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ABSTRACT

Motivation: The large, complex networks of interactions between
proteins provide a lens through which one can examine the
structure and function of biological systems. Previous analyses
of these continually growing networks have primarily followed
either of two approaches: large-scale statistical analysis of holistic
network properties, or small-scale analysis of local topological
features. Meanwhile, investigation of meso-scale network structure
(above that of individual functional modules, while maintaining
the significance of individual proteins) has been hindered by
the computational complexity of structural search in networks.
Examining protein–protein interaction (PPI) networks at the meso-
scale may provide insights into the presence and form of
relationships between individual protein complexes and functional
modules.
Results: In this article, we present an efficient algorithm for
performing sub-graph isomorphism queries on a network and show
its computational advantage over previous methods. We also present
a novel application of this form of topological search which permits
analysis of a network’s structure at a scale between that of individual
functional modules and that of network-wide properties. This analysis
provides support for the presence of hierarchical modularity in the
PPI network of Saccharomyces cerevisiae.
Contact: ying.liu@utdallas.edu

1 INTRODUCTION
Recent advances in experimental techniques have led to a wealth
of data describing the processes that produce life. Underlying
many of these processes are complex networks of interacting
proteins. New high-throughput techniques for detecting protein–
protein interactions (PPIs) are quickly revealing the large sets of
interactions between proteins in a range of model species (Aebersold
and Mann, 2003; Fields, 2005). Both the size and the number of
datasets describing these networks are growing rapidly.

As in the period ensuing development of high-throughput
techniques for genome-scale sequencing, the current growth in
interaction network data has led to a lively field of research: the
development of computational tools and techniques for biological
network analysis. Work is ongoing in extracting useful information
from physical PPI networks, transcription networks (Guelzim et al.,
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2002), metabolic networks (Jeong et al., 2000; Lacroix et al., 2006),
gene expression data (Zhang et al., 2005) and combination networks
formed from superpositions of multiple network datasets (Yeger-
Lotem et al., 2004; Zhang et al., 2005). Fortunately, previous
research in related fields such as the analysis of social and
complex networks (Albert et al., 2000; Strogatz, 2001) provides
those developing analytical techniques for application to biological
networks with a solid theoretical foundation upon which to build.

In the study of PPI networks, previous work has primarily
followed either of two approaches: large-scale statistically oriented
study, or exact local topological analysis. Studies focusing on
the large scale have been useful in uncovering aspects of high-
level structure that seem to occur across all of the currently
available PPI networks. Discoveries coming from this research
include the particular degree distribution (Jeong et al., 2000),
clustering properties (Spirin and Mirny, 2003; Yook et al., 2004) and
possible hierarchical structure of the examined networks (Wuchty
and Almaas, 2005; Yook et al., 2004). Thus far, studies examining
the networks on a smaller scale have focused on functional module
detection (Bader and Hogue, 2003; Enright et al., 2002; Spirin
and Mirny, 2003; Ziv et al., 2005), protein function prediction
(see Sharan et al. 2007 for a review of network-centric methods)
and motif discovery (Chen et al., 2006; Milo et al., 2002;
Wuchty et al., 2003; Yeger-Lotem et al., 2004). Both module
membership and protein function have been shown to be strongly
influenced/expressed by the topology of the interactions surrounding
a protein (Wuchty and Almaas, 2005; Yook et al., 2004). More
recently, a bridge has been provided between network-wide and local
properties through the introduction of network similarity measures
based on sub-graph frequencies (Pržulj et al., 2004), including one
called graphlet degree distribution, which generalizes degree of
distribution using the distribution of small sub-graphs around each
vertex (Pržulj, 2007).

Methods such as motif discovery and network comparison by
sub-graph frequencies or graphlet degree of distributions require
searching for exact structural patterns within PPI networks. Such
searches can be performed either by sampling sub-graphs from
a network or by enumerating the sub-graphs within a network
that are isomorphic to some query graph. Sub-graph querying
(Grochow and Kellis, 2007) and sub-graph sampling (Wernicke,
2006) have both been used for motif discovery, while sampling
has also been applied to graphlet-based network comparison (Pržulj
et al., 2006). Unfortunately, both the sampling and sub-graph
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query-based approaches require solving computationally difficult
problems. Sampling requires that general sampled graphs be given
a canonical label (Babai and Luks, 1983) and sub-graph querying
requires solving many instances of the sub-graph isomorphism
problem. The computational complexity of both approaches limits
the size of the structures for which precise searches are tractable. Yet,
it may be desirable to search for exact appearances of meso-scale
structures within PPI networks, as analysis at this scale is likely
to provide information describing the existence and structure of
higher order relations between groups of proteins. Such higher
order relations may represent the interactions occurring between
functional modules and/or complexes, as well as the way in which
such interactions are arranged. These group-level interactions may
provide evidence for or against meta-modular structure in a network,
such as hierarchical modularity in PPI networks.

In this article, we present an algorithm based on the creation
and use of certain constraint sets that permit rapid elimination of
candidate vertices during the backtracking procedure, which forms
the core of sub-graph isomorphism search. This algorithm offers a
significant computational advantage over previous methods, such as
those used in motif discovery and graphlet analysis. Further, to show
that applications of topological search are yet to be exhausted, we
present a novel method of using sub-graph queries for investigating
the meso-scale structure of PPI networks. This method extracts
regions of a network matching the topologies of query patterns
designed to highlight potentially significant aspects of meso-scale
network structure. We show that, using this method, a strong
argument can be made for the existence of hierarchical modularity
in PPI networks.

This article is organized as follows. In Section 2, we give a
brief description of the previously developed backtracking and
symmetry-breaking (Grochow and Kellis, 2007) techniques used
by our algorithm followed by a description of our algorithm. In
Section 3, we show the relative efficiency of our algorithm. In
Section 4, we describe our new method for pattern-based network
decomposition and present results from its application to the PPI
network of Saccharomyces cerevisiae. Throughout this article, we
use the terms graph/network and vertex/node interchangeably due
to their differing usage in the bioinformatics and computer science
communities.

2 THE ALGORITHM
Our algorithm is designed to solve the following problem: given
a query graph Gq, find all sub-graphs in a source graph Gs
that are isomorphic to Gq. Our search algorithm comprises three
components. The first is a basic backtracking search used in previous
motif discovery algorithms, which is then enhanced by the second,
a symmetry-breaking technique presented by (Grochow and Kellis,
2007).

To these, we add a third component, a constraint set for each vertex
v in Gq that describes the set of all vertices in Gs that are potentially
mappable onto v under some mapping of Gq onto an isomorphic
sub-graph of Gs. These constraint sets permit quick elimination
of candidate vertex pairs during the backtracking search, as many
vertices in the source graph will be absent from a given constraint set.
Generating these constraint sets requires a constraint database that is
populated by performing an initial set of specific sub-graph queries.
This database can be quickly populated using a modified version of

the basic backtracking search. Our constraints are linked to the basic
bactracking search, with symmetry-breaking, by the graph-theoretic
concepts of canonical labels and automorphism orbits.

2.1 Graph-theoretic concepts
We define a graph G as G= (V ,E), where V is the set of vertices in
the graph and E is the set of its edges. We define an ordering of a
graph to be a specific ordering of its vertices. Given an ordering o,
one can produce the adjacency matrix Mo that o induces by ordering
the vertices of G as dictated by o and then generating an adjacency
matrix that respects this ordering.

If two graphs Gi and Gj are isomorphic, then there exist orderings
oi of Gi and oj of Gj such that Moi =Moj . Henceforth, if we say
Gi =Gj , then we mean that Gi and Gj are isomorphic. A canonical
labeling for a graph is given by any labeling function l such that,
for any two graphs Gi and Gj:

l(Gi)= l(Gj) ⇐⇒ Gi =Gj.

One canonical label can be found by interpreting all possible
orderings of a graph’s vertices and selecting the ordering omax such
that Momax , when interpreted as a binary number, is maximized
(McKay, 1981). For example, we create this binary number by
concatenating the rows of an adjacency matrix (Fig. 1). In this
article, we refer to any consistent canonical labeling of some graph
G as lC(G).

An automorphism of a graph G is any mapping of the graph’s
vertices onto each other induced by any two orderings oi and oj
such that Moj =Moi . We refer to the set of all automorphisms of G
as Aut(G). The automorphism orbits of G are the maximal sets of the
vertices in G that are closed under all mappings in Aut(G). That is, an
automorphism orbit A, of a graph G, contains all vertices in G, which
are mapped onto each other by automorphisms inAut(G). We refer to
the automorphism orbit to which a vertex v belongs asAutOrb(v). We
also define a canonical ID for each automorphism orbit of a graph G
with respect to our definition of a canonical matrix. We generate
the ID of each automorphism orbit by examining the canonical
matrix for G and giving sequential IDs to the automorphism orbits
of G based on their order of first appearance in the matrix. Though
vertices from various automorphism groups may intermingle within
the ordering corresponding to a canonical labeling, we look only
at the order in which each automorphism group has a vertex first
appear, which will be consistent across the possibly numerous
canonical orderings/labelings given by a consistent canonical
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Fig. 1. On the left is a graph G and on the right is its canonical matrix form.
The canonical matrix form was determined by finding the ordering of the
vertices that gave the largest binary number when the rows of the matrix were
concatenated. The corresponding number in this case is 01111101...10000.
The automorphism groups of G have been circled and labeled as 1, 2 and 3.
Under our ID assignment scheme, automorphism group 2 would receive the
ID 0 as vertex c appears first in the canonical matrix ordering.
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labeling function. For an example of automorphism groups and their
ID assignments, see Figure 1.

2.2 Backtracking and symmetry-breaking
The basic backtracking algorithm for finding all sub-graphs in a
source graph Gs that are isomorphic to a query graph Gq attempts,
for each vertex v in Gs and each vertex u in Gq, to find all isomorphic
mappings of Gq onto Gs such that u is mapped onto v. To do
this, a mapping, I , of Gq onto Gs is initialized for each such (v,u)
pair. Backtracking then recursively extends I using each pair of
compatible vertices v′ in Gs and u′ in Gq such that v′ and u′ are
both adjacent to vertices already in I . Here, compatible pairs of
vertices are those that can extend the mapping I while maintaining
the isomorphism of the partial mapping of Gq onto Gs induced by I .
An isomorphism has been found once I maps all vertices in Gq onto
compatible vertices in Gs.

Unfortunately, this naïve method finds, for each sub-graph g in Gs,
such that g=Gq, all mappings of Gq onto g. The number of such
mappings is equal to the number of automorphisms in Aut(Gq),
which grows factorially with the number of vertices in Gq. We
can avoid these ‘repeated’ mappings by using symmetry-breaking
constraints. The symmetry-breaking constraints ensure that only one
distinct mapping of Gq onto each such g is found, thus reducing the
number of found mappings by a factor equal to |Aut(Gq)|. Briefly,
the symmetry-breaking constraints rely on assigning distinct integer
IDs to all vertices in Gq and Gs, and requiring that any mapping of
Gq onto Gs induces numerical orderings of the vertex IDs that are
consistent across the vertices in both Gq and Gs. Determining what
this ordering should be, so that only one allowable mapping of Gq
onto Gs exists for any sub-set of the vertices in Gs, is at the heart
of symmetry-breaking constraint generation. Full explanation of the
generation and use of symmetry-breaking constraints can be found
in Grochow and Kellis (2007).

2.3 Generating constraint sets for the source graph
The database used for per-vertex constraint generation contains
entries for each query graph Gq used to populate it. The entry for
each Gq is a list of constraint sets, one for each automorphism orbit
of Gq. The entry for Gq is referenced by lC(Gq) and the entries for
its automorphism orbits are referenced by their respective canonical
IDs. The constraint set for an automorphism orbit A of query graph
Gq contains the name/label of each vertex v in the source graph
Gs such that there exists a mapping of Gq onto some isomorphic
sub-graph g of Gs that maps some member of A onto v.

The constraint sets for each query graph Gq can be generated
by performing a slightly modified version of the basic backtracking
search described above. This search is performed by checking each
vertex vs in Gs against a representative vq from each automorphism
orbit A of Gq. If an isomorphic mapping exists which maps vq onto
vs, then vs is added to the constraint set for A. This isomorphism
also implies a mapping for each other vertex us from Gs onto which
it maps some vertex uq from Gq. Each such us can be added to
the constraint set for AutOrb(uq). This allows the skipping of any
future checks for some vs against some vq where vs is already in
the constraint set for AutOrb(vq). In practice, this allows quickly
covering a graph with a number of mappings of Gq onto Gs that
is much smaller than the total number of distinct appearances
of Gq in Gs.

If sub-graphs with n vertices will be sampled while generating
constraint sets for each vertex in a query graph, as discussed in the
next section, then it is best to generate the constraint sets for all
possible graphs of size n using the method described above. The
database can be bootstrapped, starting with all connected graphs
of some small size k, and then using the generated database to
accelerate the generation of the database entries for all connected
graphs of size k+1, and so on, until size n is reached.

In practice, this database can be generated quickly, as supported
by our speed tests (Section 3). We used McKay’s geng tool (McKay,
1998) for enumerating non-isomorphic, connected graphs of a given
size. The database can be generated on the fly and stored in memory
as a simple hash-map for smaller graph sizes. However, the number
of graphs for sizes greater than seven makes this impractical. Thus,
for larger graph sizes we stored this database in an on-disk hash-map,
which also allows it to be used in later searches without regeneration.

2.4 Vertex constraints for a query sub-graph
Given a constraint database for a source graph Gs, a set of constraints
for each vertex in any query graph Gq can be generated as follows.

1. For each vertex v in Gq, a sub-graph g from Gq having n
vertices and including v is sampled, where n can be equal
to any of the graph sizes that were used in generating the
constraint database.

2. For each g, lC(g) is calculated and used to retrieve the vertex
constraint sets for the automorphism orbits of g from the
database.

3. For each vertex u in each sampled sub-graph g, the vertex
constraint set for AutOrbg(u) is added to a list of constraint
sets associated with u. Note that each u is necessarily in Gq,
as each g is a sub-graph of Gq.

4. The final constraint set for each vertex in Gq is generated by
taking the intersection of all of the constraint sets that were
associated with it during step 3.

Using these constraints during the backtracking search is
straightforward. When checking for the compatibility of some vertex
v from Gs with some vertex u from Gq, as previously described,
one first checks if v is in the constraint set for u. If it is not,
then the vertices are incompatible. If it is, then one continues the
compatibility check as before. In Theorem 1, we show that the
intersection of constraints performed in step 4 does not preclude
any viable mappings of Gq onto Gs, as only source graph vertices
fundamentally incompatible with a query graph vertex will fail to
appear in one or more of the constraint sets associated with that
vertex during step 3.

Theorem 1. Each vertex v in the source graph Gs that does not
appear in the final constraint set for some vertex u in the query
graph Gq cannot be mapped onto u by any isomorphic mapping of
Gq onto Gs.

Proof. If a vertex v does not appear in the constraint set for u,
then there exists a sub-graph g of Gq, with g sampled in step 1,
in which u is a member of an automorphism orbit A such that v
cannot be mapped onto any member of A. If v were mappable onto
a member of A, then v would have appeared in the constraint set for
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AutOrbg(u) that was associated with u in step 3. As u is a member
of A, v cannot be mapped onto u under any isomorphic mapping
of g onto Gs. As g is a sub-graph of Gq, this implies that v is not
mappable onto u under any isomorphic mapping of Gq onto Gs.

2.5 Algorithm speed results
To show the computational benefits offered by our constraints,
we measured the ratio between times required for constrained and
unconstrained searches across a range of query graph sizes and edge
densities. In these tests, the only additional constraints used during
constrained search were those described in the previous section.
Both constrained and unconstrained searches made use of symmetry-
breaking and several additional heuristics during backtracking. The
additional heuristics ensured that, at any point during backtracking,
all mapped pairs of vertices (v,u), with v in the source graph and
u in the query, were such that v had at least as many unmapped
neighbors as u. These heuristics are equivalent to those used in the
VF2 graph matching algorithm (Cordella et al., 2001), as applied to
undirected graphs.

Thus, our tests measure the relative reduction in search space
exploration when our constraints are added to those presented in
previous work. We also note that, as with any other algorithm that
finds all instances of an arbitrary sub-graph Gq in a source graph
Gs, our algorithm has a running time that is exponential in the
size of Gq, as the number of instances of Gq in Gs is potentially
exponential. Thus, even if we could find each instance of Gq in
constant time (e.g. using a constant time algorithm/oracle for sub-
graph isomorphism), the total time for counting all instances would
remain exponential.

We measured time ratios between constrained and unconstrained
searches for queries comprising from 8 to 19 vertices. At each
query size, we independently measured the time ratios at four
different query densities: 0.2, 0.4, 0.6 and 0.8. For each query
size n, at each query density d, 100 connected Erdos–Renyi random
graphs of size n and edge density d were generated, and the

Fig. 2. This figure plots the ratio between the times required for
unconstrained and constrained searches across sets of 100 randomly
generated queries at each edge density and query size, with higher ratios
representing greater benefits from using the constraints. The edge densities
used were 0.2, 0.4, 0.6 and 0.8, with separate speed ratio plots given for each
density. A plot of the cumulative speed ratio across all densities is also given
(i.e. ‘Total’).

Fig. 3. This figure gives the cumulative constrained and unconstrained
search times required for processing 400 queries at each query size from 8 to
19. At each query size, 100 random connected query graphs were processed
for each of the edge densities: 0.2, 0.4, 0.6 and 0.8. The unconstrained search
time appears to approach a limit as we stopped individual queries after
1000 s of computation, with this limit being achieved more frequently with
increasing query size and density. The minimum and maximum cumulative
constrained search times were 778 s and 1998 s, respectively, with the
maximum occurring at a query size of 14, primarily due to a single
pathological query, which forced the constrained search to time-out.

time ratio was measured as: timeu/timec, where timeu and timec
were, respectively, the total times required for unconstrained and
constrained processing of these queries. The measured time ratios
are shown in Figure 2, which also includes the cumulative time
ratios between unconstrained and constrained searches taken across
all densities, for each query size. The cumulative time ratios spanned
from a minimum ratio of 4.41 for query graphs with eight vertices to
a ratio of 142.5 for query graphs with 17 vertices, while the ratios for
larger graphs began to suffer due to an artificial upper bound that we
placed on both the constrained and unconstrained search times. This
bound was necessary due to the presence of pathological queries
that required an impractical time to complete.

In Figure 3, we also provide a plot of the cumulative times for
processing all 400 queries of various densities at each query size. In
this plot, the cumulative time for unconstrained searches appears to
plateau due to our imposed limit on search time, with the maximum
possible cumulative time at each graph size being 400 000 s, as
we set the individual query time-out to 1000 s. It was common for
queries with 15 or more nodes and with edge densities of 0.6 or 0.8
to time-out during unconstrained search (e.g. 67 out of 100 queries
with 18 nodes and an edge density of 0.8 timed-out). Only one
constrained search out of the 3600 performed timed-out. Generally,
the unconstrained search time was strongly affected by the edge-
density of a query, with significantly more time required when
processing denser queries. The effects of density were drastically
reduced when using our constraints, thus explaining the differences
in the time-ratio curves plotted in Figure 2, wherein the time-ratios
for denser queries favor constrained search more significantly than
the time-ratios for sparser queries.

It is also important to note the time required to fill the database
used in constraint generation. For every distinct eight-node graph g,
the completed database contained lists of all vertices in the source
PPI network that were mappable onto each automorphism group
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Table 1. CPU time for exhaustive search of all seven and eight vertex graphs

Graph size Constrained Unconstrained Time saved Ratio
time (s) time (s) (s)

7 285 1811 1526 6.35
8 7258 44 619 37 361 6.14

of g. The database was bootstrapped as previously discussed, and
the time required to do so was 4477 s. This is significantly <37 361 s
that were saved by using the database during exhaustive search for
all connected eight vertex graphs, as shown in Table 1. Such an
exhaustive search might be used in calculating sub-graph densities
for network comparison as in Pržulj et al. (2004), or in motif
discovery. Additionally, the database produced in order to generate
the constraints for each query graph is an inverse of the mapping used
in Pržulj (2007) for comparing the vertices in a source network based
on the automorphism groups of small sub-graphs to which they can
be mapped during isomorphic mappings of those sub-graphs onto
the source network.

3 PATTERN-BASED NETWORK DECOMPOSITION
While the computational advantages of our algorithm are useful in
existing applications of topological search to PPI network analysis,
we feel that the potential applications of such search have yet to be
fully explored. Thus, in this section, we present a novel approach to
using sub-graph queries that allows a PPI network to be decomposed
into sub-networks exhibiting specific structural patterns.

Specifically, we have developed a method intended for
investigating the meso-scale interaction patterns both within and
between densely interacting groups of proteins (e.g. functional
modules and complexes) that are typically obscured by the inherent
noise in high-throughput interaction datasets. These interaction
patterns can be revealed by creating generalizations of their
topological structure and then searching for all appearances of each
generalization in the source network. These searches are performed
using the algorithm presented in Section 2. The next sub-section
describes the design and application of such pattern generalizations.
A similar approach based on generalizing the topology of network
motifs was presented and applied to transcription networks in
Kashtan et al. (2004). Another method that relies on searching for
specific topological structures in a PPI network was presented in
Palla et al. (2005), in which network regions coverable by partially
overlapping cliques of the same size were taken to be functional
modules. Our method differs from Palla et al. (2005) in that it allows
searches for arbitrary structures, including overlapping cliques,
some of which may uncover relationships beyond co-membership
in functional modules and complexes.

3.1 Generating and using query patterns
Given a specific form of inter-module interaction, deriving
generalized query patterns is simple. As large near-cliques are likely
to be completely coverable by multiple smaller cliques, a graph
property that Grochow and Kellis referred to as combinatorial
clustering, a query pattern may be created at the smallest size
which adequately represents some desired structural features and
allowed to ‘expand’ to cover larger sub-graphs, which still fit the

Fig. 4. The top row shows a four-node clique covering all edges and nodes
in a dense eight-node graph. The bottom row shows overlapping four-node
cliques expanding to fully cover overlapping dense six-node graphs. In this
figure, the light colored nodes and the solid edges represent those covered
by each simple pattern as it ‘expands’ to cover a larger graph containing
all nodes and edges shown. The expansion process shown would result in
both of the larger graphs being included, in their entirety, in the extracted
networks (ENs) for their respective pattern generalizations, as the closure
over all nodes and edges included in isomorphic mappings of the pattern
generalizations onto the larger graphs includes all nodes and edges in the
larger graphs.

Fig. 5. Illustration of four sample pattern generalizations. The two left-most
patterns are a linear chain of ‘shared member’ modules (top) and a linear
chain of ‘interacting member’ modules (bottom). The two right-most paterns
are a radial, hub-like arrangement of ‘shared member’ modules (left) and a
radial, hub-like arrangement of ‘interacting member’ modules (right). These
patterns were all significantly (P<<0.01) enriched in the source network
compared with an ensemble of 100 random networks generated by edge-
swapping, which preserves the source network’s degree of distribution.

interaction pattern that it was designed to represent. Two examples
of such pattern expansion are shown in Figure 4, which shows how
a dense module may be covered by a small clique query pattern
and how a pair of interacting/overlapping modules may be covered
by a small pair of overlapping cliques, such as those that Figure 5
refers to as a linear chain of ‘interacting members’ pattern. A pattern
generalization created using this property of graphs can be used to
filter the source network.

Filtering a source network using a generalized query pattern
proceeds as follows. First, all instances of the query in the source
network are found. Then, all edges and vertices from the source
network that do not appear in some instance of the query are
removed. Through this process, the source network is filtered,
allowing direct inspection of all regions of the source network that
have topologies matching the pattern that the query was designed to
represent. We refer to a filtered network thusly acquired as an EN.
A similar approach to easing visualization of network modules by
using k-cores to decompose a PPI network was examined in Bader
and Hogue (2002) and in Tong et al. (2001). Our approach here is
more general, allowing the application of arbitrary filters.
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Selecting appropriate query patterns is essential to revealing
biologically relevant structures embedded in the source network.
Several patterns that we applied as filters are shown in Figure 5.
The two patterns that we call linear chains are meant to highlight
two possible ways for communication to occur between functional
modules in the PPI network. The ‘shared member’ chain represents
communication between modules through a protein that participates
in both of the modules. The ‘interacting member’ chain is intended
to map onto modules that have a looser coupling, wherein the
communication is via proteins specific to each module. As shown
by the lower example in Figure 4, the proteins and interactions
in the modules themselves will be well covered by the clique
portions of the linear chain patterns. Variations on these patterns
are also potentially useful. For example, patterns could be designed
for finding modules which share multiple proteins instead of
only one.

3.2 An application of pattern-based network
decomposition

We applied this technique using several different pattern
generalizations. These searches provided support for hierarchical
modularity in the Yeast PPI network. All of the results in this
section were generated using a recent version of the Core PPI
network for Yeast downloaded from DIP (Salwinski et al., 2004).
This network describes 17 000 interactions between 5000 proteins.
Some pattern generalizations that we used are shown in Figure 5. All
of the generalizations that we searched for appeared as significantly
enriched motifs in the source networks with respect to an ensemble
of 100 random networks with the same degree of distribution as
the source network, indicating potential biological significance.
During our analysis, we occasionally had to determine boundaries
between overlapping groups of proteins (e.g. Fig. 6). We determined
these boundaries heuristically, by looking for ‘bottlenecks’ between
groups of densely interacting proteins. These bottlenecks exists
wherever the overlap between two groups of proteins is much
smaller than the size of either group.

The most immediate results and the largest EN both came from
using a four-node clique as the query pattern (Fig. 7). This EN
contained all proteins and all PPIs in the source network that
participated in any four-node clique. Some immediately interesting
observations can be made just from the size of the EN. The EN
contained 74.8% of all nodes in the source PPI network that have
degree greater than two (i.e. all nodes possibly involved in a clique of
size four). It also contained 67.1% of all edges in the source network
and 81.9% of all edges between nodes with degree greater than two
(i.e. all edges possibly involved in a clique of size four). These
numbers are significantly higher than would be expected in a random
network having the same degree sequence. In 1000 random networks
created to share the source network’s degree of distribution, four-
node cliques covered 2.6% of the nodes and 2.5% of the edges on
average.

The EN consisted of one large component having 587 nodes
and 2401 edges, one smaller component having 119 nodes and 792
edges, and a number of still smaller components. These components
likely represent the most evolutionarily conserved core of the Yeast
PPI network. It was shown by Wuchty et al. (2003) that proteins
participating in four-node cliques have an evolutionary conservation
rate that is over 400 times higher than that which would be expected.

Fig. 6. (a) Two overlapping modules taken from the EN that was generated
by using a four-node clique as a filter. Both modules 1 and 2 show
strong enrichments for MIPS categories 11.02.03 (i.e. mRNA synthesis) and
11.02.03.01 (i.e. general transcription activities). For the former category,
modules 1 and 2 show respective enrichment P-values of 10−11 and 10−4. For
the latter category, the modules show respective enrichments of 10−15 and
10−5. However, for category 11.02.03.01.04 (i.e. transcription elongation),
a sub-category of 11.02.03.01, module 2 shows an enrichment of 10−9, with
module 1 showing no enrichment. Module 1 shows an enrichment of 10−12

for category 16.03.01 (i.e. RNA binding), a category for which module 2 is
not enriched. (b) A series of overlapping modules that appeared as shown
when the source network was filtered using the pattern that Figure 5 referred
to as a linear chain of shared members. These modules were hidden in the
largest connected component of the EN shown in Figure 7, thus showing the
utility of more selective filter patterns. Both groups 1 and 2 in this figure
show enrichment P-values < 10−7 in MIPS categories 10.03.01.01.01 and
11.02.03.04. These categories represent the G1 phase of mitotic cell division
and transcription control, respectively. Though they share function, these
modules also have specializations. Module 1 shows an enrichment of 10−10

in MIPS category 01.03.16.01 (i.e. RNA degradation), a category for which
no proteins exclusively in module 2 are annotated. Module 2 shows strong
enrichments in MIPS categories 14.07.04 (i.e. modification by acetylation,
deacetylation) and 42.10.03 (i.e. organization of chromosome structure),
with those values being 10−11 and 10−8, respectively. Only one protein in
module 1 and not in module 2 is annotated for either of these categories.
This connected component stood alone in the EN from which it was taken.

The same work also observed that these cliques display a remarkable
level of functional homogeneity, in agreement with our observation
of strong functional enrichment among modules in the EN.

Examination of both the components in the EN and
their constituent proteins’ functional annotations supported the
hierarchical modularity of the source network. While the functional
modules detected by clustering methods such as MCODE (Bader
and Hogue, 2003) tend to be small and highly specialized, it
becomes evident that these small modules are linked together into
larger, functionally related groups of modules when pattern-based
decomposition is applied. This hierarchical structure was shown by
adjacent small modules showing both shared and distinct functional
enrichments, calculated using the hyper-geometric mean and the
annotations in the MIPS CYGD (Mewes and et al, 2002). Figure 6a
gives an example of such a relationship between adjacent modules,
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Fig. 7. The network extracted using a four-node clique as a query pattern. Group 1 contains the modules described in Figure 6a. Group 2 contains the
overlapping modules from Figure 6b. Group 3 represents the majority of proteins in the complex with PPI ID 15740, the proteasome complex. Group 4
contains many of the nuclear pore (NUP) proteins. This apparently nebulous group was separated into its own component when a more complex query pattern
involving overlapping cliques was used. The largest, densest portion of group 5 contains many SEC proteins implicated in vesicular fusion and the small
cluster at approximately 4 o’clock contains all COG proteins listed by MIPS for vesicular recycling. This group thus diplays shared high-level function, with
differences at lower levels between adjacent modules. Group 6 has a functional enrichment of 10−24 in MIPS category 10.03.01.0 (M Phase). It covers all
proteins in the complex with PPI ID 16672 which was listed at the time this paper was written as supported only by ‘confirmational text mining’.

Fig. 8. This figure shows a pair of protein complexes that are revealed when the linear chain of shared members pattern is applied to the source network.
Together, groups 1 and 2 represent group 3 in Figure 7, which comprises the majority of proteins in the proteasome complex. The separation created between
groups 1 and 2, through filtering with a more specific pattern, is supported by their MIPS complex annotation, with group 1 representing most of MIPS
complex 360.10.20 (19/22S proteasome) and group 2 representing most of MIPS complex 360.10.10 (20S proteasome). The connected component in this
figure stood alone in the EN from which it was taken.

as observed in the EN. Similar evidence for hierarchical modularity
was previously presented by Rives and Galitski (2003).

When we used more selective query patterns to filter the network,
relationships that were hidden in the EN just described became
visible. One such set of proteins and interactions was revealed

when we filtered the source network using the pattern that Figure 5
refers to as a linear chain of ‘shared member’ modules. This sub-
network is described in Figure 6b. It contains two adjacent modules
which both appear to participate in the G1 phase of mitotic cell
division and transcription control. However, one of these modules

1820

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/25/14/1814/224366
by guest
on 25 July 2018



[18:40 22/6/2009 Bioinformatics-btp297.tex] Page: 1821 1814–1821

Pattern-based network decomposistion

shows specialization for RNA degradation while the other shows
specialization for modification by acetylation, deacetylation and
organization of chromosome structure.

Using the same linear chain of ‘shared member’ pattern, another
relationship hidden in the less selective EN was revealed, as
shown in Figure 8. This involves the large protein group labeled 3
in Figure 7. In the earlier EN, this group contained PRE, PUP,
RPN and RPT proteins which represent the majority of proteins
in the proteasome complex. In the more selective EN, this group
was split into two sub-components, one containing the PRE and
PUP proteins and one containing the RPN and RPT proteins. This
division is significant as these groups are identified in the MIPS
complex catalog as representing two separate complexes, with the
former representing complex 360.10.10 (i.e. 20S proteasome) and
the latter representing complex 360.10.20 (i.e. 19/22S proteasome).
These results, which were not apparent in the less selective EN,
both show a pattern of shared and differing function that supports
hierarchical modularity.

4 CONCLUSION
Analysis of the complex networks formed by the molecular
interactions underlying cellular processes is an important area
of research. Many of the interesting related problems are
computationally hard, and require sophisticated algorithms to keep
up with growing datasets. In this article, we have presented an
algorithm for one such problem, sub-graph isomorphism, that is
more efficient than previous algorithms.

Existing analyses of PPI networks have primarily focused on
either one/two body network-wide properties such as degree of
distributions and clustering coefficients, or local features such as
motifs and functional modules. We have shown that, while our
algorithm can benefit existing approaches to network analysis, the
sub-graph queries that it performs have potential for further use.
In concert with suitable query patterns that exploit some simple
properties of graphs, query-based graph search can be used to
examine network structure at a scale that reveals relationships within
and between groups of interacting proteins. In the Yeast PPI network,
these relationships support a hierarchical modularity. Insight into the
processes by which such aspects of network structure might evolve
is essential to our understanding of the functioning and evolution of
biological systems as a whole.
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