The amplitude of the contribution has been
calculated for a large number of cases and compared with the amplitude of
the cosine term in the square of the Ponzano Regge formula. Examining a
large number of cases, we find that they are always equal:

A =
1

3πV
. (22)
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More precisely, the amplitudes agree exactly for all Euclidean tetrahedra,
which are refered to as type I in Ponzano-Regge [1]. Ponzano and Regge’s
type II and III tetrahedra, the Lorentzian and transition cases do not have
an analogue here. However we have been unable to prove this formula in
general, as the algebraic expressions for the determinant of the Hessian are
too large.

The final result is

Cnon−deg =
1

3πV
cos

(∑
k<l

(2jkl + 1)rkl + π/2

)
. (23)

2.5.2 Non-parallel 2-dimensional configurations

The only lower dimensional non-parallel configurations possible are where all
the x’s lie in a 2 dimensional hyperplane. If the admissibility conditions for
the tetrahedral spin network are satisfied then there are no 2 dimensional
solutions to the stationary phase equations (20).

If the admissibility conditions are not satisfied then the contributions for
different ε’s exactly cancel. Hence the lower dimensional configurations do
not contribute to the asymptotic formula.

2.6 One-dimensional configurations

The one-dimensional configurations involves all x’s parallel or antiparallel.
As noted above, one need only consider the case when all x’s are actually
equal, the other cases giving the same asymptotics.

Returning to the action (14) if we vary the y’s the action is stationary in
all cases. If we vary the x’s we find that for the action to be stationary

(2j12 + 1)y12 + (2j13 + 1)y13 + (2j14 + 1)y14 =0

−(2j12 + 1)y12 + (2j23 + 1)y23 + (2j24 + 1)y24 =0

−(2j13 + 1)y13 − (2j23 + 1)y23 + (2j34 + 1)y34 =0

−(2j14 + 1)y14 − (2j24 + 1)y24 − (2j34 + 1)y34 =0

(24)

This means the y’s are parallel to the edge vectors of the same tetrahedron
we found in the non-degenerate case. Indeed, setting Ykl = (2jkl + 1)ykl we
now have the Ykl as edge vectors of a tetrahedron with edge lengths 2j + 1,
as in figure 4 (or with the direction of the arrows swapped)

There will only be a solution to the stationary phase equations if the j’s
satisfy the triangle inequalities. There are 23 stationary points of this type
for the x’s (since we can choose each of x2 . . . x4 to be parallel or antiparallel
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Figure 4: Degenerate stationary point

to x1) and 2 sets of y’s for each (the vectors could be as drawn in figure
4 or reversed). The contributions are identical if the parity admissibility
condition is satisfied, and exactly cancel if not.

The Hessian for the all x’s parallel case has 9 positive and 9 negative
eigenvalues. Hence sgn(H) = 0. These contributions will be non-oscillating,
since S = 0 for one-dimensional configurations.

The amplitude of the contribution has been calculated for a number of
cases, and compared with the amplitude of the constant term in the square
of the Ponzano Regge formula. Again we find that in all cases

A =
1

3πV
. (25)

Denoting the contribution from one-dimensional configurations by C1−d

C1−d =
1

3πV
(26)

2.7 Higher-dimensional parallel configurations

There is never any contribution from partly parallel configurations where
some but not all of the x’s are parallel. Again if the admissibility conditions
for the tetrahedral spin network are satisfied then there are no solutions
to the stationary phase equations. If the admissibility conditions are not
satisfied then the contributions for different ε’s exactly cancel.



ASYMPTOTICS OF RELATIVISTIC SPIN NETWORKS 15

3 4-Simplex

3.1 Evaluating SO(4) 10j-symbols

We now repeat the previous calculation for the Relativistic Spin Network
4-simplex, or SO(4) 10j-symbol.

1

2 4

3

5

Figure 5: Relativistic Spin Network 4 Simplex

We use the same integral formula, now with 5 vertices and 10 edges.

I = (−1)
∑

k<l 2jkl

∫
x∈SU(2)5

∏
k<l

Tr(ρkl(xkx
−1
l )dx (27)

Set I ′ = (−1)
∑

k<l 2jklI to simplify the equation. Replacing 2jkl + 1 by
α(2jkl + 1) to investigate the asymptotics, and using the Kirillov character
formula we obtain

I ′ =
1

(4π)10(2π2)5
(28)

∫
x∈(S3)5

∫
y∈(S2)10

(∏
k<l

α(2jkl + 1)rkl

sin(rkl)

)
eiα

∑
k<l(2jkl+1)ξkl·ykldydx

For the 10j symbol many of the stationary points are no longer points
but higher dimensional manifolds. We integrate over this space of stationary
points as for the symmetry group in chapter 2. Each degree of freedom (i.e.
dimension) in the stationary phase solution manifold reduces the size of the
Hessian by 1, and hence changes the scaling behaviour of the asymptotic
contribution by α

1
2 . We are integrating over 35 dimensions (15 for the x
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variables and 20 for the y variables), and there are always 6 symmetry degrees
of freedom from SO(4). If there are an additional n degrees of freedom in
the stationary phase solution then the amplitude of the contribution will be

α− 35−6−n
2 α10 = α− 9−n

2 (29)

where the factor of α10 comes from the product in the integral.
The stationary points are the stationary points of the action

S =
∑
k<l

(2jkl + 1)ξkl · ykl. (30)

We consider the contribution from non-degenerate, lower dimensional,
and parallel configurations.

3.2 Results

The following sections show that the stationary points in the asymptotic for-
mula are one of a number of types. For a generic set of spins the scaling be-
haviour of these types are as follows. The one-dimensional stationary points
give a contribution which scales as α−2. The four- and three-dimensional
non-parallel stationary points give contributions which scale as α−9/2, al-
though it is possible that in some cases one or both of these types may be
absent (due to inequalities which the spins must satisfy). The partly par-
allel stationary points have only one generic contribution (again subject to
inequalities). This is a three-dimensional stationary point with just two of
the x variables parallel. Again this scales as α−9/2.

This means that that asymptotically, the evaluation of the 10j symbol
is dominated by the degenerate one-dimensional stationary points, whose
contribution in general decays as a constant times α−2,

I ′a ∼ Kα−2. (31)

This is in contrast to the 6j symbol case where the contribution from the
degenerate and non-degenerate stationary points had equal amplitude.

The are some non-generic cases of spins where this behaviour can differ,
as mentioned in the text below. For example, at the limit of admissibility,
the scaling of the one-dimensional configurations can increase to α−7/2 or
this type may be absent; in these cases it is expected that the dominant
contribution will come from a non-generic partly-parallel configuration. For
one or two vertices at the limit of admissibility, these configurations give an
asymptotic contribution which scales as α−3. This agrees with the numerical
results obtained by Baez, Christensen and Egan[10]. Other examples of non-
generic behaviour are detailed in the following sections.
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3.3 Non-degenerate 4 dimensional configurations

First we consider non-degenerate solutions where the xi have a 4 dimensional
span, following [6].

Varying the action with respect to the y’s we find that the action is
stationary when ykl is parallel or antiparallel to ξkl. Let εkl = ±1 then

ykl = εkl
ξkl

|ξkl| (32)

The action at the stationary points in the y’s becomes

S =
∑
k<l

εkl(2jkl + 1)rkl (33)

A set of 5 non-degenerate vectors with a 4 dimensional span determine a geo-
metric 4-simplex up to scale [3]. For a geometric 4-simplex we have Schläfli’s
identity ∑

k<l

Akl dφkl = 0 (34)

where φkl are the angles between the outward normal vectors nk, nl to the
tetrahedra k and l of the 4 simplex. The Akl are the areas of the triangles of
a geometric 4-simplex determined by the φkl (up to overall scaling of the 4
simplex). Varying the action, using a Lagrange multiplier λ for the constraint
equation (34), gives

dS =
∑
k<l

εkl(2jkl + 1) drkl = λ
∑
k<l

Akl dφkl (35)

If we take the x’s to be the outward normals to the tetrahedra of the
4 simplex then rkl = φkl. If an x is swapped to be an inward normal then
rkl = π − φkl; hence drkl = −dφkl for all r’s involving the inward x.

Taking nk to be the outward normal, and introducing variables ak which
are +1 if xk is outward and −1 if xk is inward pointing, we have xk = aknk.
For each triangle we obtain

εkl(2jkl + 1) = λakalAkl (36)

Taking λ = ±1 to fix the overall scale of the A’s we see that Akl = (2jkl+1)
and εkl = λakal for each k, l. Hence at a non-degenerate stationary point the
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rkl are the angles between the inward or outward pointing normals to a 4
simplex with areas (2j + 1).

If the parity admissibility conditions (sum of j’s at every vertex is an
integer) are satisfied for the 10j-symbol, each solution for λ = +1 gives the
same contribution, and each λ = −1 solution gives the complex conjugate
contribution. These terms will combine to give a cosine contribution to the
integral. There will be 24 distinct stationary points for the x’s (25

2
because

there are 5 a’s which can each be ±1 but swapping the sign of them all
corresponds to −I ∈ SO(4)) and 2 possible sets of ε’s for each, coming from
the choice of λ. Changing λ changes the sign of all of the ε’s, swapping the
direction of all of the ykl.

If the parity admissibility conditions are not satisfied the terms will cancel
giving no net contribution. Inequalities analogous to the triangle inequalities
for vertices in the 6j-symbol will occur in this case because to be able to
form a tetrahedron with four triangles of area (2j + 1), each area must not
be greater than the sum of the other three.

There may in general be more that one geometric 4 simplex with a given
set of areas, for example see Tuckey’s example in [14] which is a Euclidean
4-simplex for t < 8/3. When this occurs each possible configuration will
have a contribution to the asymptotic formula. From one solution to the
stationary phase equations swapping x4 and x5 will yield another solution
[11]. In general these are the only pair of vectors which can be interchanged
like this since x1 . . . x3 are constrained to lie in hyperplanes.

Terms from the Hessian and the integrand show that the amplitude of
the contribution from the non-degenerate stationary points will scale as α− 9

2 .

3.3.1 Example: Regular 4-simplex

For the regular 4 simplex with α(2jkl+1) = β for all k, l we get a contribution
Cnon−deg from non-degenerate geometric 4-simplexes. A corollary of Bang’s
theorem [7] tells us that there is only one geometric 4 simplex with all areas
equal [11]. The corresponding contribution has been calculated by computing
the value of the non-exponential part of the integrand and the Hessian at the
stationary points.

Cnon−deg =

(
(24)3

3
4 5

1
4 β−

9
2

25π
3
2

)
cos

(
10β cos−1(−1

4
) +

π

4

)
(37)
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3.4 One-dimensional configurations

For this case we take all the x’s to be parallel or antiparallel. Each of the
24 cases has an identical contribution to the integral. The action is always
stationary with respect to varying the y’s in this case. Varying the action
with respect to the x’s gives five equations in the y variables.

(2j12 + 1)y12 + (2j13 + 1)y13 + (2j14 + 1)y14 + (2j15 + 1)y15 =0

−(2j12 + 1)y12 + (2j23 + 1)y23 + (2j24 + 1)y24 + (2j25 + 1)y25 =0

−(2j13 + 1)y13 − (2j23 + 1)y23 + (2j34 + 1)y34 + (2j35 + 1)y35 =0

−(2j14 + 1)y14 − (2j24 + 1)y24 − (2j34 + 1)y34 + (2j45 + 1)y45 =0

−(2j15 + 1)y15 − (2j25 + 1)y25 − (2j35 + 1)y35 − (2j45 + 1)y45 =0

(38)

Setting Ykl = (2jkl + 1)ykl these equations correspond to the vector dia-
gram in figure 6. The front, top, bottom, left and right faces each correspond
to a stationary phase equation above. The back face is added in to complete
the figure.

Y

Y

Y
Y

Y

Y

Y

Y23

13

Y

15Y

25

12

24Y

13
35

Y3445

24
14

Figure 6: 4-simplex totally parallel stationary phase point

Generally the y vectors subject to the above set of equations will have
8 remaining degrees of freedom. This is because there are 20 y variables
and 12 independent equations. These 8 degrees of freedom consist of 3 from
rotations in SO(3) and 5 deformations of the above ‘cube’. To see that there
are 5 degrees of freedom in deforming the ‘cube’ notice that there is one angle
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to determine the geometry of the back face, then 2 angles each will determine
the directions of two diagonally opposite vectors coming from the back face
to the front face (y14 and y23 say). Once these choices have been made the
rest of the vectors are fixed, up to a finite set of discrete possibilities. There
will be certain inequalities which must be satisfied to ensure that the figure
can be embedded in Euclidean space. Thus the parallel stationary point
contribution is of the form α− 9−5

2 = α−2.

For a stationary phase solution of this type to exist and for the contribu-
tions from parallel and antiparallel terms to add up requires satisfaction of
the admissibility conditions for the 10j-symbol.

These results agree with numerical calculations of 10j symbols carried
out by Baez, Christensen and Egan. In [8] and [10] numerical values of the
10j symbols are calculated and discussed. They see 10j symbols decaying as
O(α−2).

3.5 Partly parallel configurations

We must consider the case where some but not all of the x’s are parallel.
There are a number of ways this may happen as there can be one or two
directions each parallel to two or more vectors. Unlike the 6j-symbol, for
the 10j-symbol contributions may come from configurations of these types,
depending on the labelling by spins.

The only generic case is when just two of the x vectors are parallel. Then
the x span 3 dimensions and are the normal vectors to a tetrahedron. For
this stationary point to exist inequalities between the spins must be satis-
fied so that the tetrahedron may be embedded in 3 dimensional Euclidean
space. The x and y vectors are uniquely determined by the stationary phase
equations so there are no degrees of freedom. The contribution from this
configuration will scale as α− 9

2 .

Non-generically, with two vectors parallel, if the spins satisfy a set of
particular equalities, it is possible for one of the stationary phase equations
to become trivial, allowing up to 4 degrees of freedom. For x1 and x2 parallel
this non-generic stationary point occurs only if

j13 =j23

j14 =j24

j15 =j25

j34 =j35 =j45.

(39)

This gives a contribution scaling as α− 5
2 .
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If two pairs of x vectors are separately parallel there can be a stationary
point only if the spins satisfy certain equalities. If x1 and x2 are parallel,
and x3 and x4 are separately parallel then this stationary point occurs only
if there exists a set of ε such that the j’s satisfy

j15 = j25

j35 = j45 (40)

ε13(2j13 + 1) + ε14(2j14 + 1) + ε23(2j23 + 1) + ε24(2j24 + 1) = 0.

The x vectors span 3 dimensions and have up to 3 degrees of freedom, whilst
the y’s are fixed. The contribution from this configuration, when it occurs,
will scale as α−3.

Three x vectors parallel can be a stationary point only as a special case
of the two-dimensional configuration. The spins must satisfy a number of
equalities so this is not a generic contribution. If there is no 2 dimensional
stationary point with the x’s non-parallel then the contribution from this
configuaration when it exists will be of order α− 7

2 . If there is a 2 dimensional
non-parallel stationary point then this configuration will just be part of that
stationary point. The y’s are uniquely determined by the stationary phase
equations. The same happens if three x vectors are parallel and the remaining
pair of x vectors are separately parallel, however the contribution when there
is no 2 dimensional stationary point will be of order α−4.

Finally, four of the x vectors may be parallel. This is a non-generic
stationary point since there is an equality between the spins. If x1, x2, x3, x4

are parallel then this stationary point occurs only if there exist a set of ε such
that

ε15(2j15 + 1) + ε25(2j25 + 1) + ε35(2j35 + 1) + ε45(2j45 + 1) = 0. (41)

There are up to 2 degrees of freedom in the y variables and one degree of
freedom in the x variables, so the contribution from this stationary point will
generally scale as α−3.

3.6 Non-parallel lower dimensional configurations

There may also be stationary phase points for configurations in which the xi

are not parallel but lie in a hyperplane of dimension less than 4.

3.6.1 3 dimensional configurations

Consider configurations where xi lie in a 3 dimensional hyperplane but no
pairs are parallel.
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Using the vector cross product in the 3 dimensional hyperplane we write
vkl for the unit vector in the direction xk×xl, and Vkl = εkl(2jkl +1)vkl. The
stationary phase equations show that ykl = εklξkl and

V12 + V13 + V14 + V15 =0

−V12 + V23 + V24 + V25 =0

−V13 − V23 + V34 + V35 =0

−V14 − V24 − V34 + V45 =0

−V15 − V25 − V35 − V45 =0

(42)

Notice that these equations are very similar to those obtained for the
totally parallel case in (38). However since vkl is orthogonal to xk for each
l we see that each equation in (42) relates vectors which lie in a plane. The
geometric figure differs from the totally parallel case because here all its faces
are planar. The geometry is more constrained than in the totally parallel
case.

The geometric interpretation of a solution to these equations is a degen-
erate case of a 4 simplex in which every triangle shares a common direction.

The figure in the totally parallel case had 5 degrees of freedom. Now we
are looking at the same figure with the additional constraint that each of 5
faces must be planar. Therefore we expect that when solutions exist to these
equations there will be no further degrees of freedom available, and that
the contribution to the integral will be α− 9

2 multiplied by some oscillating
function of modulus 1.

3.6.2 2 dimensional configurations

Consider configurations where xi are not parallel but lie in a 2 dimensional
hyperplane. The unit bivectors formed from the xi will be equal (up to sign).
Write δkl for the sign of xk ∧ xl relative to x1 ∧ x2 (δ12 = 1).

Then the stationary phase equations show that ykl = εkl
ξkl

|ξkl| and

ε12(2j12 + 1)δ12 + ε13(2j13 + 1)δ13 + ε14(2j14 + 1)δ14 + ε15(2j15 + 1)δ15 =0

−ε12(2j12 + 1)δ12 + ε23(2j23 + 1)δ23 + ε24(2j24 + 1)δ24 + ε25(2j25 + 1)δ25 =0

−ε13(2j13 + 1)δ13 − ε23(2j23 + 1)δ23 + ε34(2j34 + 1)δ34 + ε35(2j35 + 1)δ35 =0

−ε14(2j14 + 1)δ14 − ε24(2j24 + 1)δ24 − ε34(2j34 + 1)δ34 + ε45(2j45 + 1)δ45 =0

−ε15(2j15 + 1)δ15 − ε25(2j25 + 1)δ25 − ε35(2j35 + 1)δ35 − ε45(2j45 + 1)δ45 =0

(43)
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These configurations will contribute to the integral whenever the above
set of equations can be satified. This only happens for special values of j;
generic 10j-symbols will not have stationary points of this type.

For example of when this type of stationary point does occur consider
the regular 10j-symbol with all j’s equal. Arrange the x vectors in a plane so
that moving clockwise round the vectors they are in ascending order. Then
all bivectors are equal and every δ is +1.

Choosing ε13 = −1, ε14 = −1, ε25 = −1, ε35 = −1, and all other ε’s equal
to +1 gives one solution to the stationary phase equations.

We have four degrees of freedom to choose the angles from x1 to the
other four xi in the plane, and for all of these configurations the action will
be stationary. The action will be zero for all of these configurations, so the
contribution to the integral will be a constant multiplied by α− 5

2 .

3.7 Limit of admissibility

A vertex of a spin network is said to be at the limit of admissibility if the
spins labelling the edges incident to it only just satisfy one of the admissibility
inequalities for that vertex. For a vertex of a 4-simplex one of the spins is
equal to the sum of the other three, for example

j12 = j13 + j14 + j15. (44)

At the limit of admissibility the behaviour of the stationary point equa-
tions is typically different to the generic behaviour outlined above. However
with the scaling given by 2j + 1 = α(2J + 1) for some constant J , this is
not apparent because the scaling does not preserve the condition (44). Thus
the only way to investigate the behaviour at the limit of admissibility in the
asymptotic limit is to use a different scaling, namely

j = αJ

with constant J and α → ∞. The effect this has on the stationary phase
formalism is to change the action (the part multiplying α) to

S =
∑
k<l

(2jkl)ξkl · ykl, (45)

instead of (30). Consequently the stationary point equations are the same
but with (2j + 1) everywhere replaced with 2j. The following considera-
tions indicate how the above types of stationary point behave at the limit of
admissibility with this alternative scaling.
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The asymptotics of the one-dimensional configurations is modified in this
situation. If one or more vertices of the 10j symbol are at the limit of ad-
missibility the equation corresponding to that vertex will require the y’s to
be parallel. If only one vertex is at the limit of admissibility (see figure
7) then the degrees of freedom available in deforming the cube will drop
in the asymptotic limit from 5 to 2. The contribution in this case will be
α− 9−2

2 = α− 7
2 , and may no longer be the leading contribution to the limit.
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Figure 7: 4-simplex totally parallel stationary phase point - vertex 1 at limit
of admissibility

If more than one vertex is at the limit of admissibility there will in general
be no solutions to the stationary phase equations with all x parallel.

For the partly-parallel configuration with x1 and x2 parallel the equations
(39) show that if vertex 1 is at the limit of admissibility then vertex 2 must
also be. This stationary point is expected to give the leading-order contri-
bution to the asymptotic formula of α−3 in the case where two vertices are
at the limit of admissibility. This agrees with the numerical results in [11].

If two pairs of x vectors are separately parallel, the equations are com-
patible with two vertices at the limit of admissibility but the contribution
decays as α− 7

2 and so this case does not give the leading contribution to the
asymptotic formula.

With four x vectors parallel, the stationary equations (41) become

ε15j15 + ε25j25 + ε35j35 + ε45j45 = 0 (46)
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with this scaling. Some choices of ε reproduce the limit of admissibility
condition for vertex 5. This gives a term of order α−3 in the case of one
vertex at the limit of admissibility. This is the leading order contribution,
again agreeing with the numerical evidence in [11]. The contribution will die
off more quickly if more than one vertex is at the limit of admissibility.



26 JOHN W BARRETT CHRISTOPHER M STEELE

4 Lorentzian 10j Symbol

4.1 Evaluating SO(3,1) 10j-symbols

In this section the relativistic spin networks for the Lorentz group SO(3, 1)
are analysed in a similar fashion to the Euclidean case. In the definition
one replaces constructions related to SO(4) with the analogous concepts for
SO(3, 1). In particular, the spin labels for the Lorentz group are non-negative
real numbers. The label for the kl-th edge is denoted pkl. There is an inte-
gral formula for SO(3, 1) spin networks [12] called the regularized evaluation,
which takes the following form for the 10j-symbol (5 vertices and 10 edges).
This integration is carried out over Hyperbolic space H3 (the three dimen-
sional subspace x.x = −1 of − + ++ signature Minkowski space), instead
of S3 for the SO(4) case studied previously. The distance rkl between two
variables xk, xl ∈ H3 is defined by cosh rkl = −xk · xl. The evaluation is

I =
1

(2π2)4

∫
x∈(H3)4

∏
k<l

sin(pklrkl)

sinh(rkl)
dx2dx3dx4dx5 (47)

Again there is a vector x for each vertex of the spin network, and x2 . . . x5 are
integration variables. For this formula, x1 is fixed at (1, 0, 0, 0), removing a
symmetry which would otherwise multiply the integral by the infinite volume
of hyperbolic space. Note that the formula in [12] for the evaluation has
been multiplied by

∏
k<l pkl so that the analogy with the previous sections is

clearer.
Given two points xk and xl in H3, it is possible to define a vector tangent

to xk which indicates the position of xl. Define ξkl to be the initial velocity
of the geodesic γ(t) which has endpoints γ(0) = xk and γ(1) = xl. Then
|ξkl| = rkl, the distance between xk and xl. With this definition, ξkl ∈ TH3

xk
.

However it is possible to identify all of these tangent spaces if desired using
an appropriate trivialisation of the tangent bundle.

Using the Kirillov formula

sin(pklrkl) = pklrkl

∫
S2

eipklξkl.ykl
dykl

4π

and replacing pkl by αpkl to effect the scaling gives

I =
1

(2π2)4(4π)10∫
x∈(H3)4

∫
y∈(S2)10

∏
k<l

αklpklrkl

sinh(rkl)
eiα

∑
k<l pkl(ξkl.ykl)dydx2dx3dx4dx5. (48)



ASYMPTOTICS OF RELATIVISTIC SPIN NETWORKS 27

We use the stationary phase method as before to examine the asymptotics
as α → ∞. It is necessary to find the stationary points of the action S =∑

k<l pkl(ξkl.ykl) with respect to variations in x and y.

4.2 Results

The stationary points can be classified in the same way as for the SO(4)
case. The stationary phase equations for SO(3, 1) are more or less exactly
the same as for SO(4), except the vectors are in Minkowski space rather than
four-dimensional Euclidean space. One qualitative difference is that the xi

are future-pointing unit timelike vectors and so the symmetry xi 7→ −xi is
absent. Nevertheless there exist non-degenerate, 4-dimensional, stationary
points as demonstrated in detail below. These correspond to 4-simplexes in
Minkowski space in which all tetrahedral faces are spacelike. A new feature
is that some of these faces are future-pointing and some are past pointing.
However the scaling behaviour of these stationary points is exactly the same
as for the SO(4) case. Similary the other generic cases of stationary points
exist in the same way and exhibit exactly the same scaling as for SO(4).
In particular, the one-dimensional stationary points again scale as α−2 and
again dominate the generic configuration in the asymptotic limit.

A new feature in the case of non-generic spins is the possibility of station-
ary points lying on the boundary of hyperbolic space. These will correspond
to the possibility of tetrahedral faces of the geometric 4-simplex which is null.
Clearly null tetrahedra cannot occur in the SO(4) case, where vanishing 3-
volume implies that a tetrahedron is degenerate. However we do not analyse
this interesting possibility in any further detail here.

For most of the types of stationary point the equations are the same as
for the SO(4) case, and so they are not repeated here. The one case which
is analysed in detail is the non-degenerate case in the next section.

4.3 Non-degenerate 4-dimensional configurations

Consider configurations where the xi are non-parallel and span 4 dimensions.
Varying the action with respect to the y’s we find that the action is

stationary when ykl is parallel or antiparallel to ξkl. Let εkl = ±1 then

ykl = εkl
ξkl

|ξkl| (49)

The action at the stationary points in the y’s becomes

S =
∑
k<l

εklpklrkl (50)
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To examine the contribution from non-degenerate stationary points we need
a Schläfli identity for Lorentzian 4-simplexes in which every 3-dimensional
face is spacelike. The normal vectors to these faces are therefore timelike and
we need a definition of the angle between them.

Definition: Lorentzian angle [13] The Lorentzian angle between two time-
like unit vectors nk and nl, denoted by Θkl, is defined in two distinct
cases

1. Interior Lorentzian angle: If one of nk and nl is future pointing
and the is other past pointing then Θkl ≥ 0 and is given by

Θkl = cosh−1(nk.nl) (51)

2. Exterior Lorentzian angle: If nk and nl are both future or past
pointing then Θkl ≤ 0 and is given by

Θkl = − cosh−1(−nk.nl) (52)

Setting mkl = 0 for exterior Lorentzian angles and mkl = 1 for interior
Lorentzian angles we can combine these definitions into

Θkl = −(−1)mkl cosh−1(−(−1)mklnk.nl). (53)

This implies
nk.nl = −(−1)mkl cosh(Θkl)

for all k, l, as long as Θkk is defined to be 0.

Theorem 1 (Lorentzian Schläfli identity). For a Lorentzian 4-simplex
with areas Akl and timelike normal vectors n1 . . . n5∑

k<l

Akl dΘkl = 0 (54)

Proof: This follows the derivation of Schläfli identity in [14] but using Lor-
entzian instead of Euclidean geometry. Let σ be a 4-simplex with
timelike normal vectors n1 . . . n5 and Lorentzian 4-volume |σ|, σ3

i be
the tetrahedron opposite vertex i with 3-volume Ti and σ2

ij the triangle
of σ opposite vertices i and j with area Aij.

Stokes’ theorem gives ∑
k

Tknk = 0
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and dotting this with nl implies∑
k

−(−1)mkl cosh(Θkl)Tk = 0

Differentiating, and contracting with the vector Tl gives∑
k 6=l

TkTl sinh |Θkl| dΘkl = 0 (55)

However, one can show that

TkTl sinh |Θkl| = 4

3
Akl|σ|. (56)

This follows from the equations

|σ| = 1

4
Tkh

Tl =
1

3
h′Akl

where h and h′ are the altitudes of the 4-simplex and tetrahedron Tl

respectively. These are related by h = h′ sinh |Θkl|.
Now equation (55) simplifies to

∑
k<l

Akl dΘkl = 0. (57)

2

Consider a geometric 4-simplex with timelike normals n1 . . . n5. Ro-
tate the 4-simplex so that n1 is at (1, 0, 0, 0), n2 is in the plane spanned
by (1, 0, 0, 0),(0, 1, 0, 0) and n3 is in the hyperplane spanned by (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0).

Now some of the normal vectors will be future pointing, and others will
be past pointing. However the definition of the xi vectors in equation (47)
requires them to be future pointing. Take xi = aini where ai = 1 if ni

is future pointing and ai = −1 if ni is past pointing. From the choice of
alignment of the 4-simplex we always have a1 = 1. These definitions give

drkl = akal dΘkl (58)
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Varying the action, and using a Lagrange multiplier λ for the constraint

dS =
∑
k<l

εklpklakal dΘkl = λ
∑
kl

Akl dΘkl (59)

Set λ = ±1 to fix the scale of the 4 simplex. Then we can identify

pkl = Akl (60)

and

εkl = λakal (61)

which fixes the ε’s up to an overall sign.
The expected contribution from these configurations is an oscillating func-

tion multiplied by α− 9
2 . The stationary phase calculations are similar to the

SO(4) case but now the sign of ak is determined by whether face k is future
or past pointing. Not all ak = 1 or −1 is possible since the 4 simplex must
have at least one face future pointing and past pointing.
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