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SYMBOLIC POWERS AND MATROIDS

MATTEO VARBARO

(Communicated by Irena Peeva)

Abstract. We prove that all the symbolic powers of a Stanley-Reisner ideal
IΔ are Cohen-Macaulay if and only if the simplicial complex Δ is a matroid.

1. Introduction

Stanley-Reisner rings supply a bridge between combinatorics and commutative
algebra, attaching to any simplicial complex Δ on n vertices the Stanley-Reisner
ideal IΔ and the Stanley-Reisner ring K[Δ] = S/IΔ, where S is the polynomial
ring on n variables over a field K. One of the most interesting parts of this theory
is finding relationships between combinatorial and topological properties of Δ and
ring-theoretic properties of K[Δ]. For instance, it is a wide open problem to char-
acterize graph-theoretically the graphs G for which K[Δ(G)] is Cohen-Macaulay,
where Δ(G) denotes the independence complex of G. In [TY, Theorem 3], Terai
and Yoshida proved that S/ImΔ is Cohen-Macaulay for any m ∈ N≥1 if and only if
IΔ is a complete intersection. Because it is a general fact that all the powers of any
homogeneous complete intersection ideal are Cohen-Macaulay, somehow the above
result says that there are no Stanley-Reisner ideals with this property except for
the trivial ones. Since if S/ImΔ is Cohen-Macaulay, then ImΔ is equal to the mth

symbolic power I
(m)
Δ of IΔ, it is natural to ask:

For which Δ is the ring S/I
(m)
Δ Cohen-Macaulay for any m ∈ N≥1?

The answer is amazing. In this paper we prove that S/I
(m)
Δ is Cohen-Macaulay

for any m ∈ N≥1 if and only if Δ is a matroid (Theorem 2.1). The above result is
proved independently and with different methods by Minh and Trung in [MT, The-
orem 3.5]. Matroid is a well-studied concept in combinatorics, and it was originally
introduced as an abstraction of the notion of the set of bases of a vector space. The
approach to prove the above result is not direct, passing through the study of some
blowup algebras related to Δ. Among the consequences of Theorem 2.1 we remark
Corollary 2.9: After localizing at the maximal irrelevant ideal, IΔ is a set-theoretic
complete intersection whenever Δ is a matroid.

Received by the editors March 14, 2010 and, in revised form, June 25, 2010.
2010 Mathematics Subject Classification. Primary 13A15, 05E45; Secondary 13A30.

c©2010 American Mathematical Society
Reverts to public domain 28 years from publication

2357

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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2. The result

In this section we prove the main theorem of the paper.

2.1. Definition of the basic objects. First of all we define the basic objects in-
volved in the statement. For the part concerning commutative algebra and Stanley-
Reisner rings, we refer to Bruns and Herzog [BH], Stanley [St], or Miller and Sturm-
fels [MS]. For what concerns the theory of matroids, some references are the book
of Welsh [We] or that of Oxley [Ox].

Let K be a field, n a positive integer and S = K[x1, . . . , xn] the polynomial ring
on n variables over K. Also, m is the maximal irrelevant ideal of S. We denote
the set {1, . . . , n} by [n]. By a simplicial complex Δ on [n] we mean a collection
of subsets of [n] such that for any F ∈ Δ, if G ⊆ F , then G ∈ Δ. An element
F ∈ Δ is called a face of Δ. The dimension of a face F is dimF = |F | − 1, and
the dimension of Δ is dimΔ = max{dimF : F ∈ Δ}. The faces of Δ which are
maximal under inclusion are called facets. We denote the set of the facets of Δ by
F(Δ). For a simplicial complex Δ we can consider a square-free monomial ideal,
known as the Stanley-Reisner ideal of Δ:

IΔ = (xi1 · · ·xis : {i1, . . . , is} /∈ Δ).

The K-algebra K[Δ] = S/IΔ is called the Stanley-Reisner ring of Δ, and it turns
out that

dim(K[Δ]) = dimΔ + 1.

More precisely, with the convention of denoting by ℘A = (xi : i ∈ A) the prime
ideal of S generated by the variables associated to a given subset A ⊆ [n], we have

IΔ =
⋂

F∈F(Δ)

℘[n]\F .

Given any ideal I ⊆ S its mth symbolic power is I(m) = (ImSW ) ∩ S, where W is
the complement in S of the union of the associated primes of I and SW denotes
the localization of S at the multiplicative system W . If I is a square-free monomial
ideal, then I(m) is just the intersection of the (ordinary) powers of the minimal
prime ideals of I. Thus

I
(m)
Δ =

⋂

F∈F(Δ)

℘m
[n]\F .

The last concept which is needed to understand the main theorem of the paper is a
matroid. A simplicial complex Δ on [n] is said to be a matroid if, for any two facets
F and G of Δ and any i ∈ F , there exists a j ∈ G such that (F \{i})∪{j} is a facet
of Δ. It is well known that if Δ is a matroid, then K[Δ] is Cohen-Macaulay. In
particular, all the facets of a matroid have the same dimension. A useful property
of matroids is the following.

Exchange property. Let Δ be a matroid on [n]. For any two facets F and G
of Δ and for any i ∈ F , there exists j ∈ G such that both (F \ {i}) ∪ {j} and
(G \ {j}) ∪ {i} are facets of Δ.

2.2. Statement and proof. What we are going to prove is the following theorem.

Theorem 2.1. Let Δ be a simplicial complex on [n]. Then S/I
(m)
Δ is Cohen-

Macaulay for any m ∈ N≥1 if and only if Δ is a matroid.

Remark 2.2. Notice that Theorem 2.1 does not depend on the characteristic of K.
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Remark 2.3. If Δ is the k-skeleton of the (n − 1)-simplex, −1 ≤ k ≤ n − 1, then
Δ is a matroid. So Theorem 2.1 implies that all the symbolic powers of IΔ are
Cohen-Macaulay.

In order to prove Theorem 2.1 it is useful to introduce another square-free mono-
mial ideal associated to a simplicial complex Δ, namely the cover ideal of Δ:

J(Δ) =
⋂

F∈F(Δ)

℘F .

We have dim(S/J(Δ)) = n − dimΔ − 1. The name “cover ideal” comes from the
following fact: A subset A ⊆ [n] is called a vertex cover of Δ if A ∩ F �= ∅ for any
F ∈ F(Δ). Then it is easy to see that

J(Δ) = (xi1 · · ·xis : {i1, . . . , is} is a vertex cover of Δ).

Let Δc be the simplicial complex on [n] whose facets are [n]\F such that F ∈ F(Δ).
Clearly we have IΔc = J(Δ) and IΔ = J(Δc). Furthermore (Δc)c = Δ, and it is
known that Δ is a matroid if and only if Δc is a matroid ([Ox, Theorem 2.1.1]).
Actually the matroid Δc is known as the dual of Δ.

In order to have a good combinatorial description of J(Δ)(m) we need a concept
that is more general than a vertex cover: For a natural number k, a k-cover of Δ
is a nonzero function

α : [n] −→ N

such that
∑

i∈F α(i) ≥ k for any F ∈ F(Δ). Of course vertex covers and 1-covers
with values on {0, 1} are the same thing. It is not difficult to see that

J(Δ)(m) = (x
α(1)
1 · · ·xα(n)

n : α is an m-cover of Δ).

A k-cover α of Δ is said to be basic if for any nonzero function β : [n] −→ N with
β(i) ≤ α(i) for any i ∈ [n], if β is a k-cover of Δ, then β = α. Of course, to the
basic m-covers of Δ there corresponds a minimal system of generators of J(Δ)(m).

Now let us consider the multiplicative filtration Symb(Δ) = {J(Δ)(m)}m∈N≥1
.

We can form the Rees algebra of S with respect to the filtration Symb(Δ),

A(Δ) = S ⊕ (
⊕

m≥1

J(Δ)(m)).

In [HHT, Theorem 3.2], Herzog, Hibi and Trung proved that A(Δ) is noetherian.
In particular, the associated graded ring of S with respect to Symb(Δ),

G(Δ) = S/J(Δ)⊕ (
⊕

m≥1

J(Δ)(m)/J(Δ)(m+1)),

and the special fiber,

Ā(Δ) = A(Δ)/mA(Δ) = G(Δ)/mG(Δ),

are noetherian too. The algebra A(Δ) is known as the vertex cover algebra of Δ,
and its properties have been intensively studied in [HHT]. The name comes from
the fact that, writing

A(Δ) = S ⊕ (
⊕

m≥1

J(Δ)(m) · tm) ⊆ S[t]
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and denoting by (A(Δ))m = J(Δ)(m) · tm, it turns out that a (infinite) basis for
A(Δ)m as a K-vector space is

{xα(1)
1 · · ·xα(n)

n · tm : α is a m-cover of Δ}.

The algebra Ā(Δ), instead, is called the algebra of basic covers of Δ, and its
properties have been studied by the author with Benedetti and Constantinescu
in [BCV] and with Constantinescu in [CV] for a 1-dimensional simplicial complex
Δ. Clearly, the grading defined above on A(Δ) induces a grading on Ā(Δ), and it
turns out that a basis for (Ā(Δ))m, m ≥ 1, as a K-vector space is

{xα(1)
1 · · ·xα(n)

n · tm : α is a basic m-cover of Δ}.

Notice that if α is a basic m-cover of Δ, then α(i) ≤ m for any i ∈ [n]. This implies
that (Ā(Δ))m is a finite K-vector space for any m ∈ N. So we can speak about
the Hilbert function of Ā(Δ), denoted by HFĀ(Δ), and from what we said above
we have, for k ≥ 1,

HFĀ(Δ)(k) = |{basic k-covers of Δ}|.

The key to prove Theorem 2.1 is to compute the dimension of Ā(Δ). So we need
a combinatorial description of dim(Ā(Δ)). Being in general non-standard graded,
the algebra Ā(Δ) could not have a Hilbert polynomial. However, by [HHT, Corol-
lary 2.2] we know that there exists h ∈ N such that (J(Δ)(h))m = J(Δ)(hm) for
all m ≥ 1. It follows that Ā(Δ)(h) =

⊕
m∈N

(Ā(Δ))hm is a standard graded K-

algebra. Notice that if a set {f1, . . . , fq} generates Ā(Δ) as a K-algebra, then the

set {f i1
1 · · · f iq

q : 0 ≤ i1, . . . , iq ≤ h − 1} generates Ā(Δ) as a Ā(Δ)(h)-module.

Thus dim(Ā(Δ)) = dim(Ā(Δ)(h)). Since Ā(Δ)(h) has a Hilbert polynomial, we get
a useful criterion to compute the dimension of Ā(Δ). First recall that, for two func-
tions f, g : N → R, the writing f(k) = O(g(k)) means that there exists a positive
real number λ such that f(k) ≤ λ · g(k) for k � 0. Similarly, f(k) = Ω(g(k)) if
there is a positive real number λ such that f(k) ≥ λ · g(k) for k � 0.

The criterion for detecting the dimension of Ā(Δ). If HFĀ(Δ)(k) = O(kd−1),

then dim(Ā(Δ)) ≤ d. If HFĀ(Δ)(k) = Ω(kd−1), then dim(Ā(Δ)) ≥ d.

The following proposition justifies the introduction of Ā(Δ).

Proposition 2.4. For any simplicial complex Δ on [n] we have

dim(Ā(Δ)) = n−min{depth(S/J(Δ)(m)) : m ∈ N≥1}.

Proof. Consider G(Δ), the associated graded ring of S with respect to Symb(Δ).
Since G(Δ) is noetherian, it follows by Bruns and Vetter [BrVe, Proposition 9.23]
that

min{depth(S/J(Δ)(m)) : m ∈ N≥1} = grade(mG(Δ)).

We claim that G(Δ) is Cohen-Macaulay. In fact the Rees ring of S with respect to
the filtration Symb(Δ), namely A(Δ), is Cohen-Macaulay by [HHT, Theorem 4.2].
Let us denote by A(Δ)+ =

⊕
m>0 J(Δ)(m) and by M = m ⊕ A(Δ)+ the unique

bi-graded maximal ideal of A(Δ). The short exact sequence

0 −→ A(Δ)+ −→ A(Δ) −→ S −→ 0
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yields the long exact sequence on local cohomology:

. . . → Hi
M(A(Δ)+) → Hi

M(A(Δ)) → Hi
M(S) → Hi+1

M
(A(Δ)+)

→ Hi+1
M

(A(Δ)) → . . . .

By the independence of the base in computing local cohomology modules we have
Hi

M(S) = Hi
m(S) = 0 for any i < n. Furthermore, Hi

M(A(Δ)) = 0 for any i ≤ n
since A(Δ) is a Cohen-Macaulay (n + 1)-dimensional (see [BH, Theorem 4.5.6])
ring. Thus Hi

M(A(Δ)+) = 0 for any i ≤ n by the above long exact sequence. Now
let us look at the other short exact sequence,

0 −→ A(Δ)+(1) −→ A(Δ) −→ G(Δ) −→ 0,

where A(Δ)+(1) means A(Δ)+ with the degrees shifted by 1, and the corresponding
long exact sequence on local cohomology,

. . . → Hi
M(A(Δ)+(1)) → Hi

M(A(Δ)) → Hi
M(G(Δ)) → Hi+1

M
(A(Δ)+(1)) → . . . .

Because A(Δ)+ and A(Δ)+(1) are isomorphic A(Δ)-modules, Hi
M(A(Δ)+(1)) = 0

for any i ≤ n. Thus Hi
M(G(Δ)) = 0 for any i < n. Since G(Δ) is an n-dimensional

ring (see [BH, Theorem 4.5.6]), this implies, once again using the independence of
the base in computing local cohomology, that G(Δ) is Cohen-Macaulay.

Since G(Δ) is Cohen-Macaulay, grade(mG(Δ)) = ht(mG(Δ)). So, because Ā(Δ)
= G(Δ)/mG(Δ), we get

dim(Ā(Δ)) = dim(G(Δ))− ht(mG(Δ)) = n− grade(mG(Δ)),

and the statement follows. �

We are almost ready to show Theorem 2.1. We need just a technical lemma
which allows us to construct “many” basic covers.

Lemma 2.5. Let s ≥ −1 and d be integer numbers such that s ≤ d − 3. For any
positive integer k consider the set

Ak = {(a1, a2, . . . , ad, b1, b2, . . . , bd−s−1) ∈ N
2d−s−1 :

a1 + . . .+ ad = k, a1 + . . .+ ad−s+1 = b1 + . . .+ bd−s−1,
a1 ≥ a2 ≥ . . . ≥ ad, and b1, b2, . . . , bd−s−1 ≥ a2}.

Then |Ak| = Ω(k2d−s−3).

Proof. Let us set

Xk =

{
a1 ∈ N :

(d+ 1)k

d+ 2
≤ a1 ≤ (d+ 2)k

d+ 3

}
.

Of course, setting λ1 =
1

(d+ 2)(d+ 3)
, we have |Xk| ≥ λ1 · k.

For a fixed a1 ∈ Xk, set

Yk(a1) = {(a2, . . . , ad) : a1 + a2 + . . .+ ad = k}.
The vectors (a2, . . . , ad) ∈ Yk(a1) are as many as the integer partitions of k − a1
with at most d − 1 parts. Because a1 ∈ Xk these are at least as many as the
partitions k/(d+ 3)� with at most d− 1 parts. These, in general, are less than all

the monomials of degree k/(d+3)� in d− 1 variables, i.e.

(
d− 2 + k/(d+ 3)�

d− 2

)
,

since a permutation of the variables gives the same partitions but may give different
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monomials. Anyway, since this is the only reason, the number of the possible
(a2, . . . , ad) is at least

1

(d− 1)!

(
d− 2 + k/(d+ 3)�

d− 2

)
.

So there exists a positive real number λ2, independent on a1, such that |Yk(a1)| ≥
λ2 · kd−2.

Let a = (a1, a2, . . . , ad) be a vector such that a1 ∈ Xk and (a2, . . . , ad) ∈ Yk(a1).
Then set

Zk(a) = {(b1, . . . , bd−s−1) ∈ N
d−s−1
≥a2

: b1 + . . .+ bd−s−1 = a1 + . . .+ ad−s−1}.

It is easy to notice that the vectors (b1, . . . , bd−s−1) ∈ Zk(a) are as many as all the
monomials of degree a1+ . . .+ad−s−1− (d− s− 1)a2 in d− s− 1 variables. Clearly
we have

a1 + . . .+ ad−s−1 − (d− s− 1)a2 ≥ a1 − (d− s− 1)a2,

but a2 ≤ k − a1 ≤ k

d+ 2
. So we get

a1 + . . .+ ad−s−1 − (d− s− 1)a2 ≥ a1 − (d− s− 1)a2 ≥ (d+ 1)k

d+ 2
− dk

d+ 2
=

k

d+ 2
.

So the elements of Zk(a) are at least as many as the monomials of degree k/(d+2)�
in d− s− 1 variables. Therefore there is a positive real number λ3, not depending
on a, such that |Zk(a)| ≥ λ3 · kd−s−2.

Finally, we have that

|Ak| ≥
∑

a1∈Xk

∑

(a2,...,ad)∈Yk(a1)

|Zk(a)| ≥ (λ1 · k) · (λ2 · kd−2) · (λ3 · kd−s−2)

= λ1λ2λ3 · k2d−s−3.

�

Now we are ready to prove Theorem 2.1.

Proof. By the duality on the matroids it is enough to prove that S/J(Δ)(m) is
Cohen-Macaulay for any m ∈ N≥1 if and only if Δ is a matroid. Suppose that Δ
is (d− 1)-dimensional.

The if-part. Let us consider a basic k-cover α of Δ. Let F be a facet of Δ such
that

∑
j∈F α(j) = k (F exists because α is basic). Set

AF = {α(j) : j ∈ F}.
We claim that for any i ∈ [n] we have α(i) ∈ AF . In fact, if i0 ∈ [n] does not
belong to F , then, because α is basic, there exists a facet G of Δ such that i0 ∈ G
and

∑
i∈G α(i) = k. By the exchange property there exists a vertex j0 ∈ F such

that (G \ {i0}) ∪ {j0} and (F \ {j0}) ∪ {i0} are facets of Δ. But
∑

i∈(G\{i0})∪{j0}
α(i) ≥ k =⇒ α(j0) ≥ α(i0)

and ∑

j∈(F\{j0})∪{i0}
α(j) ≥ k =⇒ α(i0) ≥ α(j0).
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Hence α(i0) = α(j0) ∈ AF . The number of ways to give values on vertices of F

such that the sum of the values on the whole F is k are

(
k + d− 1

d− 1

)
. This implies

that, for k ≥ 1,

HFĀ(Δ)(k) = |{basic k-covers of Δ}| ≤ |F(Δ)| ·
(
k + d− 1

d− 1

)
≤

(
n

d

)
·
(
k + d− 1

d− 1

)
.

So HFĀ(Δ)(k) = O(kd−1); therefore dim(Ā(Δ)) ≤ d. But dim(S/J(Δ)) = n− d, so
by Proposition 2.4

d ≥ dim(Ā(Δ)) = n−min{depth(S/J(Δ)(m)) : m ∈ N≥1} ≥ d,

from which S/J(Δ)(m) is Cohen-Macaulay for any m ∈ N≥1.
The only if-part. Suppose to the contrary that Δ is not a matroid. Then there

exist two facets F and G of Δ and a vertex i ∈ F such that (F \ {i}) ∪ {j} is not
a facet of Δ for any j ∈ G. Let s be the greatest integer such that there exists
an s-dimensional subface F ′ of F \ {i} such that there is a (d− s− 2)-dimensional
subface of G whose union with F ′ is a facet of Δ. Notice that s ≤ d − 3 and s
might be −1. Let F0 ⊆ F \ {i} be an s-dimensional face and G0 ⊆ G a (d− s− 2)-
dimensional face satisfying the above conditions. Let (a1, . . . , ad, b1, . . . , bd−s−1) ∈
Ak, where Ak is the set defined in Lemma 2.5. Set F = {i1, . . . , id} with i1 = i and
F0 = {id−s, . . . , id}. Also, set G = {j1, . . . , jd} where G0 = {j1, . . . , jd−s−1}. Now
we define the following numerical function on [n]:

α′(v) =

⎧
⎨

⎩

ap if v = ip,
bq if v = jq and q < d− s,
k otherwise.

We claim that α′ is a k-cover, not necessarily basic. By the definition of α′ we
have to check that for any facet H of Δ contained in F ∪G0 we have the inequality∑

h∈H α′(h) ≥ k. If i /∈ H, then G0 ⊂ H by the maximality of s. But then we have
∑

h∈H

α′(h) =
∑

h∈G0

α′(h) +
∑

h∈H\G0

α′(h) ≥
∑

h∈G0

α′(h) +
∑

h∈F0

α′(h) = k.

If i ∈ H, then we have
∑

h∈H α′(h) = a1 +
∑

h∈H∩(F\{i}) α
′(h) +

∑
h∈H\F α′(h)

≥ a1 +
∑

h∈H∩(F\{i}) α
′(h) + |H \ F | · a2

≥ a1 + . . .+ ad = k.

Reducing the values of α′ where possible, we can make α′ in a basic k-cover α.
However we cannot reduce the values at the vertices of F ∪ G0 because of the
equalities ∑

h∈F

α′(h) = k and
∑

h∈F0∪G0

α′(h) = k.

Thus the basic k-covers of F(Δ) are at least as many as the cardinality of Ak. So
by Lemma 2.5 there exists a positive real number λ such that for k � 0 we have

HFĀ(Δ)(k) = |{basic k-covers of Δ}| ≥ λ · k2d−s−3 ≥ λ · kd.

So HFĀ(Δ)(k) = Ω(kd); therefore dim(Ā(Δ)) ≥ d + 1. Using Proposition 2.4 we
have that

min{depth(S/J(Δ)(m)) : m ∈ N≥1} ≤ n− d− 1,
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which contradicts the hypothesis that S/J(Δ)(m) is Cohen-Macaulay for any m ∈
N≥1. �

We end the paper by stating two corollaries of Theorem 2.1. First we recall
that the multiplicity of a standard graded K-algebra R, denoted by e(R), is the
leading coefficient of the Hilbert polynomial times (dim(R) − 1)!. Geometrically,
let ProjR ⊆ P

N ; i.e. R = K[X0, . . . , XN ]/J for a homogeneous ideal J . The
multiplicity e(R) counts the number of distinct points of ProjR ∩H, where H is a
generic linear subspace of PN of dimension N − dim(ProjR).

Corollary 2.6. A simplicial complex Δ is a (d − 1)-dimensional matroid if and
only if

dim(Ā(Δ)) = dim(K[Δ]) = d.

Moreover, if Δ is a matroid, then

HFĀ(Δ)(k) ≤
e(K[Δ])

(dim(Ā(Δ))− 1)!
kdim(Ā(Δ))−1 +O(kdim(Ā(Δ))−2).

Proof. The first fact follows from putting together Theorem 2.1 and Proposition
2.4. For the second fact, we have to recall that during the proof of Theorem 2.1,
we showed that for a (d− 1)-dimensional matroid Δ we have the inequality

HFĀ(Δ)(k) ≤ |F(Δ)| ·
(
k + d− 1

d− 1

)
.

It is well known that if Δ is a pure simplicial complex, then |F(Δ)| = e(K[Δ]) (for
instance see [BH, Corollary 5.1.9]), so we get the conclusion. �

Example 2.7. If Δ is not a matroid the inequality of Corollary 2.6 may not be
true. For instance, take Δ = C10, the decagon (thus it is a 1-dimensional simplicial
complex). Since C10 is a bipartite graph, Ā(C10) is a standard graded K-algebra by
[HHT, Theorem 5.1]. In particular it admits a Hilbert polynomial, and for k � 0
we have

HFĀ(C10)(k) =
e(Ā(C10))

(dim(Ā(C10))− 1)!
kdim(Ā(C10))−1 +O(kdim(Ā(C10))−2).

In [CV] it is proved that for any bipartite graph G the algebra Ā(G) is a homoge-
neous algebra with straightening law on a poset described in terms of the minimal
vertex covers of G. So the multiplicity of Ā(G) can be easily read from the above
poset. In our case it is easy to check that e(Ā(C10)) = 20, whereas e(K[C10]) = 10.

Let us introduce the last result of the paper. An ideal I of a ring R is a set-
theoretic complete intersection if there exist f1, . . . , fh ∈ R, where h = ht(I),

such that
√
(f1, . . . , fh) =

√
I. The importance of this notion comes from alge-

braic geometry, since if I is a set-theoretic complete intersection, then the variety
V(I) ⊆ Spec(R) can be defined set-theoretically by “cutting” the “right” number of
hypersurfaces of Spec(R). A necessary, in general not sufficient, condition for I to
be a set-theoretic complete intersection is that the cohomological dimension of it,
cd(R, I) = max{i : Hi

I(R) �= 0}, is h. By a result of Lyubeznik in [Ly] it turns out
that cd(S, IΔ) = n− depth(K[Δ]), so if IΔ is a set-theoretic complete intersection,
K[Δ] will be Cohen-Macaulay.
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Remark 2.8. In general if K[Δ] is Cohen-Maculay, then IΔ might not be a set-
theoretic complete intersection. For instance, if Δ is the triangulation of the real
projective plane with 6 vertices described in [BH, p. 236], then K[Δ] is Cohen-
Macaulay whenever char(K) �= 2. However, for any characteristic of K, IΔ need
at least (actually exactly) four polynomials of K[x1, . . . , x6] to be defined up to
radical (see the paper of Yan [Ya, p. 317, Example 2]), but ht(IΔ) = 3.

Corollary 2.9. Let K be an infinite field. For any matroid Δ, the ideal IΔSm is
a set-theoretic complete intersection in Sm.

Proof. By the duality on matroids it is enough to prove that J(Δ)Sm is a set-
theoretic complete intersection. For h � 0 it follows by [HHT, Corollary 2.2] that
the hth Veronese of Ā(Δ),

Ā(Δ)(h) =
⊕

m≥0

Ā(Δ)hm,

is standard graded. Therefore Ā(Δ)(h) is the ordinary fiber cone of J(Δ)(h). More-
over Ā(Δ) is finite as a Ā(Δ)(h)-module. So the dimensions of Ā(Δ) and of Ā(Δ)(h)

are the same. Therefore, using Theorem 2.1 and Proposition 2.4, we get

ht(J(Δ)Sm) = ht(J(Δ)) = dim Ā(Δ)(h) = �(J(Δ)(h)) = �((J(Δ)Sm)
(h)),

where �(·) is the analytic spread of an ideal, i.e. the Krull dimension of its ordinary
fiber cone. From a result by Northcott and Rees in [NR, p. 151], since K is
infinite, it follows that the analytic spread of (J(Δ)Sm)

(h) is the cardinality of a set
of minimal generators of a minimal reduction of (J(Δ)Sm)

(h). Clearly the radical
of such a reduction is the same as the radical of (J(Δ)Sm)

(h), i.e. J(Δ)Sm, so we
get the statement. �

Remark 2.10. Notice that a reduction of ISm, where I is a homogeneous ideal of
S, might not provide a reduction of I. So localizing at the maximal irrelevant ideal
is a crucial assumption of Corollary 2.9. It would be interesting to know whether
IΔ is a set-theoretic complete intersection in S whenever Δ is a matroid.
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Dipartimento di Matematica, Università degli Studi di Genova, Via Dodrcaneso 35,

16145, Genova, Italy

E-mail address: varbaro@dima.unige.it

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=775884
http://www.ams.org/mathscinet-getitem?mr=775884
http://www.ams.org/mathscinet-getitem?mr=2110098
http://www.ams.org/mathscinet-getitem?mr=2110098
http://www.ams.org/mathscinet-getitem?mr=0059889
http://www.ams.org/mathscinet-getitem?mr=0059889
http://www.ams.org/mathscinet-getitem?mr=1207587
http://www.ams.org/mathscinet-getitem?mr=1207587
http://www.ams.org/mathscinet-getitem?mr=1453579
http://www.ams.org/mathscinet-getitem?mr=1453579
http://www.ams.org/mathscinet-getitem?mr=2594636
http://www.ams.org/mathscinet-getitem?mr=0427112
http://www.ams.org/mathscinet-getitem?mr=0427112
http://www.ams.org/mathscinet-getitem?mr=1742346
http://www.ams.org/mathscinet-getitem?mr=1742346

	1. Introduction
	2. The result
	2.1. Definition of the basic objects
	2.2. Statement and proof

	Acknowledgements
	References

