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I.   Introduction
1. Let

ii ■ ixii, xi2, •••, xi<H) (i = 1,2, •■•,r),

Vi = iyn,y,2, • • •, y»,) U -1,2, • • •, »),

denote ( r + í ) one-rowed matrices of independent variables, no pair of mat-

rices having a variable in common.   Write

~~ Ç» —   v.        X¿1, Xi2 ,   ' ' ' , Xia{ )  — ( Xn , X{2 ,   ' ' ' , Xidi ) ,

and similarly for — Vj.    If in v, each y = 0, rjj is said to vanish.    Let

(1) fiti, £a> •••, Mrji, 172, ••• , 17.)

denote a function which exists and has a determinate value for all integral

values $ 0 of the x, y in £, 7?; which remains unchanged in value when any

one of the £ is replaced by its negative, and which changes sign and vanishes

with each of the r¡.    Similarly

(2) gitl,b, ••', £r\), Ä(|lJi, 1}2,  •••, TJ.)

exist and are determinate for all integral values of the x, y in £, 77 respectively;

the value of g is unchanged when any one of the £ is replaced by its negative;

h changes sign and vanishes with each r\.

It is emphasized, once for all, that beyond these restrictions f, g, h are

wholly arbitrary.

As examples of the bar notation,

fix,y\) =f(-x,y\) =/(x, -y\);

f(x\y) =f(-x\y) = -fix\-y);

fi\x,y) = -fi\~x,y)= -f(\x, -y);

f«x,y)\z) -/((-*, -y)|i)- -f((x,y)\-z);

fiix,y,z),(u,w)\it,v)) -/((-*, - y, - z), (u,w)\(t,v))

= f((x,y,z), (- u, - w)\(t,v)) = -fiix,y,z),(u,w)\i-t,-v)).

* Read before the San Francisco Section of the Society, October, 1918.
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2 E.  T.  BELL [January

2. The parity of the/in (1) is denoted by

(3) p ( ax, a2, ■ ■ ■ , aT \ bx, b2, ■ ■ ■, b, );

and the respective parities of g, h in (2) are

(4) p(ai,a2, ■■• ,ar\0),       p(0\bub2, • • ■ ,b.),

the notation being obvious.   The positive integers

r s

(5) w = X) ai + H bj,        b = r+s,
<=i j=\

are called the order and degree respectively of/.    Similarly for g, h.    When

a,; = 1 =b¡   (i-1,2,   ■■,r;j -1,2, ••-,«),

the parities (3), (4) are written respectively:

(6) pall4), ?(ir|o), p(o|i«).

Likewise, if a¡ of the a, each = a;-, and ßi of the i>y each = bit the parities

(3), (4) are written (the order of the o's or b's within (|) is immaterial),

(7)    p(aî>,aï, ...|6?>,6f>, •••);  p (of, a?, • • • |0);  p (0|¿>? ■, 6J«, • • ■ ).

From the definitions, an / whose parity isp(lr|l*)isa function of ( r + s )

single independent variables, even separately in r of them, odd in each of

the remaining s variables, and vanishing with each of the s. The corre-

sponding statement for a function of parity p(lr\0) follows on supposing

s = 0; similarly for one of parity p(0\l'), on supposing r = 0. Hence-

forth we shall in general consider it unnecessary to give separate statements

for/, g, h of (1), (2), regarding all as implicit in the statement for (1). The

parity of a constant is considered = p ( 010 ).

3. Without difficulty it may be shown* that an / of order w and degree 5 is

* For this result and that of § 4, cf. Bell, Bulletin of the American Mathe-

matical Society, vol. 25 (1918-19), p. 313. The proofs follow readily from the fun-

damental identities (52), (53) of § 33, and (59), (60) of § 35. On account of its interest we

add the following alternative proof. We are concerned in §§ 3, 4 with a generalization of the

expression of a function as the sum of an odd and an even function.    Thus

2/(x) =  [/(x) +/(-*)]+ \f(x) -/(-*)]-*.(*) + *!(*),

2/(-x) = [f(x) +f(-x)]- [f(x) -/(-X)1»*,(X) -*.(x).

If now/is a general function of w variables x -* Xi, ■ ■ •, xm, then singling out Xi we define

<t>oix), 0i (x). In <j>o, fa we single out x2, and proceeding as in ( A ) obtain 0oo, <t>m, <t>ut,

4>n, where 1, 0 indicates oddness or evenness respectively in the variables in order. Pro-

ceeding thus we have eventually 2™ functions

<t>hh...K (*/ m 0, 1; j — 1, •••, «),

of parities p(la|10),(a-|-/8 = w).

On the other hand we apply to/ (Xi, x¡, ■ ■ •, x„) = /ooo... o the operations of the group G
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1921] ARITHMETICAL  PARAPHRASES 3

linearly expressible in terms of 2"~s suitably chosen functions, all of whose

parities are of the form p ( Ia | lß ), where a + ß = «.

4. Removing the restriction that the / in (1) shall vanish with each r¡, we

get what we shall call a special/ of parity (3). E.g., wz/(x + y ) is a special/

of parity p ( 011, 1, 2 ), =p(0|l,2,l), etc. Clearly, parity has no

relevance in regard to a perfectly arbitrary function of n variables; such a

function is not necessarily even or odd in any one of its variables or in any

matrix £, tj of its variables. It is easy to show, however, that an arbitrary

function of n variables is linearly expressible in terms of 2" suitably chosen

special /'s, all of whose parities are of the form p ( Ia | lß ) where a + ß = n.

This result and that of § 3 are basic in the subsequent discussion.

5. In addition to the functions already defined, we shall consider others, cp,

having the same parities as/, g, h but further restricted, e.g., as to alterance,

invariance under the substitutions of a finite group on the x, y, etc., the essen-

tial feature being change or invariance of sign under permutation of the

variables. For a reason appearing presently, all functions /, g, h, cp are

called L-îunctions, where the L stands for Liouville. Functions cp, and

functions F, G, H, <£ which satisfy the same conditions of parity &sf,g,h,cp

but which also implicitly satisfy further conditions, as e.g., continuity, differ-

entiability, etc., with respect to some or all of the x, y variables, are called

restricted ¿-functions. The explicit restrictions on a given cp, which so far

as this paper is concerned* are only of the nature that cp is unaltered to within

sign under permutations of the variables, will be exhibited by stating the

equations which express them.    Thus,

<Piix, y)\z) = - <t>iiy, x)\z),

expresses that cp((x, y)\z), of parity p ( 2 | 1 ), in addition to satisfying the

parity equations

<Piix,y)\z) = '4>((- x, - y)\z) = - cp((x,y)\- z),

of order 2™ of changes of sign of the variables and obtain 2™ functions

fh*t~*m (is = 0, 1),

where i¡ = 0,1 according as in / = /ooo... o the sign of x¡ has not or has been changed. Then,

by repeated application of ( A ) we obtain a linear transformation with coefficients ± 1 which

expresses the set of 2» functions 2" fai,... i„ in terms of the 2" functions <t>. This is true

therefore of the one function 2»/ooo... o = 2™/.

If in particular (§ 3) / has degree S, then / is unaltered to within sign by a subgroup (neces-

sarily invariant since G is abelian) of G of order 2s. An operation such as (A ) becomes the

identity when / itself has parity, and the number of functions fi¡... ia, 4>ix... i„ , reduces to

2»-i and the linear transformation between them contains the integer factor 2"-s.

* Other restrictions of great use in applications are of the kinds (i) </> ( x | ) = 1, 0 according

as a; is or is not the (2r — 1 )th power of an integer; (ii) <j> (i| ) = 1,0 according as x is or is

not divisible by a given integer, and a similar restriction upon <t>(\x); (iii) the obvious exten-

sions of these to <t>'s of several variables. Examples of these will be given in papers to appear

elsewhere.
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4 E.   T.   BELL [January

which are implicit in the bar notation, is alternating in x, y.

A set of equations expressing restrictions may imply further restrictions.

For example we find theorems for restricted L-iunctions, <p, of order 4, the

restrictions first presenting themselves in the form:*

<p(x,y,z,w) = <p(y,x,z, - w) = - <p(x, - y,w,z).

From these we infer, among others :

(p(x,y,z,w) = <p(- x, - y, - z, - w) = - <¡>(y, - x, - w,z).

Hence <p(x,y,z,w) may be represented by <p((x, y, z, w)\); and we have

the canonical set of restrictions :

<p((x,y,z,w)\) = <b((y,x,z, - w)\) = - <p((x, - y,w,z)\)\

a set being canonical when it includes the parity conditions and a minimum

number of restrictions from which all may be inferred.t

It will be shown, when we consider restrictions in detail, that a canonical

set for a restricted ¿-function <f>, of order co, may always be found by deter-

mining the group to which a certain algebraic form on co letters associated

with <p belongs. This, at first sight, is rather remarkable, as the i-functions

(cf. § 1), are not necessarily algebraic^

6. With £, 77 as in § 1, consider the implicitly restricted Z-f unctions :

F ( £l, £2 ,  * • • , |r |ljl, Vi,   " ' 1 V»)

— X CH   IT COS  (   Z «"•»• *i*  )  • IT Sin (   X) ßmin Vin )       ',
m=l L • = ! \n=l /      j=l \ n=l / J

o i £ 1, £2, • • •, &■ I ) = Z)c" ITcos ( ¿ «»»« -t»> ) h
m=l L ¿=1 \n=l /  J

H ( I 771 , 7/2 ,   • • • , r\, )   = X) Cm      TI Sin (   X) ßmjn Vjn  )      •
m=l        L j=l V «=1 / J

* An example occurs among the illustrations, § 15 (19a).

t The following alternative statement may be made. In the notation of § 3, footnote, the

permutations of the variables under which / is unaltered to within sign generate with G an

enlarged group T under which G is invariant to within sign. Thus a canonical set of restric-

tions may be described as one which gives the generators of G and a minimum number of

generators of the factor group of G under T, i.e., the permutation group.

X Detailed consideration of this point having been omitted to save space, we shall give here

sufficient indications of the course to be followed, from which the whole process can easily

be reconstructed. The algebraic form mentioned is that which is deduced from the reduced

invariant I, defined, Bulletin of the American Mathematical Society,

vol. 26, p. 217, § 9, as follows: each fc-au (ibid., p. 212, § 2) is to be replaced by the restricted

L-iunctions F, G 01 H of this paper, § 6, on the same variables; the algebraic form is then the

coefficient in this result of the general term in the x, y variables when the entire I, is expanded

in powers of these variables.
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1921] ARITHMETICAL PARAPHRASES 5

Write
Ami =  («mil, Otmi2,  • • • , Omiot) (i = 1, 2,  • • • , r);

Bmj =  ißmjl, ßmji,  " ' , ßmjbj) O" = 1, 2, • • • , S );

and let the c, a, ß denote integers.   Then, in its general form, the principle

of paraphrase which we shall use is :

(i) If for all values of the x, y,

(8) ?(&,&,   ■■■,tr\vi,V2,   •••,,»?.)   =0,

then

(8a) ¿_jCmf(Ami, Am2, • • •, Amr\Bmi, Bm2, ■ ■ ■, Bm,) = 0.

(ii) If for all values of the x,

(9) ff(*i,fe, ••■,&!)-0,
then

(9a) Hcmg(AmX, Am2, ■•• , AmT|) = 0.
IH=1

(iii) If for all values of the y,

(io) ff(hi»it. •••,%)-o,
then

k

(10a) Hcmhi\BmX,Bm2, ■■-,Bm.) = 0.
m=l

In (8a), (9a), (10a),/, g, A are general Z-functions as defined in § 1; and

the principle asserts that the sine-cosine identities (8), (9), (10) may be para-

phrased directly into (8a), (9a), (10a) respectively. By means of this simple

principle, which we shall prove as required (cf. § 18 et seq.), the applications

of the elliptic, hyperelliptic and theta functions to the theory of numbers are

greatly extended. For, from the theories of these functions we write down

identities (8), (9), (10) in which the Ami, Bmj are matrices whose elements are

linear functions of the divisors of integers belonging to certain linear or quad-

ratic forms (more specifically defined in §§ 7, 8). The (8a), (9a), (10a)

written down from the (8), (9), (10) then give, for special choices of the L-

functions, as for example

fix,y\) =y2n + x2" cos iry,      f(x,y\z) = ( - l)*'/2*sin (srV/2),

/(h) -a^sinp

an inexhaustible source of arithmetical theorems. It will be noted that this

principle effects the passage from circular to L-functions immediately without

further analysis or transformations.   Finally, it will be shown,* from a para-

* Cf. §§ 32-34.
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6 E.  T.  BELL [January-

phrase concerning L-i unctions of parity p ( a 10 ) that we can at once infer

paraphrases in which the L-i unctions are of either of the parities p ( ax, a2 | 0 ),

p ( 01 Oi, o2 ), where ai + a2 = a. Similarly, from a paraphrase for L-i unc-

tions of parity p(0|6) follow immediately paraphrases for L-i unctions of

parity p ( bx \ b2 ), where bi + b2 = b. Now obviously an L-i unction of parity

p i ai, a2, ■ ■ • , ar\bi,b2, • • • , b, ) may be regarded as an ¿-function of any

of the parities p ( a¿ 10 ), p(0\bj), (i = 1, 2, • • • , r; j = 1,2, • • • , s).

Applying the foregoing inferences successively to some or all of the o,-, b¡, we

find that a paraphrase in which the ¿-functions are unrestricted of parity

p(ait a2, ■ • • , or|bi, b2, • • • ,bs), degree 8, order co, implies further para-

phrases for unrestricted ¿-functions of order co, and degree 5', where

5 < 5' ^ co.

From the paraphrases for the functions of degree ô' may be readily built up

paraphrases* for ¿-functions of order co subject to restrictions as outlined in § 5.

7. Before illustrating the nature of the paraphrases we shall define the sense

in which separation is used constantly throughout. Unless the contrary is

explicitly stated, all integers now considered are positive and different from

zero. Adopting Glaisher's convenient notation,! we use letters m to denote

odd integers, letters n to denote arbitrary integers; and in reference to separa-

tions, m, n shall always, without further specification, have this significance.

Letters d, 8 denote positive integral divisors. Hence in m = dô both d, 8

are odd; in n = d8 either or both d, 8 may be odd or even; and n — 2"m,

in which a S 0, indicates the highest power of 2 that divides n. We shall

be frequently concerned with three types of division, Ti, T2, T3:

(11) Tx:m = dô;        T2 : n = 2" m, m = dô;        T3:n = dô.

Let n, c, cx, c2, ■ • • , cr, c'i, c'2, ■ ■ ■ , c, denote fixed integers, n, c > 0, the

rest SO; nx, n2, ■ ■ ■, nT, n'x, n2, • • • , n, variable integers. Then, a separa-

tion of en is the totality, [S], of all solutions, (2"d, 8, 2adx, 8X, •■•, n\,

n2, • • • ), of such a system as

en = Ci rii + c2 n2 + • • • + cT nr + c[ n[  + c'2n2 + • • • + c, n, ,

n = 2am, ni = 2aimi, • • ■ , nr = 2a* mr,

(12) n'i|0, n2 SO,  •••, n',^0,

m = d8, mi = di 8i,  • • •, rrir = oV 5r,

.  a > 0, «i S 0,  • • • , ctr = 0,

whose essential characteristics are :

* The process is illustrated in Bulletin of the American Mathematical

Society, vol. 26 (1919-20), p. 218, § 10, and elsewhere in the same paper.

t Kronecker used a similar notation in his memoirs on class-number relations; cf. Jour-

nal für Mathematik, vol. 57 (1860), p. 248.
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(i)  Tj (j = 1, 2, 3) is given for each olnx,n2, • • • , n,;

(ii) the range of permissible values for each of the n[, n2, • < • , n, is speci-

fied, when it is other than + 1 to + °o ; viz., the range, which may be any of

§0, > 0, <0 according to the case, of permissible values for each of the

n'i,n2, • • ■ , n, is specified in a given separation. Similarly for the a's, which

may range > 0, ^ 0. The actual set given in (12) is merely a specimen

separation. Thus n[ =: 0, n2 > 0, n3 = 0, a i= 0, ax > 0, a2 > 0, a3 S 0

characterizes one definite separation ; n[ > 0, n2 = 0, n3 > 0, a > 0, ax ¡S 0,

ö2 = 0 characterizes another.

(iii) The coefficients c, c,, c'¡ are all positive.

When further conditions, e.g., 5i < *Smx, are imposed, the separation, is

said to be restricted.   The degree* of [ S ]  is the  number  of non-vanishing

Ci,   c'j.

8. Let the degree of [ S] be v; and denote by (S) a particular solution

of (12) :

(S) «(Ai,Xî, •••,X„).

Form co linear functions of the X's :

Aj = tu Ai + ¿¿2X2 + • • • + Z,„X„ (i = 1,2, ■ ■■, u);

and denote by F(zx, z2, • • •, zu) any ¿-function of order co. Construct

F ( Ai, A2, • • • , A„ ) for each ( S ) in [ S ]. Since the Ci,c'¡ =0, there will be

only a finite number, k, of such F's; say

F(SX),F(S2), ■■■, F(Sk).

We shall be concerned with sums

(13) ZaiF(Si),
•=1

where the a¿ denote constant integers, for ¿-functions of specified parities;

and (13) is defined to be the integration of aiF(Xx, X2, •••, Xu) over

[S], where
Xi = lix XX + li2X2 +  • • •  + Ur Xv (i = 1, 2, • • •, a).

9. Separations are segregated into two main classes: linear, when c[ = c'2

= • ■ • = c, = 0; quadratic, when at least one cj > 0. Linear separations are

further classified according to the types Tx, T2, T3; and quadratic, in addition

to the specification of types for the r?j, according to the evenness or oddness

*The degree of [S] expresses, as will be evident from the derivations of the paraphrases

in Part II, section V, the greatest number of elliptic and theta series which are multiplied

together in an identity furnishing L-function paraphrases whose integrations (§ 8) are over [S ].

This has proved a useful clue in tracing certain of Liouville's more abstruse results to their

elliptic-theta equivalents, cf. § 13.
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of the n't. This classification is basic in connection with the subsequent classi-

fication and interlacing' of the paraphrases, the latter depending naturally

upon the former. The elliptic and theta series which we shall use are similarly

classified before paraphrasing.

10. Paraphrases, which will be of the general form X2*=» a« F ( S< ) = 0,

(cf. § 8), will be stated by giving the separations and corresponding integra-

tions, which always, as in § 8, are with respect to the separations. For sim-

plicity in writing, the ¿-functions under the 2 wul sometimes be indicated as

follows:

fixi,x2, ■•■ ,xr,yi,y2, • • •, y.) = Fixi,x2, • ■ • ,xr\yx,y2, ■•■ ,y.),

and the paraphrase written ]£/ ( ) = 0. Paraphrases in which the integra-

tions are over several separations will be similarly written, the several separa-

tions being given separately by different systems of letters, thus :

n = mi + 2m2;       ti = 2*' m' + to";

mx = di 5i,       m2 = ck 82;       m' = d' 8',       to" = d" 8";

Always, unless it is explicitly given that they are restricted, the ¿-functions

are general as defined in § 1.

11. To illustrate the concepts of this introduction we shall now give with-

out proof* a few simple examples. These indicate the nature of the general

formulas into which we later paraphrase certain parts of the theories of elliptic

and theta functions.    References are at the end of this paper.

As a first example we consider the following in detail. By a simple trans-

formation it is easily shown to be identical with Liouville's 5, (/) .

n = n' + n";       n = d8,       ri = d' 8',       n" = d" 8":

(14)  Ulf id' - d", 8' + 8"\) -f(d' + d", 8' - 8"\)]

= Zlid-l){fi0,d\)-f(d,0\)}+2d'Z{f(8,r\)-f(r,8\)}].
r=l

Here an ¿-function of parity p ( l210 ) is integrated over a linear separation

of degree 2, and of a type that may be conveniently designated by Tl. The

precise nature of (14) will be evident from a numerical example. Let n = 5;

then:

* The first example is proved in part II, § 23. The paraphrase of the í (x, y) identity in

§ 14 is immediate from the series for the doubly periodic functions of the second kind given

in Part II, § 16; that of (ii) is a translation of the trigonometric identity obtained on equating

coefficients of q", the series for the functions being written down from those given by G.

Humbert in Journal de Mathématiques pures et appliquées, (6) 3,

vol. 72 (1907), p. 350, first formula in (5), and from Hermite, Œuvres, vol. 2, p. 244, formula 1.
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(n',n") = (1,4), (2,3), (3, 2), (4,1):

in',n") =

id',ô') =

id",8")=

(1,4)

(1,1)

(.1,4), (2,2), (4,1)

(2,3) (3,2)

(1,2),(2,1)  (1,3),(3,1)

(1,3),(3,1)  (1,2),(2,1)

(4,1)

(1,4),(2,2),(4,1)

(1,1)

whence, for the successive ( n', n" ) the values of ( d' =F d", 5' ± 5" ) are

(n',n") (d' -d",8' + ô")

(1,4)     (0,5),(-1,3),(-3,2)

(2,3)    (0,5),(-2,3),(1,4),(-1,2)

(3,2)     (0,5),(-1,4),(2,3),(1,2)

(4,1)    (0,5),(1,3),(3,2)

(d' + d",S' -5")

(2,-3),(3,-1),(5,0)

(2,-1),(4,1),(3,-2),(5,0)

(2,1),(3,2),(4,-1),(5,0)

(2,3),(3,1),(5,0)

Since f(x,y\) = / ( — x,y\) = fix, — y | ), we have, on writing

fix,y) =fix,y\):

[4/(0, 5) + 2/(1,3)+ 2/(3, 2) + 2/(2, 3) + 2/(1,4) + 2/(1,2)]

- [4/(5, 0) + 2/(3, 1) + 2/(3, 2) + 2/(2, 3) + 2/(4, 1) + 2/(2, 1)],

for the left of (14); and this reduces to:

4[/(0,5)-/(5,0)]

+ 2[/(l,2) -/(2,1)+/(1,3) -/(3,1)+/(1,4) -/(4,1)].

For n = 5, we have (d, 5) = (1,5), (5, 1); and the right of (14) is:

(.1-1)1/(0,1)-(1,0)) + (5-1)1/(0, 5) -/(5,0)}

•+2¿{/(l,r)-/(r,l)},
r=l

which agrees with the value found for the left.
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10 E.  T.  BELL [January

12. All of Liouville's formulas for functions whose order or degree exceeds

unity have in common one feature which is truly remarkable. To see it for

(14), an inspection of the numerical example will show that in each/ (d' =F d",

8' ± 5" | ), d', d" are associated with their own conjugates 5', 8". That is,

if all the resolutions of n in the form n = d' 8' + d" 8" are

n = di 5i + di 5i  = d2 82 + d2 82 = • • ■ = dk 8k + dk 8k ,

the left of (14) is

(14a) ¿[/(di - d't, S- + 8Ï\) -fid'i + dï, 8'i - ij'l)],

and not (for instance) what the single £ notation might equally well be used

to express :

(146) Z ZUid'i - dï, 8j + 8j\) -f(d'i + dï, 8'j - 8'/\)].
.=i /«i

Wherever in the sequel d, 8, d', 8', • • • are associated together in an ¿-func-

tion, the d, 8, the d', 8', • • • are conjugates; and the ^ bas the meaning of

(14a), never of (146). When we come to examine the elliptic and theta series

for paraphrases, we shall see that paraphrases involving sums of the kind (146)

may be written down with great ease, while those of the Liouville kind, in

which the sums are of the form (14a) while also readily deducible from certain

of the expansions, are much less common, and therefore of correspondingly

greater interest. The applications of the (14a) kind seem also to be of more

importance than those of the (146). It is interesting to note that paraphrases

for sums of ¿-functions of degrees or orders > 1, in which the divisors are

associated with their own conjugates as arguments of the ¿-functions, are

implicit in Jacobi's memoirs on rotation, also in many of Hermite's earlier

(and some of his later) papers on elliptic functions,* but not in the Fundamenta

Nova. Nor do they occur in Schwarz' 'Sammlung,' although many of the

lists in that work may be prepared easily in a form suitable for the deduction

of such paraphrases. A few of Kronecker's uncollected notes on elliptic

function series also contain developments leading to (14a) paraphrases.

13. Passing to a more significant illustration of (14), we choose for/(x, y\)

the (implicitly) restricted ¿-function cos 2xu cos 2yv in which u, v are

parameters.    After some simple reductions, (14) becomes:

2Y,sin2(d'u + 8'v) sin 2 (d" u - 8" v)

(15) = Xa" (cos 2du — cos 2d» )

+ X^ ( cot v cos 2dw sin 28v — cot u sin 2du cos 25» ),

* References to which are given in Part II where the series are considered.
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1921] ARITHMETICAL PARAPHRASES 11

which is the result of equating coefficients of q"12 in:

(16) *i(«)*i(.) ,*i(«)*i(-o"L*,*,*T(ïoJ ~1Û2Û3mV)]-

In paraphrasing these steps are reversed. We start with (16), deduce (15),

change (15) by separating trigonometric products into sums to the form (9),

and paraphrase the result by (9a) immediately into (14). We note that,

(15) being a very special case of (14); and (16), when considered merely as

an identity between series, being deducible from (15) by a simple reversal

of the steps which lead from (16) to (15), in a sense (14) includes (16) as a

special case. There is, however, nothing in (14) that gives any immediate

information concerning the periodicity, pseudo or real, of the quotients in (16).

From this point of view, (16) is more general than (14). Against this may

be put the following remarks of Liouville, which accord with the first view:

" En effet mes formules se rattachent aussi à la théorie des fonctions elliptiques,

seulement elles contiennent plutôt cette théorie qu'elles n'en dependent. . . .

On n'a pas plus peine à y arriver au moyen des fonctions elliptiques.* Il y a

là un genre de traduction que l'habitude rend facile " (19; p. 44). Again,

(speaking of his general formulas): "Elles donnent naissance à des équations

entre des séries qui contiennent comme cas particulier celles de la théorie des

fonctions elliptiques" (19; p. 41).

From the present standpoint, (14), (15) are abstractly identical; but (14),

as shown by numerous applications made of it by Liouville and others, presents

the arithmetical information implicit in (15) or (16) in the more suggestive and

usable form.

14. The diversity of the paraphrases is evident from the two following,

selected at random from those found systematically in the sequel. Each is

but one of several interpretations of the corresponding theta formula from

which it is deduced.

(i) Write tix,y) » t?i âxix + y)/d0(x)d0(y), and denote by tw(x, y)

the w-derivative of t ( x, y ).   Then, I

tAx,y)-tv(x,y)=t(x,y)[^-^\,

which paraphrases into the elegant result:

m = mi + 2n2;     n2 = 2"m2;     m = do,     mx = dx ox,     m2 = d2 62:

* The process of proof which Liouville suggests for the deduction from elliptic functions

of his paraphrases concerning L-functions of order 1 cannot be extended to deduce para-

phrases in which the order exceeds 1. Hence it will not be followed here. Again, regarding

its proposed application to the functions of order 1, Liouville's method assumes that the

functions are expansible in a Fourier series, an assumption which would not be justified for

L-functions as defined in § 1. Liouville does not indicate from what elliptic function identi-

ties his theorems may be deduced.
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(17)    4£[S>(51,d1-2"+1d2).+ *(d1+2"+1d2,51)]

= E(d-*)*(á,í),

where í> is any one of the restricted ¿-functions, <p, \¡/, x, defined by:

à((x,y)\) = - <püy,x)\);       ^(x,y\) = -\biy,x\);

xi\x, y) = - x(\y,x).

The respective parities of <p, ifs, x are p ( 210 ), p ( l210 ), p ( 0112 ) : and the

functions are (explicitly) restricted because subject to one other condition,

here change of sign with interchange of variables, in addition to those of

parity. Illustrative of general processes considered in §§ 25, 32, 36, the

paraphrase for <p implies both the yf/ and the x paraphrases, which are inde-

pendent ; and from \p, x together, it is easy to infer <f>. Special cases of interest

arise for the choices, obviously legitimate :

*«»,*)lW((*,y)|)-/((*,»)|)i
fix i y\) = fix, y\) -fiy,x\);

xi\x,y) =f(\x,y) -fi\y,x).

In fact, the «^-paraphrase first presents itself for this <¡>; and by the processes

cited, the <p-paraphrase may be at once replaced by the *-form.

(ii) One paraphrase of the identity

n Ji(a)fl«(aO    , o tfiQc) _,2, t?2(a:)t?2(a;)
v2-::—;—í- •v2v3——?—- — u2tr3--g-.—r-

2      *o(a?) t}0(x) dl(x)

is for a restricted linear separation of degree 2, and a function of parity p ( 110 ) :

m = Zi + 2m2 = d8 = 1   mod 4;       mx < Vm;       m2 = d2 82;

h = di 5i = — 1    mod 4;       di > Viï:

(18)   z[f(^-M)-f(d-^l + <k\)]

= e[f(to - m\)f(mi\) - (^)/(nr|)],

where F (n) is, with the usual conventions, the number of uneven classes, for

the determinant — n, of binary quadratic forms. Such formulas in which

the ¿-functions are of orders and degrees > 1, containing those in which the

order or degree is 1 as special cases, may be derived with great ease on combin-

ing the series in Part II, § 15, with those giverf by Humbert (loc. cit.), and

form the subject of a separate paper.    For the ¿-functions suitably specialized
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1921] ARITHMETICAL PARAPHRASES 13

these formulas give, among others, the class number formulas of Kronecker,

Hermite, Liouville and others.

15. To have an illustration of the processes considered in §§ 35, 36, we

transcribe the following.

to = m2 + 8n2;       n2 = d2 82:

(19) 2X:(-D(mi+1)/2c6(2d2-TO1,252-r-TOi|)=€(TO)(-l)'j;;¡'-,)'2[<p(l, Vm"|)

(-Jra-l)/2 -l

+    E    i<PÍ2r-l, Vro"|) -0(V^,2r-l|)}J,

where «(n) = 1 or 0 according as n is or is not a square; and 4>(x,y\) is

subject to the restriction <pix,y\) = — <t>iy,x\). The separation here is

quadratic and unrestricted of degree 2. For the same separation, we find

by a process of linear transformation of the variables in (19), the following

transform of it:

2Z(- l)(mi+1)l2<PÍid2 + 82,d2-82 -mi, 2d, - mu 282 + tm) |)

= €(to)(-1)^--^((^,1^,1,Vto)|)

(19a) (J^|     //        1+Vro" 1 - Vro"    „       ,      r-\\\
+    Z    J0((r + -1—, r + ^—,2r + l,Vm)|j

//        1 + Vm          1 - Vro   „       ,      r-\IM1
+ *((r-2^-'r-2"'2r-1'V^)|)|J'

where <p is subject to the restrictions, forming a canonical set (§ 5) :

(f>((x,y,z,w)\) = <p((y,x,z, - w)\) = - <f>((x, - y,w,z)\).

The transformation for passing from (19) to (19a) is briefly indicated in

§35 (end). It is a good exercise in the bar notation to verify (19), (19a)

for m = 17, 25.

For the same system of arguments, d2 + 82, etc., as in (19a), the linear

transformation converting (19) into (19a) gives also 15 more paraphrases,

seven of which are for restricted functions, and eight for unrestricted. This

indicates the fertility of the method. These paraphrases, together with an

infinity more, are all consequences of the obvious identity:

. , ,   *itfi(s+y)  ,   . ,     ,     .     û'iûi(x-y)
»l{x-y)-»iix)»iiy)+Mx + y)-<hix)»ii-y)~°-

From this identity, when &[ ûx ( x ± y )/#i ( x ) ai ( ± y ) are replaced by their

Fourier expansions given in Part II (or written out independently in the usual

way), and § 36, the origin of the restriction imposed upon <p (x, y\) in (19),

is sufficiently evident.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



14 E.   T.   BELL [January

We may mention here some general results which form part of a later

investigation. The example just given illustrates the concept of a class of

paraphrases; two paraphrases being equivalent when either may be trans-

formed into the other by a linear transformation of the variables, the coef-

ficients of the transformation being rational. All paraphrases equivalent to

one another constitute a class. In each class there is one and only one sub-

class, the reduced class, such that the order of the functions in any member

of the class cannot be further reduced by linear transformations on the vari-

ables, and such that any member of the class may be transformed into any

other by a transformation with coefficients ±1 on the variables. The

reduced class is said to be represented by any one of its members. In the

above, (19) represents a reduced class; and (19a) is equivalent to (19). It is

easily seen from §§ 31, 32 that (19a) includes (19) as a special case; but it is

less obvious that (19) includes (19a).

16. Proofs for most of Liouville's general formulas will be found in the cited

papers of Smith, Pepin, Mathews and Meissner. All of these use the method

of Dirichlet in modified or extended form, to which Liouville himself repeatedly

refers; but this method (cf. Bachmann, p. 366), offers no suggestion either as

to proper assumptions to be made regarding the parity or restrictions of the

functions, or to the constitution of the separations for a given function. It is,

in fact, a process of à posteriori verification. By the method of paraphrase

the questions concerning the nature of the functions and separations receive

immediate answers on an examination of the class of series from which the

paraphrases are derived. As it has been suggested by Bachmann (p. 433)

that the source of Liouville's theorems was a consideration of the trans-

formation of bilinear forms on four variables (as given, for example by Kro-

necker, Werke, vol. 1, p. 143), we shall state what seem the principal advantages

of deriving them as paraphrases primarily of the elliptic-theta identities.

Considering, for example, (10), it may be made, by simple algebraic or ana-

lytical transformations, to yield many more paraphrases in addition to (14),

some of which are for quadratic separations, some for separations of degrees

3,4, and others for restricted or unrestricted functions of orders 1,2,3,4,

integrated over linear separations of degree 2. Even with the end-results

before us, it is a matter of considerable difficulty to transform these into each

other by Dirichlet's method as used (in amplified form) by Smith, Pepin,

Meissner and others; and this method would seem to be the natural modi-

fication of Kronecker's transformation processes to be used for this purpose.

But the most important advantage is that we have in the method-of paraphrase

what that of Dirichlet has not yet given, a direct and powerful means for the

discovery of new paraphrases, which severally, as Bachmann says of this class

of theorems (1. c, p. 366), " eine schier unerschöpfliche Fundgrube für zahlen-
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theoretische Sätze darbieten." We shall not derive all of Liouville's general

formulas en bloc by the method of paraphrase, although this may easily be

done if desired, but shall derive them incidentally as they arise in applying the

following developments to the elliptic and theta series.

17. An inspection of the numerical example in § 11, reveals the important

fact, otherwise obvious from §§ 1,6, that (14) is ultimately an identity between

sets of absolute values of integers; two sets, (|«i|, \a2\), (\bx\, \b2\), being

identical when and only when |ai| = |¿>i| and \a2\ = \b2\. The like, con-

siderably generalized, will be evident for functions of parity

p(ax,a2, •• ■ ,aT\bx,b2, ■ ■ ■ , bs).

Hence we next examine the properties of sets of matrices of absolute values.

On them we shall base a proof, by new but simple considerations, of the

legitimacy of the paraphrase process outlined in § 6, in sufficient detail to

derive all the paraphrases first arising in the theory of the elliptic and theta

functions.    The process for functions of parity

pi ax, a2, ■ ■ ■ , aT\bx,b2, •••,&,)

will appear as a corollary of that for functions of parity p ( ax, a2, • ■ ■ , ar 10 ),

and the latter as a corollary of the process for p ( ax | 0 ), which in turn follows

from that for p ( 110 ).

II.   Sets of matrices and ¿-functions

18. The equality between matrices, (ax, a2, • • ■, ar) = (a[, a'2, • • • , a',),

implies s = r and o,- = a'{, (i = 1, • • • , r). If a¿ = 0, (i = 1, • • •, r), the

matrix is the zero matrix, (0,0, • • • , 0 ), = ( 0 )r. A set is a collection of

things independently of their order. We shall write the matrix of absolute

values

(h¿i|, h«|, • •• , hi,|) m (|ar.-|)r;

and the set of ( n — j ) matrices

(\x]+i\)T,   (hy+2|)r,    •••,   (h»|), (n>J + l,i>0),

will be denoted by either of

I  (h¿|)r,  I  (h#i|, hi*t» •••, h>v|);

and when all the (re — j) matrices are zero, the set will be written, as con-

venient, in any of the forms

/"(O),,   J"(0,0, ■■■,0),   (n-j)J i0)r,   (n-;)J(0,0, •••,0),
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the 0 in (O, O, • • •, O ) being repeated r times.    Two sets are equal :

(20) f i\Xi\)r  = £  i\x'i\)r,

when and only when the (|a;i|)r are a permutation of the (|a;í|)r'; and hence

in particular only when r' = r and n' — j' = n — j.

19. The sum (logical sum) of two sets is that set which consists of all the

matrices in either set. Hence addition of sets is commutative and associative,

and

(21)

XA /»n /»n
i\Xi\)r+J      i\Xi\)r  = J      i\Xi\)T (0 ̂  ¿ < X < 7l) .

20. An obvious property of sets for which we shall have frequent use is that

the same | « | may be inserted in homologous places of equal sets without

destroying their equality, viz., (20) implies

(22)

\ I Xn I,   • * " ,   I Xis— i | ,   | Ot |,   | X{8 j ,   * * ' ,   j Xir \ )

= J     (kii|. •••, \x'i.-i\, \a\, \x'i,\, •••, \x'ir\).

Again, from the definitions, if p, q, • • •, t are any of the integers 1,2, • • •, r,

(20) implies

i\xxp\, \xiq\, ■•■ , \xit\) =   I    (|a\P|, \x'iq\, •••, \x'it\).

21. Immediately from the definitions of §§ 1, 18:

i\xi\)r =   I    (|zi|)r, then

JlfiXn, Xi2,   ■■■ , XiT\)   = Ttfix'n, X'i2,   ■■■ , Xir\).
«=1 «=1

In the same way, or as an obvious corollary:

f(W)r+    f   (|y<|)r+   •••   +    f\\Zi\)r

=    f(|*;|)r+   f\\y'A)r+---+   f(|*;|)r
Jo Jo Jo

implies

n Í

llfixn, xi2, •■■, xir\) + E/(y.i,y<2, •••, yir\)

p
+   •••   +E/(Zil,Zf2.   ••• ,Zir\)

i=l
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= }Zf ix'ii, x'i2, ••• ,x'ir\) +Hîiy'ii,y'i2, •••, y'ir\)
«=i t=i

V

+   •••   +£/(Zil,Z<j,   ••• , 2<r|).
•=1

22. For the passage from circular to ¿-functions the following lemmas*

are fundamental.

Lemma 2. // the a,-, b¡ are integers < 0, and if there is an infinity of odd in-

tegers re, > 0, for which

ta1 = ±b%
<=i j=i

then s = r, and the a,- are a permutation of the bj.

Lemma 3.   If ax, (i = 1, 2, • • •, r) are integers § 0, and bj, (j = 1, 2,

• • •, è ) integers 5 0; and if for all integral values > 0 of rt,

ta?=±b?,
<=i ¿=i

then, (i) : r =? s, and precisely ( r — s ) of the a* = 0.    (ii) If, without loss of

generality, the s non-zero a¿ are ax> a2, ■ • • •, a,, then by Lemma 2, the a\, a\,

• • •, a2 are a permutation oftheb\,b\, • • • ,b\; and hence, by Lemma 1 :

(Hi)    ¿/(a,-|) = ¿/(M );        t/(a,|) = (r - *)/(0|) + £/(6y|).
i=l J=l 1=1 i=l

The first part is an immediate consequence of Lemma 2.

Lemma 4. If akj, atj, mk, Pk, ik = 1, • • •, r; j = 1, • • •, s; I = 1,

■••,<), are integers < 0, and if for all integral values > 0 of n¡,

(24) ¿ mt a£. a*« • • • afr = ¿ pk «£> «£• • • • «fr,
*=i *=i

then
r t

'25)        S mkf i a«, a«, • • •, a¡t, | ) = £ M*/ ( a*i, <**2, • • • , a*, | ).

* Lemma 2 was proposed as a problem by the writer in the American Mathe-

matical Monthly; and a proof given ibid., vol. 24 (1917), p. 288, by Professor B.
Swift. An independent proof of Lemma 3 is readily deduced from Newton's formulas in the

theory of equations, on considering the a(, by as the roots of two equations of degrees r, s

respectively, and then showing these equations identical by the given conditions. Hence,

(i), (ii) of Lemma 3 being sufficient for the proof of all following Lemmas, it follows that the

paraphrase method depends only upon finite processes. The lemmas may be generalized by

lightening the conditions; but as such generalizations have no application in the sequel they

have been omitted. Professor C F. Gummer has given (in a paper which has not yet appeared)

some interesting developments of Lemma 1, based upon the extension of Descartes' rule of

signs to transcendental equations. In particular he has shown that 2$T.[ o" = 2^J b" (r'Szs)

for r distinct values of n are necessary and sufficient conditions for the identity of the ch with

the bj, when n is odd.

rrana. Am. Math. Soe. 2
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Without loss of generality we may assume to* , pk > 0, the other case being

immediately reducible by transposition to this. By repeating the terms a

proper number of times the coefficients mt, pk may be taken as unity. Now

putting Ui = nvi, (i = 1,2, •••,«), where v% is an arbitrary integer > 0,

we infer from (24) by Lemma 3, a set of identities of the form

(25a) a^ a2¡* • • • a2",' = aft a%> • • • a2?    ( 1 m i ^ r; 15S¿ Q <),

valid for all integral values > 0 of the vx, v2, ■ ■ • ,vs. Replacing in (25a) any

one of the exponents by its double, say vr by 2vT, we get an identity, which,

with (25a), gives, provided the a's and a's are not zero, for all vT > 0,

Oh/ = a2//; and hence a2r = a)r. Hence (25a) gives (|oí|)s = (|a,-|)s, and

the lemma follows at once by §21. Obviously the condition mk, pk < 0

may be replaced by mk, pk § 0; a remark of importance presently in passing

to ¿-functions of parity p(0\bx, b2, ■ ■ ■ , bs). We point out expressly that

the replacing of the condition akj, ati 5 0 by akj, aij § 0, would invalidate

the proof. There is a fundamental distinction between paraphrases involving

zero matrices and those which do not. In passing from circular to ¿-functions,

this amounts to distinguishing the paraphrase of homogeneous polynomials

in sines and cosines from the paraphrase of the non-homogeneous. We take

the former case first.

23. For the a, a, m, p, as in Lemma 4:

Lemma 5.    If for all values of xx, x2, • ■ • , x8,

r

X to* cos au .Ti cos ak2 x2 ■ ■ • cos aks x„

(26) *=I

= X Pk cos akx xi cos ak2 x2 • • • cos ak, x,,
*=i

then (25) holds.

For, equating coefficients of a*,"> ar2,"1 ■ • ■ a-2"« in (26) we get (24).

Lemma 6.    The notation being as in Lemma 5, and for all values of xx, x2,

' ' ' i «P« j

r

X) TO4 sin an xx sin ak2 x2 • • ■ sin ak, xs
(27) *=l

— ¿-¿Vk sin aki Xi sin aki x2 • ■ ■ sin ak3 xt,

then
r I

XJmk g (|aki, ak2, ■ ■ • , aks) = E ßt g (\ctki, ak2, • • ■ , aki).
k=\ k=\

For, from the definitions in § 1 we may write

gi\zi, z2, ■ ■ ■ , z„) = zxz2 ••• zsf(zi, z2, ■■ ■ , z,\).
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Operating on both sides of (27) with da/dxx dx2 • ■ • dx, reduces (27) to (26)

with mk akx ■ ■ ■ aks, Pk «ii • • • cxks in place of mk, pk respectively; and by

Lemma 5 we deduce (25) with mk, pk similarly changed :

r

¿_,mk aki ak2 • • • aksf(aki, ak2, ■ • • , aks\)
*=i

t

= ¿_,Pk akx ak2 • • • aksf(akx, ak2, • ■ • , aks\).

On replacing in this zxz2 ■ ■ ■ zsf(zx, z2, ■ • • , z,\) by g( \zx, z2, ■••,«,), the

Lemma follows. By an obvious change in notation, Lemma 6 may be restated

in the more convenient form :

The aki denoting integers < 0, and the mk integers § 0, the identity in

the Xi,
r

£ mk sin a*! xx sin ak2 x2 • ■ ■ sin aks xs = 0
*=i

implies
r

£ mk g ( I akX, ak2, ■ ■ ■ , aka ) = 0.
*=i

Clearly, the preceding Lemmas may be similarly restated. In the same way,

the proof of Lemma 7 can be based on Lemma 5 by operating on the identity

in Lemma 7 by d'/dyx dy2 ■ ■ ■ dys:

Lemma 7. The akl, bkj denoting integers < 0, and the mk integers § 0, the

identity in the Xi, y,,

n /    r i \

£ itik ( IT cos aki Xi ■ II sin bkj y,, ) = 0,
k=l \ t=l ;=1 /

implies
n

£ mkf(aki, ak2, • • • , akr\bkx, bk2, ■ ■ ■ , bka) = 0.

A little reflection will show that the method of proof used in Lemmas 6, 7 is

applicable when and only when the akt, bkj are rational.* As there is no essen-

tial gain in generality by considering rational rather than integral variables

in the paraphrases, we ignore the former.

24. The terms in any one of the trigonometric identities paraphrased in

§ 23 are all of the same parity. Thus, in Lemma 7, the parity of each sine-

cosine term is p(lr|ls). Passing to an important generalization we now

consider the paraphrase of homogeneous sine-cosine identities whose terms

are of several parities. In the following the notation is based upon that of § 6,

for the proofs of the processes there stated are intimately connected with

Lemma 8, next considered.

* Cf. § 35, footnote.
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Lemma 8. Let the set of w independent variables, zi, z2, • • •, z„, be separated

in N ways into two sets, Xn, Yn:

X„ =  Xin,x2n,-• • ,xr,n;        F„ = yin, y2n, • • •, y,nn   (n = 1, 2, ■•■,N),

so that r„ + sn = co, and the a\„, y}-n are a permutation of the z*.    Let ail the Xn,

and consequently all the Y„, be distinct among themselves, two sets being identical

only when all the variables in either are also in the other.    Write
r. •»

(28) <pm(n) m J! cos cunin xin • YL sin ßnjn yjn;
r=i j=i

(29) \¡/m ( n )  = fni Otmln , «mîn ,   ' * * , OW„n | ßmln , ßmin ,  ' ' ' , ßmi.n ) ',

t» t.

(30) $(n) = Ylcmn<pm(n);       *(») s Xc«.«if/»(»).
T7i=l m=l

Then, the otmin, ßmjn denoting integers < 0, and the cmn integers § 0, the identity

in the Zk,

(30a) ¿*(n)=0
i»=i

implies

(31) E*(n)=0,
»=i

and it will be shown that each term of this sum is zero, viz.,

(31a) ¥(n) = 0 (».-1,2, ••-,#).

For, the Xn being distinct, after operation on (30a) with

d'"/dyXn dy2n ■ • • dy.nn,

every $' ( k ), k 4= n will involve at least one sine factor in each of its terms,

Cmk <p'm i k ) ; while each term, cmn <pl ( n ), of $' ( n ) will be cm„ times a product

of co cosines. Hence in .the differentiated (30a) only the terms arising from

$(n) contribute to the coefficient of zl^z1** • • ■ z2¿», p< > 0, (i = 1, 2,

• • -, co ) ; and precisely as in the proofs of Lemmas 5, 6, 7, we conclude that

•9(n) - 0, (n = 1, 2, •••, N), and hence

E*(n) = 0.
n=:l

It is essential for oiu present purpose to note that (31a) is a system of

identities for N general ¿-functions. That is, /i, /2, • • •, fir in (31a) may

denote the same or different ¿-functions, which, except that their parities are

respectively identical with those of the cpm(n), (n = l,2, • • •, N), are

wholly arbitrary as defined in § 1.
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25. Before proving the general result it will be well for clearness to give

the proof in detail for a very simple case, unencumbered by the notation.

The reasoning in the general case is of exactly the same kind. We shall now

show that

(32) Y,a coa (uix + biy) =0

for all values of x, y implies

(32a) Zc,/((ai,fej)|) =0,

the Ci denoting integers § 0, and the a,, fct- integers S 0.    The significance

of the parenthesis ( a,-, 6, ) will be evident on referring to § 1 and the examples

of the bar notation there given,

(i) From (32) :

£c< [ cos a, x cos bi y — sin a, x sin 6,- y ] = 0;

whence, by Lemma 8 :

(33) Dc,/i (o,-, h|) - 0;       Ec/, (|at, 6<) - 0,

in which/i, f2 are'arbitrary, of the indicated parities p(l2|0),p(0|l2).

(ii) Now, it is shown* in the proof of the theorem stated in § 3 that the

parities p ( Ia 113 ) of the ¿-functions appropriate for the stated linear expression

of the (general) / ( AmX, Am2, •••, Amr \ BmX, Bm2, ■■•, Bm, ) in § 6, whose

parity is p (ax, a2, • • • , aT\bx,b2, • • • ,b,), are precisely those of the several

sine-cosine terms in the addition-theorem development and subsequent

distribution of products in

(34) II cos ( £ ow„ Xi„ I • II sin (  £ ft»,» îto
i=l \n=l /      .,"=1 \  n=l

It is shown, moreover, that the appropriate ¿-functions are of the form (29),

corresponding to the individual terms of (34), the latter being of the form (28).

(hi) In the present case we have, therefore, that / ( ( ai, b, ) \ ) is a linear

function of suitably chosen fx ( a», 6< | ), /* ( | a«, bi ), say

(35) f(iai,bi)\) =fci/'I(ai,6,|)+fc2/2(|ai,&i).t

'Bulletin of the American Mathematical Society, vol. 25 (1918-

19), p. 313.

t The actual forms of/(, f2 are given by:

¡yi(a.,fc|) «/((*, fc)l) +/((*, ~bi)\),

2f'2(\ai,bi) -/((*, fc)|) -/((*, -0i)|);       ki »t, -1;

but these are not essential to the proof.   The same applies to the general case: it is not neces-

sary to have the linear expressions; it is sufficient to know that they exist.

■
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Multiplying (35) throughout by d, and summing :

(35a)      Ec»/((a¿A)|) = *i Ec>/í (a¿> bi\) + k2 E/á (|a<, 6,).

But (33) hplds for fx, f2 arbitrary of the indicated parities. Hence the right

side of (35a) vanishes, and this establishes (32a).

26. Turning to § 6, we may write (8) in the form (30a) by the process out-

lined in § 25 (ii). In this case,cmn = cm; and it is easy to see that N = 2U_S,

where co, 5 are as in § 2, (5). By Lemma 8 we get from (30a), corresponding

to (31a) :

(36) #(n) = 0 (n = 1,2,3, •••,2-»-«).

Choosing for the/„ in (36) the ¿-functions /» appropriate for the linear expres-

sions (§ 3) of / ( AmX, Am2, • ■ ■ , AmT | Bmi, Bm2, ■•• , Bms), and multiplying

as in § 25 (iii) the successive identities of (36) by the appropriate constants,

k„, of the linear expression, we get on adding the results as in the special

(35a), the identity (8a) of § 6.

27. The proofs for (9a), (10a) in the homogeneous case are precisely similar

to that for (8a), and need not be written out. Again we emphasize that

(8a), (9a), (10a) have so far been proved only for the case in which the Om¿n,

ßmjn are non-zero integers. We next (cf. § 22) consider in less detail the

paraphrase process for non-homogeneous sine-cosine polynomials. We shall

give only so much of it as suffices for the paraphrases of identities first arising

in the elliptic and theta functions; this includes all of the Liouville para-

phrases and many more of kinds distinct from his. The most general non-

homogeneous case may be similarly treated, but the notation becomes con-

siderably more complicated, and it is best, by using the linear transformations

outlined in § 35, to refer back to the homogeneous case. By the method of

sets, much information not otherwise evident, is revealed concerning the ulti-

mate nature of the paraphrases.

Lemma 9.    The identity in xi, x2:

cos a¿3 xi cos a¿4 x2)

»

= E ( cos an x2 — cos a.e xi )
<=i

where the a's are integers, and a¡2, a,3, a.s, a^ 3= 0, implies

¿[/(a.-i,a«|) -fiai3,aH\)] = ¿[/(0,o<6|) - /(a,-,, 0|) ].
i=l i=l

For, equating coefficients of x2n, x\n, a:2"', .t2">, (n, nx, n2 > 0) in (37),

E (cos a,i Xi cos ai2 x2 —

(37)
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we get:

(38) ¿a2í+¿a2S= ¿a2J,

(39) Z«iï+Ea?S= E«îî,
i=l i=l i=l

(40) ¿a*ï'a°2'= ¿a-s'Ou«

for all integral n, nx, n2 > 0. Since* the a's, except perhaps some of the

an, an, are not zero, we find from (38), (39) and Lemma 3 that precisely s each

of the aiX, an are zero. Moreover as in Lemma 4 we find that in (40) the pairs

(hii|, \ax2\) for which an =(= 0 are merely a permutation of the pairs (|a¿3|,

|a,-4|)/or which ai4 4= 0. Hence if a,x = 0, then an = 0. Suppose this true

for i = 1, ■ ■ ■, s.    Then

X)[/(at-i, ai2|) -/(a,3, a¿4|)] = ^[/(0, ai2|) -f(ai3, 0|)].
,=i <=i

But again from (38), (39) and Lemma 3 we see that the first s of the |ai2|

are the | ai51, and the first s of the | ai31 are the | ai61, which proves the para-

phrase.    From this there is obviously the corollary :

Lemma 10.    With the notation of Lemma 9, and bi, c¿ integers 1= 0,

r

/, bi ( cos an xx cos a,-2 x2 — cos a¿3 xx cos a,4 x2 )

(45) <=1

= ¿2ci( cos dis X2 — cos at-6 Xi )
izsl

for all values of xi, x<i implies

r ê

(46) X)è,[/(aa,al2|) -f(ai3, ai4|) ] = X) c¿ [/(° . a>5|) -/(a.-e, 0|)].
t=l i=l

It is not difficult to prove this also in the case b¡, Ci § 0; but this is not an

immediate consequence of Lemma 9.

28. By a process of frequent use we get from Lemma 10 an important special

case as a corollary. Obviously (46) is true for all integers for which (45) is

true. But (45) is true for the integers a,2 = aî4 = ai6 = 0 (the other integers

being the same), since this is the form which (45) takes when x2 = 0.    Hence

Lemma 11.    The identity in xx:

r i

Z 6, ( cos an xx — cos a,-2 a-i ) = ^ Ci ( 1 — cos ai3 xi )

* An alternative proof by the method of sets is somewhat longer and has been omitted,

but is not without interest. It may easily be reconstructed from (38)-(40), Lemma 3, and

§ 20 (21), (22).    (To save renumbering formulas, (45) follows (40).)
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implies

EM/(a.i|) -/(o«|)] - ¿c,[/(0|) -fiai3\)].
<=I 4=1

This* may be proved independently by Lemma 9; or it follows almost at

once from Lemma 3. It is of interest as covering the first paraphrase stated

by Liouville; which follows from Jacobi's series for sn2 u from the identity

sn u X sn u = sn2 u, on substituting for sn u, sn2 « their Fourier develop-

ments. The generalizations to functions of two variables in Liouville's first

five memoirs follow from Lemmas 9, 10 applied to the appropriate series,

which also were given by Jacobi, but not in the Fundamenta Nova. The

formulas of Liouville's sixth memoir are paraphrases of

sn3 u = sn2 u X sn u = su u X sn u X sn u.

29. By differentiation as in §§ 23, 24 we may make the cases of non-homo-

geneous paraphrases for functions of parity p(0|2),p(0|a), ••• depend

upon those for functions of parity p(2|0),p(a|0), •••. We shall consider

it unnecessary to prove formally the legitimacy of paraphrasing non-homo-

geneous identities differing but slightly from those considered in §§27, 28;

and for the present we may omit the paraphrase of identities involving tan-

gents, cotangents, secants and cosecants, these depending upon sixteen simple

identities which will be given with the elliptic series, and in no respect intro-

ducing considerations different in principle from the paraphrase of sine-cosine

identities. We remark, however, that they are the source of all such para-

phrases as those of Liouville which involve sums of ¿-functions whose argu-

ments are in arithmetical or geometrical progression, such, for instance, as

(14), (19), (19a).

III.   Elementary transformations

30. Examining Liouville's theorems we note his frequent use of such trans-

formations as /i (z|) = ( — l.)(î+1)/2/2 ( \z), where z is an odd integer, and/i,

/2 arbitrary of the parities indicated. These are immediate translations of

the effects of replacing the a;-variables in the elliptic or theta identities from

* G. Humbert, (Paris Comptes Rendus, vol. 150; 21 Fév. 1910, p. 433) uses

what is essentially a special case of Lemma 11, and refers for proof to a theorem of Borel:

"There exists an entire function of x, taking for integral values of the variable the same values as

any given function." Liouville functions being not necessarily entire, Borel's theorem cannot

be used to prove Lemma 11; and in any event it is preferable here to use some method, such

as the above, which is applicable to functions of any number of variables. On the other

hand, some writers (cf. Bachmann, 1. c, p. 295),regard the paraphrase to functions of a single

variable as self-evident. Our lemmas are, no doubt, obvious; but in view of the indicated

difference of opinion as to what is or is not obvious in this regard, it seemed best to offer proofs

for all cases.
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which the paraphrases are derived by x + 7r/2, or in Weierstrass' notation, by

x + 1/2. In the notation of §7, all such transformations follow from that

next given, which may be verified by inspection. The functions in any pair

are of the same parity, and the sign of transformation, ~ , indicates that in any

paraphrase either function separated by the sign ~ may be replaced through-

out by the other, provided, of course, that the evenness or oddness of the

integral arguments of the functions in the paraphrase is constant throughout.

Thus, Ei/(|m<,2ni) = 0 may be replaced by £<( -lYm'-mf(mi\2ni) = 0;

Ç-(l)"</(|m.-,2rei) =0;       Ç( - l)[-+("«-,',)]/(i«i|2ni) =0,,

It is readily seen that if

^ = (mx,m2, ••• ,mr,m'1,m2,--- ,m',,2nx,2n2,--- ,2nk,2n[,2n'2,--- ,2n'i);

M = mx + m2 + • • • + mr;       N = nx + re2 + • • • + re*:
then

/(U)~(-l)(^-1),2/(?|), fiS\)~i-lY*+mfi\l:), ifM = lmod2;

/(|£)~(-1)*'2/(|¿),        /(É|)~(-l)Jfl7(€|), if M - 0 mod 2;

/(?D~(-ir/(?i),     /(is)~(-iy7(i£).
31. We may regard/(^i, £2, • •• , £r|in, fit, ' • •, V»), the £, r¡ being the

matrices of § 1, as an ¿-function of £ i alone, or of 771 alone. Hence in the

following sections we need consider only the behavior of functions of parity

p(a|0),p(0|£>), and need examine paraphrases for functions of those parities

alone. By repeated application of the theorems below for functions of parity

p i a 10 ) and p ( 01 b ), the results for functions of parity

P iax, a2, • • •, ar\bx,b2, • • •, b,)

may be written out if desired, cf. § 6.

32. Let fc m iptn, a«, •••,«,«), iji » (ßa, ßa, • • •, ßn)• Then the
matrices (£,•; th), (&; — Vi), where

(£>; Vi) — («ii, a,-2, • • •, aia, ßn, ßa, • • • , ßa),

( f i', —Vi) = ( «¿i, a>2, • • • , oda, — ßn, — ßa, • • •, — ßib),

are termed the conjoints of £i, 17», of £,-, — rç» respectively.

Consider now a paraphrase (over a given separation) :

(47) E«*/((fcJ*)l)-0.i

Choose for/( (£,■; »;,) |) the implicitly restricted ¿-function:

(48) cos Í E «.V av + E ft. y. )
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in which the x, y are parameters. Substituting (48) in (47), and applying

Lemma 8 (§ 24), we infer by § 3, as in § 25, for/i ,/2 arbitrary of the indicated

parities p(a, 6|), p(|6, a):

(49) 2>,/i(£i,iJ.|) =0;        Eo,/,(|&, *)-(>,

as consequences of (47).    Similarly, as consequences of

(50) E«*/(l(fc;i«))-o,i

we find in precisely the same way:

(51) E«i/i(fc|iji) =0;        Z«*/i(n<|f*)-0.

33. The results of § 32 are paraphrases, ultimately, of the addition theorems

for the sine and cosine. So also are the following obvious identities, which

are frequently useful, cf. § 3.

/((fc;w)|) -/i(&,w|) -/t(|fc,ii<),

/(Ka;*)) -/.(w|í<>+/4(.í«|ii*);
where

2/i(fc,iíi|) -/(({« -*)I)+/((&; w)|),

tfiOlfc.w) -/((fc; — n*)|) -/((&; w)l),

3f.(*|fc)   -/(|(€<;w))+/(|(&; -il*)),

2/4(í¿|i),)   -/(|(fc;w)) -/(|(&; -H«))-

That fi, f2, f3, fi have the parities implied by their bar notations may be

verified at once from the definitions of § 1.

34. Obviously /(£i, £1, • • • , £1, £2, £3, •••, £r|) is no more general than

/(fi> £2, ■ • • , |r|). Similarly any ¿-function may be formally reduced by

omitting from its symbol redundant matrices. This obvious remark will

appear in the sequel as the source of some of Liouville's most difficult para-

phrases (from the standpoint of proof of Dirichlet's method). We next con-

sider the complement of this process of reduction. It leads from paraphrases

for functions of order co to paraphrases in which the order of the function

exceeds co, again a process which seems to have been employed by Liouville

to transform his simpler results.

35. To keep the writing simple, we may at this stage confine our attention

to functions of order 2 integrated over separations of degree 3, deferring the

general case, which is treated in the same way, and the theory of classes of

paraphrases until we shall have in the next paper a considerable body of

theorems for particular functions and separations by which to illustrate the

processes involved.    For simplicity, since we ere to consider functions of
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order 2, choose for the F of § 8 (13), F = /( (zx, z2) |). The partition is to

be of degree 3 ; hence in the notation of § 8, where now (cf. footnote) the Vs

are integral,
A, = Z,-i Xi + li2 X2 + li3 X3 (t-1,2);

and for the paraphrase (13), we have in the present case:

(54) E«</((*u*i + ¿i2*2 + ¿13X3, fciXi + Z22X2 + Z23X3)|) = 0,

the E extending over all Xi, X2, X3 defined by the separation.    Write

(55) A = on Xi + a2 x2 + ■ ■ ■ + ar xr;       B = ßi Xi + ß2 x2 + ■ • ■ + ßr xr,

the a;'s denoting parameters, and the a, ß constant integers.* As in §32,

replace (54) by its special case:

(56) E ai cos {(¿11*1 + ¿12*2 + ¿13X3) Ti + (¿21X1 + l22 X2 + l23\3) Ç2} = 0,

an identity in fi, J"2- Substitute for the parameters fi, f2 in (56), A, B,

respectively; then there is the identity in the x's:

(57) E °i cos ( Li xx + ¿2 a;2 + • • • + LT xr ) = 0,

where

(58) Li m ( a, lu + ßi hi ) Xi + ( a{ ln + ßi ¿22 ) X2 + ( a< Z„ + ft ¿23 ) X3;

'and (57) paraphrases into :

(59) Ea./((¿i,¿í, •••,¿r)|) =0.

By suitably choosing the constants a», ßi, the ¿, may be taken equal to

linear functions of the Xi, X2, X3, to a certain extent predetermined; viz., if

Li = li Xi + TO¿ X2 + ni X3, the values of any two of the /,, m¿, n¿ fix the value

of the third. Applying § 32 to (59), we deduce from it paraphrases for func-

tions of parity p ( ri | r2 ), where rx -4- r2 = r.

If we had chosen F = f ( zx \ z2 ), we should have had in place of (56) :

(56a)    E aicos (¿11 *i + ¿12X2 + luX3) f 1 ■ sin (l2X\x + l22X2 + l23X3) Ç2 = 0;

whence

E«»[sin {(Z2i f2 + In fi)Xi + (Z22 f2 + ¿12 Ti)X2 + (Z23 f2 + ZisTOXs}

+ sin {(Z2i f2 - ¿ii Ti)Xi + (¿22 T2 - ¿12 fi)X2 + (¿23 £2 - ¿13fl)X3}] = 0,

* There is no difficulty in extending this to the case of a, ß numerical constants from any

field. A like remark applies to the lemmas of §§ 22-28. In particular, if the a, ß in F, G,

H of § 6 denote rational numbers, it is obviously possible on replacing the x, y variables in

(8), (9), (10) by suitable integral multiples of themselves, to reduce (8), (9), (10) to forms in

which the a, ß are replaced by integers, and the paraphrases of these forms may be taken by

definition as the equivalents of the paraphrases of the first forms in which the a, ß were ra-

tional. The cases of transcendental a, ß or a, ß belonging to other fields are ignored because

non-trivial identities (8), (9), (10) involving such mimbers do not yet (apparently) exist.

Cf. § 23.
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and the work henceforth is of the same kind as above. It is an interesting

exercise on this section and the next to show that (19) is transformed into (19a)

by the substitution

x ~ \x + \y + z,       y ~\x -\y + w.

36. Without considering explicitly restricted ¿-functions in detail at this

point, we may illustrate their origin by a simple example. Again the general

case is of the same nature, and the work for it similar to that for the special

example-    The ¿-function

(60) fix,y\)-f(y,x\),       =cp(z,y\)

obviously satisfies cp(x y\) = — cp(y, x\). Conversely, if it be required to

determine the form of the most general ¿-function, \p ( x, y ), of parity p ( I2 \ 0 ),

which changes sign with interchange of the variables, we have, expressing the

parity conditions, \p(x, y) = F(x, y\); and, by the given condition,

\p(y, x) = F(y, x\) = - yp(x,y).    Whence

2t(x,y) =F(x,y\) -F(y,x\);

F being unrestricted of parity p ( l210 ). An arbitrary constant factor may

clearly be absorbed in an ¿-function without changing its parity or diminishing

its generality; hence, we may take F(x,y\) = 2f(x,y\), f arbitrary of

parity p ( l210 ) ; a.nd\p(x, y) = <Pix,y\).

The forms of restricted functions which it is profitable to investigate are

suggested by the elliptic and theta identities. One of the chief uses of re-

stricted ¿-functions is to sum up in compendious form paraphrases for un-

restricted ¿-functions. Thus, the paraphrase* ¿^ a,- [/ ( xx, yx \ ) —fiyi,x¡\)],

may be replaced by ^,aicp( x¡,y i \ ) = 0 where cp(x,y\) = — cp(y ,x\).

Restricted paraphrases may be found directly from the elliptic or theta identi-

ties by permuting the variables, multiplying the results by ± 1 and adding and

simplifying; or in many other ways that suggest themselves as we proceed.

Illustrative of the first method, it may be verified without difficulty that the

multitude of paraphrases to which Weierstrass' "equation of three terms"

gives rise, are all equivalent to the following, or to special cases of it:

4re = mi + m2 + m3 + m4;       m,- = a*,- bi (i = 1, 2, 3, 4):

(61) ^
2>((<*i-d*,*i+ «*,<*»-¿4, i» + Ö4)|) = 0,

where cp((x, y, z, w)\) =</>((«, y, - z, - w)\), and <piixty, z,w)\)

changes sign under each of the 12 odd substitutions on x, y, z, w.

37. Liouville (11; p. 301, (o-)) has given one example of a paraphrase in-

* § 15 (19) comes under this case.
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vplving a wholly arbitrary function of a single variable.   By the present

methods such paraphrases may be found for arbitrary functions of n variables.*

For, letf(xx,x2, • -- ,xn) denote an arbitrary function, then:

(62)    2/(a;i,a;2, ••»,«.) =fi((xi,x2, •••,a;n)|) +f2(\(xx,x2, <•• ,xn)),

where fx, /2 are given by:

fliiXi,X2, ■■• ,x„)\)

= fiXl, X2,   • ■ • , Xn) +/( — XX,   — X2,   • • • ,   — Xn) ,

(63)
foi\iXl,X2,   ••■ ,Xn))

- f(Xi, X2,   • ■• ,Xn)   — fi— Xi,   — X2,   ••• ,   — X„).

Hence, if by any means we have deducea

EcF((a,i, ai2, •••, ain)\) = 0,
(64) _    /    ,

2_,CiG(\(aii,ai2, ••• , a,„)) =0,

in which F is arbitrary of parity p ( n | 0 ), G arbitrary of parity p ( 01 n ), we

may choose F m fo, Q m ft, and by (62) infer

(65) Ec,/(o,i, a,-2, • • •, a,„) = 0.

Pairs of paraphrases such as (64) are furnished by the elliptic and theta ex-

pansions; hence also paraphrases of the kind (65).

38. Returning for a moment to § 35, we shall illustrate the use of linear

transformations in non-homogeneous paraphrases by giving an alternative

proof of Lemma 9. The general case admits of similar treatment. Writing

a;i = ¿i x + mi y, x2 = h x + m2 y in (37), we infer, as in § 32 (49), h, mx,

¿2, to2 denoting arbitrary integral constants :

r

E [/(¿i «il + ¿2 ai2, mi an + m2 ai2 \) +f(li aiX — l2 ai2, mx aix — m2 ai2\)
<=i

— /(¿i ai3 + l2 an, mi a<3 + m2 an\) — f (h au — h au, mi ai3 — to2 ai41) ]

= 2 E[/(¿2a¿6, m2atB|) - fihan, mxau\)].
i=i

Setting in this lx = to2 = 1, l2 = mi = 0, we find :

r .i

E[/(aii.a»|>-/(<*«» »«Dl = E/(0,ai6|) -/(ai6, 0|)],
1=1 i=l

as stated in Lemma 9.

* Such paraphrases do not appear to be numerous for the elliptic functions. On the other

hand they are of universal occurrence for the theta functions of more than one variable. An

account of Kummer's surface from this point of view will be published elsewhere.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



30 E.  T.   BELL

We have merely sketched a few of the principal transformation processes,

which will be more fully developed when we have written out the elliptic and

theta series in a form suitable for paraphrase, to which we pass next, trans-

lating as we go the results into paraphrases of the kind described in this paper.
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