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Sir, y o u  have but two topicks . . . 
I am sick of both. 

Boswell, Life of Samuel Johnson 

Summary. We have extended our calculation of the theoretical period of the 
Chandler wobble to account for the non-hydrostatic portion of the Earth’s 
equatorial bulge and the effect of the fluid core upon the lengthening of the 
period due to the pole tide. We find the theoretical period of a realistic 
perfectly elastic Earth with an equilibrium pole tide to be 426.7 sidereal 
days, which is 8.5 day shorter than the observed period of 435.2 day. Using 
Rayleigh’s principle for a rotating Earth, we exploit this discrepancy together 
with the observed Chandler Q to place constraints on the frequency de- 
pendence of mantle anelasticity. If Q, in the mantle varies with frequency u 
as u” between 30 s and 14 months and if Q, in the lower mantle is of order 
225 at 30 s, we find that 0.04 5 a 5 0.1 1 ; if instead Q, in the lower mantle 
is of order 350 near 200 s, we find that 0.11 5 a 0.19. In all cases these 
limits arise from exceeding the 68 per cent confidence limits of ? 2.6 day in 
the observed period. Since slight departures from an equilibrium pole tide 
affect the Q much more strongly than the period we believe these limits to be 
robust. 

1 Introduction 

For over a decade, the inversion of the observed periods and Q’s of the Earth’s free 
oscillations has been a significant and fruitful geophysical industry. The data necessary to 
this endeavour have been acquired in every instance from the intersection of very large 
seismic events with the availability either of extensive world-wide seismographic networks 
or of sophisticated long-period instruments. Ironically, the one normal mode which is 
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continually excited and which has been observed for about a century, the Chandler 
wobble, has not yet yielded much additional insight into the nature of the Earth’s interior. 
There is n o  a priori reason why this should be so; the period and Q of the Chandler wobble, 
like those of any other free oscillation, depend only upon the Earth’s physical properties 
(its spin rate, density distribution, rheology, geometry, etc.) and not upon any aspect of the 
normal mode’s energy source (whch in the case of the Chandler wobble is unknown). In 
fact, the purpose of this paper is to enlist the Chandler wobble into the normal mode 
enterprise. 

More than 1000 of the Earth’s free oscillations have now been observed and positively 
identified (Gilbert & Dziewonski 1975), and it might seem inappropriate to devote an entire 
paper to but one more mode, however exotic. For some purposes, however, the Chandler 
wobble is almost as important as all the rest of the Earth’s normal modes put together. 
Fig. 1 shows why. Conventional seismology only enables us to sample the Earth’s transient 
linear rheology over a limited period range from 54 min, the period of the mode &, to a 
fraction of a second, the practical limit for studying short period teleseismic body waves. 
The Chandler wobble samples the Earth at a frequency which, on a logarithmic scale, is as 
far below this seismic band as the entire band is wide. As a result the data provided by the 
Chandler wobble are uniquely valuable for investigating the frequency dependence of the 
Earth’s rheology. 

It is fitting that this topic be discussed in an issue honouring Sir Harold Jeffreys, since it 
was he who first pointed out the Chandler wobble’s importance in t h s  regard. Tn a series of 
papers beginning in 1958, Jeffreys advanced the idea that the transient rheology of the 
mantle could be modelled by the ‘modified Lomnitz law’ of creep. In essence, t h s  law states 
that the Q of the mantle varies with angular frequency u as 8, where a is a constant. His 
first paper on this subject (Jeffreys 1958a) was published, appropriately enough, in the 
inaugural issue of the CeophysicalJournal. In that and a companion paper (Jeffreys 1958b), 
he  employed the then accepted value of the Chandler wobble Q together with the 
elementary observation that teleseismic S wave pulses are not noticeably dispersed to 
determine that ‘a = 0.17 nearly’. In subsequent papers (Jeffreys & Crampin 1960, 1970; 
Jeffreys 1972, 1978), an error in the original paper was corrected, and a revised estimate of 
the Chandler wobble Q (Jeffreys 1968) as well as information about the damping of surface 
waves and other free oscillations was taken into account. His most recent conclusion (upon 
whch  we comment briefly in Appendix A) is that (Y = 0.2 * 9.05 (Jeffreys 1978). 

M. L. Smith a n d R  A. Dahlen 
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Figure 1. Schematic line spectrum of the observed free oscillations of the Earth showing the Chandler 
wobble and the elastic normal mode and teleseismic body wave regimes on a logarithmic frequency scale. 
The luni-solar body tides would appear about in the middle of the spectral gap but, as discussed in the 
text, they are not likely to shed any additional light on the Earth’s anelasticity. 
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The period and Q of the Chandler wobble 225 

Jeffreys’ ideas have been pursued and elaborated by Anderson & Minster (1979), who 
conclude ‘the data can accommodate a from about 0.2 to 0.4’. Their preferred value is 
a = 1/3, a value first proposed by Andrade (1910) for the transient creep of metals. Such 
intermediate values of a are, as Anderson CL Minster point out, also consistent with 
laboratory measurements of transient creep and internal friction of rocks at high tempera- 
ture. A value of LY = 0.27 has, e.g. just been measured for a mantle lherzolite subject to zero 
confining pressure by Berckherner, Auer & Drisler (1979). 

In this paper, we shall subject the hypothesis Q - u“ to a much more rigorous test than 
has yet been carried out, and we shall show that it is definitely consistent with both the 
observed period and Q of the Chandler wobble. We assume implicitly that a single absorption 
band extends from seismic frequencies, where it is responsible for the observed damping of 
seismic waves and the Earth’s free oscillations, down to 14 months, and that assumption too 
is shown to be consistent with the Chandler wobble data. The large gap in Fig. 1 between 
oS, and the Chandler wobble is glaring, and raises the question whether there is any geo- 
physical measurement which could provide mantle Q information between 54 min and 
14 months. The most obvious possibility is the semi-diurnal and diurnal Earth tides, but in 
fact their utility is extremely limited. The quantity which must be measured to determine Q 
at tidal frequencies is the phase shift of the observed tide behind equilibrium. For Q in the 
range 200-300 the expected phase shifts on gravimeters, strainmeters and tiltmeters are, 
according to Zschau (1979), of order OO.01 or less, and these will almost certainly by masked 
by poorly known ocean loading effects. We regard the outlook for obtaining direct Q in- 
formation in the gap between ,,S2 and the Chandler wobble as dim. 

The variation of mantle Q with frequency we find here is less than either Jeffreys 
or Anderson & Minster have indicated. Our preferred value of a is between 0.09 and 0.1 5, 
depending upon whether the average shear Q in the lower mantle is nearer 225,  as 
indicated by the &sobservations of Sipkin & Jordan (1980) or 350, as indicated by the 
normal mode observations of Sailor & Dziewonski (1978). Some uncertainty must be 
attached to these values because we have modelled the pole tide in the oceans as a strictly 
equilibrium tide. However, even if there are large departures from equilibrium, values as 
h g h  as a = l/3 can definitely be eliminated. If the pole tide is equilibrium and if the lower 
mantle seismic shear Q is nearer to 225 than to 350, the value a=O, i.e. a frequency- 
independent Q, will be shown to be consistent with the 90  per cent confidence intervals of 
the data. 

If the shear Q of the mantle is assumed to be constant with depth, we find the ratio of 
the Q of the Chandler wobble to that of the mantle at 14 months period to be 

if the strain due to pole tide loading is ignored and 

if it is taken into account. This conclusion may be surprising to many readers, as it was at 
first sight to us, since it is in conflict with a widely cited qualitative argument whch  
maintains that the ratio should be of order 10, because the bulk of the wobble’s energy is 
kinetic energy of rigid body rotation. A simple version of this argument is given by Stacey 
(1970, 1977) and, quite recently, Merriam & Lambeck (1979) have attempted a refinement. 
The method we use here to calculate the Q of the Chandler wobble given a Q distribution in 
the mantle has a rigorous theoretical basis, namely Rayleigh’s principle or normal-mode 
perturbation theory. Both Jeffreys (1978) and Anderson & Minster (1979) have in the 
course of their arguments introduced ad hoc ‘corrections’ to the observed Q of the Chandler 
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wobble in an attempt to account for its presumed unusual partition of energy. Those 
‘corrections’ are based on the amount by which mantle elasticity acts to lengthen the period, 
and we show here that they are unnecessary. Since, in most cases, the discrepancies between 
our results and those of previous workers can be traced to an incorrect accounting of the 
Chandler wobble energy budget by the latter, we present in Appendix A an alternative 
derivation of our results based upon an energy argument. 

Although the emphasis in this paper is on using the Chandler wobble to investigate the 
transient rheology of the mantle, we have attempted to provide a reasonably complete 
discussion of the various other factors which either definitely do or conceivably could have 
an influence on its period and Q. Much of the discussion is pedagogical in nature. 

M. L. Smith and F. A. Dahlen 

2 Summary of recent observations 

Unlike the other free oscillations of the Earth, the Chandler wobble has never been usefully 
observed on conventional seismic instruments such as gravimeters or strainmeters. It is 
manifested instead as a periodic motion of the Earth’s geographic axis in inertial space which 
produces a variation in the latitude of astronomical observatories. The International Latitude 
Service (ILS), which has monitored polar motion continuously since 1900, is one of the 
oldest international cooperative scientific projects on record. This service still operates, 
although it has been largely superseded by the International Polar Motion Service (IPMS), 
organized in 1962, and by the Bureau International de 1’Heure (BIH), which added polar 
motion determinations to its timekeeping service in 1955. Since about 1970, Doppler 
observations of artificial satellites have provided data superior to that obtained by the 
methods of classical astrometry, and satellite determinations of polar motion are currently 
being provided on a routine basis by the US Defense Mapping Agency (DMA). Since 1972, 
the DMA results have been incorporated into the polar motion determinations published by 
the BIH (Guinot 1978). 

Let us denote the observed period and Q of the Chandler wobble by To and Q,. Accuracy 
requires as long a record of polar motion as possible, and for that reason most determinations 
have been based almost entirely on the ILS series going back to the turn of the century. 
Quite possibly, this series has been subjected to more analyses by a wider variety of methods 
than any other geophysical time series. In Table 1, we give a summary of four recent de- 
terminations of To and Q,. 

Jeffreys (1968) employed a standard version of the method of maximum likelihood 
‘with a small correction for observational error’. Currie (1974, 1975) used the maximum 
entropy method to calculate the Chandler wobble amplitude spectrum, and then measured 
the central frequency and width of the resonance peak. Wilson & Haubrich (1976) also used 
the method of maximum likelihood, but based their estimates only upon the signal 

Table 1. Summary of recent determinations of To and Q,. 

Investigator Method TO Q o  Q o  
(sidereal days) (best estimate) (68 per cent 

confidence 
interval) 

Jeffreys (1968) maximum likelihood 434.3 t 2.2 61 37-193 
Currie (1974,1975) maximum entropy 434.1 +_ 1.0 12 t 20 
Wilson & Haubrich narrow band maximum 435.2 i 2.6 100 50-400 

Ooe (1978) complex ARMA 436.0 r 2.0 96 50-300 
(1976) likelihood, Monte Carlo 

Downloaded from https://academic.oup.com/gji/article-abstract/64/1/223/635896
by guest
on 25 July 2018



The period and Q of the Chandler wobble 227 
contained in a narrow band near the Chandler frequency in order to reduce the effects of 
noise. They also made use of Monte Carlo studies, both to correct for a bias in the estimate 
of Qo inherent to the narrow band method and to determine error bounds on Q, and To. 
The most recent analysis is that of Ooe (1978), who employed a complex autoregressive- 
moving average model of the polar motion data. 

All four analyses yieid substantially identical results for the Chandler period T,,. The 
parameter Qo is much more difficult to estimate accurately, because the Chandler wobble is 
being continually re-excited by some unknown, irregular process. Meaningful error bounds 
on Q, are asymmetrical, since it is really the quantity Q,’ which is most likely to be nearly 
normally distributed. The error bounds given by Currie for both To and Qo are smaller than 
those obtained in the other three analyses and are symmetric; they have, however, been 
derived by comparing results obtained with prediction fiters of different length, an ad hoc 
procedure which has no statistical basis known to us. 

It is reassuring that the last two analyses, by Wilson & Haubrich and by Ooe, although 
performed independently and by quite different methods, have obtained very similar results. 
Both agree that the confidence limits for Q, are about twice as large as those given earlier 
by Jeffreys. For specific comparisons in this paper, we shall adopt the values given by 
Wilson & Haubrich. The two data we shall be trying to fit here, with their 68 per cent 
confidence limits, are thus To = 435.2 k 2.6 day and (2, = 50-400, with a preferred value of 
100. The corresponding 90 per cent confidence limits, from Wilson & Haubrich, are k 5.2 
day for To and 33-1500 for Q,. Throughout this paper, the word day will always mean 
sidereal days of 86164.10 s each. 

3 Wobble kinematics, geodesy and Earth models 

This section begins our theoretical assault on the problem of computing To and Qo for some 
geophysically interesting Earth model. We first discuss the elementary dynamics and kine- 
matics of wobble, and qualitatively discuss why the Earth is not ‘elementary’. We then 
summarize the important constraints geodesy places upon our calculations. Finally we 
discuss the properties of the perfectly elastic Earth model we use as a ‘ground state’ in t h s  
study and how, as is well known, the hydrostatic properties of such a model are in conflict 
with geodetic observations. The accurate calculation of the dissipationless Chandler period 
in the face of that conflict is the subject of the next two sections. 

3.1 T H E  E L E M E N T A R Y  P H Y S I C S  O F  W O B B L E  

The Chandler wobble is the only non-trivial free oscillation the Earth would possess if it 
were perfectly rigid. Its angular frequency uo = 2n/To would in that case be given by Euler’s 
classic formula (see, e.g. Landau & Lifshitz 1969), 

The quantity s1 is the Earth’s angular speed of rotation, whde A ,  B and Care, respectively, 
its least, intermediate and greatest principal moments of inertia. For the Earth, the 
equatorial difference B-A is much smaller than C - % (A + B) ,  and equation (3.1) can be 
adequately approximate (we shall be more precise below) by 

C - % ( A  + B )  
u, = a. 

%(A + B )  
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Equation (3.2) gives the Chandler wobble eigenfrequency of a nearly axisymmetric rigid 
body. If the body is exactly axisymmetric, so that A = B ,  both equations (3.1) and (3.2) 
reduce to the even more widely referenced formula (see, e.g. Goldstein 1950 or Munk & 
MacDonald 1960) 

M. L. Smith and F. A.  Dahlen 

C -  A 
CJo=- a. 

A (3.3) 

The nature of the Chandler wobble motion is easily described in the rigid body case. Let 
the instantaneous angular velocity of rotation of the Earth be w and its instantaneous 
angular momentum be H. In the absence of external torques, the latter must be a constant 
vector in inertial space. Suppose that we are observing the Earth from a platform fixed in 
inertia1 space. The Chandler wobble will appear to us as a counter-clockwise precession of 
the axis C of greatest inertia of the Earth about the fixed axis of angular momentum H (see 
Fig. 2). The rotation axis w also precesses about H in such a way that the three axes C, H 
and o are always coplanar, but the angular offset between w and H is much smaller than the 
angle between C and H. (The ratio of the two angles is exactly u,,/L? for a rigid body.) A 
typical value for the angle between C and H is 0.14 arcsec, whch  amounts to about 4 m 
of  linear displacement at the surface of the Earth. The corresponding linear distance between 
w a n d  H at the surface of the Earth is (with sufficient accuracy for our purposes here) 
about 400 times smaller, i.e. about 1 cm. Thus to a very good approximation the w and H 
axes may be considered parallel during wobble. The very slight misalignment of w and 
H has been labelled ‘sway’ by Munk & MacDonald (1960). 

An earthbound observer is essentially affixed to the C axis, and will observe a motion of 
the w and H axes relative to the solid body of the Earth. In the absence of dissipation and 
for an axisymmetric Earth, the intersection of H (or w) and the Earth’s surface will be a 
circular path. (Attenuation turns this path into an inward spiral; non-axisymmetry makes it 
elliptical.) Polar motion services such as the ILS, IPMS and BIH provide the coordinates of 
the rotation axis w relative to the so-called Conventional International Origin (CIO), which 
is simply a selected axis near the C axis (the C axis of the Earth actually varies with respect 
t o  the CIO, since the Earth deforms). 

The numerator C - %(A t B) in equation (3.2) is a measure of the size of the Earth’s 
equatorial bulge, which for a perfectly rigid Earth produces the sole ‘restoring force’ for the 

* * , - -  W (of mantle, crust 
and oceans) H (and Z of core) 

, 

r ig id E a r t h  r e a l  E a r t h  
To =3044  days  To = 4352 days 

Figure 2. Schematic diagram illustrating the nature of the Chandler motion for a rigid Earth and a realistic 
Earth, as viewed by an observer in inertial space. 
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The period and Q of the Chandler wobble 229 

Chandler wobble. Uniform rotation of a rigid body about the Caxis is a dynamically stable 
state. If a body in that state is somehow induced to rotate instantaneously about any other 
nearby axis, a condition depicted in Fig. 2, there is a restoring torque due to the equatorial 
bulge which seeks to return the body to its stable state. Since the body is rotating it 
responds to this torque (as would any gyroscope) by moving at right angles to i t ;  the 
resulting precessing motion is the Chandler wobble. Just as the numerator in equation (3.2) 
corresponds to the Chandler wobble ‘restoring force’, the denominator %(A + B )  plays the 
role of the Chandler wobble ‘inertia’. The Chandler wobble of a rigid Earth can be 
equivalently described as an instantaneous incremental rotation about an equatorial axis 
whch itself rotates about the Earth with period To. Thus it is reasonable that the average 
equatorial moment of inertia %(A t B )  appears as the appropriate measure of the Chandler 
wobble ‘inertia’. 

The quantity 

C - M ( A + B )  

%(A i- B )  
17= (3.4) 

is the rigid-body Chandler wobble eigenfrequency measured in cpd. Fortunately 77 is related 
to the rate of luni-solar precession, and as a result it can be measured. For the Earth 7) = 
1/304.4 (see below for more details). The Chandler period of a rigid Earth should thus be 
To = 304.4 day, much less than the observed period To = 435.2 day. The basic reason for this 
discrepancy has been known, at least qualitatively, for almost a century (Newcomb 1892); 
it is of course that the Earth is not rigid. A correct theory for the period Tomust take into 
account not only the Earth’s equatorial bulge as in equation (3.2) but also the elasticity 
of its solid mantle and crust, the presence of its fluid outer core and oceans and, finally, the 
slight physical dispersion associated with mantle anelasticity. We shall examine systemati- 
cally the influence of each of these additional factors. The effect of each on the period To 
can be interpreted, as we shall see, in terms of a change in either the ‘restoring force’ or the 
‘inertia’ of the Chandler wobble. This interpretation is one of the major themes of t h s  
paper. 

Although the various deviations of the Earth from perfect rigidity combine to lengthen 
the period of the Chandler wobble from 304.4 to 435.2 day, the motion itself is changed 
very little. The biggest change is that the core, to a very good approximation, does not 
partake in the wobble. Decoupling of the core by slip at the core-mantle boundary is 
virtually complete, so that while the mantle, crust and oceans wobble with instantaneous 
angular velocity w, the core’s angular velocity remains aligned nearly along H (see Fig. 2). 
T h s  was first deduced, and its effect on the Chandler wobble period To determined, in an 
elegant paper by Hough (1895); we shall make use of his analysis below. The motion of the 
elastic mantle and crust and probably that of the oceans as well differs little from a rigid 
body wobble. Roughly, the deformation each suffers is about a factor of oo/R (i.e. about 
400 times) smaller than the magnitude of the rigid body rotation. Mantle displacements 
relative to the 4 m wobble are thus of the order of 1 cm, and the associated strains are of 
order lo-’, about an order of magnitude less than typical luni-solar tidal strains. The polar 
motion services such as the ILS, IPMS, etc., all ignore this very slight deformation in com- 
bining data from various observatories; this can be justified, at least at the present time, by 
the same argument whch allows us to ignore ‘sway’. Rather surprisingly, even though the 
deformation of the wobbling portion of the Earth is quite small, it has a very important 
effect on the period To. It is in fact responsible for all of the lengthening from 304.4 to 
435.2 day and more, since the effect of the core is not to lengthen the period but to shorten 
it by about 1 month, as we shall see. 
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3.2 P E R T I N E N T  G E O D E T I C  R E S U L T S  

In the ensuing discussion, we shall need the values of several terrestrial parameters. In general 
these fall into two categories: those that can be inferred from geodetic observations, and 
those which must be inferred from some seismologically derived Earth model. The geo- 
detic parameters we shall refer to have been collected in Table 2; the first two of these, 
including q ,  have been mentioned above. In the fourth parameter Q ~ Q ~ / [ ~ / ~ G ( A  +B)],  II 
denotes the mean radius of the Earth, i.e. the radius of the sphere having the same volume, 
and G is Newton’s constant. The parameter which is actually determined from the observed 
rate of luni-solar precession is not q ,  but rather the so-called dynamical ellipticity 

M L. Smith and E A. Dahlen 

H = [C ~ %(A + B)]/C.  ( 3  5) 

These two quantities are related by 77 = H / (  1 - H ) .  The tabulated value of q corresponds to 
H=0.0032739935 = 1/305.43738, inferred by Kmoshita e t  al. (1979) using the rigid 
Earth precessional theory developed recently by Kinoshita (1 977). 

It is important for our purposes that the parameter q be accurately measured since, in a 
sense, almost three-quarters of the observed period To depends only on this parameter, whde 
the remaining quarter depends on other properties of the Earth. The current uncertainty in 
H ,  according to Kinoshita er al. (1 979), is about i 7 x largely due to the uncertainty in 
the observed precessional rate, now that the uncertainty in the mass of the Moon has been 
reduced by radio tracking data from Manner spacecraft. This uncertainty in H translates into 
an uncertainty of only kO.006 in the reciprocal q-l, and is negligible compared with the 
t 2.6 day error in To. 

The small value of the ratio [B - A ] / [ C -  %(A + B)]  was invoked above to reduce 
equation (3.1) to (3 .2 ) .  The error incurred in that reduction is of the order of that small 
quantity squared, which with the value in Table 2 amounts to an error of only 0.14 day 
in the rigid Earth period To. Since this too is negligible with respect to the observational 
uncertainty, we shall for simplicity develop the subsequent theory in this paper for an 
axially sympetric Earth model, with A = B. Whenever a numerical value of the equatorial 
moment A is required, we shall always substitute the measured average moment %(A + B). 
This recipe converts the formula (3.3) for an axially symmetric rigid Earth into equation 
(3.2), and it can be easily justified in the nonrigid case as well. 

3.3 A M O D E L  O F  T H E  E A R T H  

A model of the radial distribution of the Earth’s density po and elastic properties K and p 
is essential for the accurate calculation of the theoretical Chandler period. A variety of 

Table 2. Observed geodetic constants of the Earth. 

Quantity Source Adopted value 

[C - %(A + B ) ] / [ % ( A  + B ) ]  
(1979) 

[B - A ] / [ C  - %(A + B ) ]  
Wagner et al. (1977) 

n rounded value; Moritz (1975) 7.292115 X lO-’sP 
a s n 2 / [ Y 2 G ( A  + B ) ]  simple combination of H ,  and 0.00348118 = 1/287.259 

GEM 8 model parameters 
ea observed surface ellipticity; Wagner 1/298.255 

etal.  (1977) 

luni-solar precession; Kinoshita et al. 

MacCullagh’s formula; GEM 8 model; 

0.00328475 = 1/304.437 

6.692 X 
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modern models, each constructed to be consistent with a large body of seismological data, is 
now available (see, e.g. Gilbert & Dziewonski 1975; Dziewonski, Hales & Lapwood 1975; 
Anderson & Hart 1976). Since we shall separately account for the existence and geographical 
distribution of the oceans, we desire a model which does not have an oceanic layer. We have 
performed calculations for both of models 1066A and 1066B of Gilbert & Dziewonski 
(1975). Until further notice, however, we shall refer exclusively to model 1066A. In Section 
5 we will make use of our results for 1066B as a rough gauge of the sensitivity of To to the 
Earth model. We shall find that sensitivity to be slight, whch reflects the fact that any 
modern Earth model which fits the long-period low-degree free oscillation data will have the 
same planetary elastic-gravitational response, and thus will wobble in the same way, as any 
other. The Chandler wobble will not help us differentiate among competing models of the 
Earth’s elastic structure; rather it can be used, as we shall see, to constrain the Earth’s 
anelastic and associated dispersive properties. 

The squared Brunt-Vaisala frequency, N 2 ,  in the fluid outer core of model 1066A 
fluctuates over a range of about ? 9 x lo-* s - ~  with radius. For reasons discussed by Smith 
(1974, 1977) this is computationally inconvenient (and physically unlikely) and, so, we have 
slightly altered the original model by smoothing the density distribution in the outer core to 
make N 2  = 0 throughout. The density contrast at the inner core-outer core boundary was 
simultaneously changed to keep the mass and moment of the entire core (and thus of the 
Earth as a whole) unchanged. The net effect is to change the mass of the inner core by 
about 0.5 per cent. The squared Brunt-Vaisala frequency in the fluid core has recently been 
constrained quite closely by Masters (1979), and in particular he has shown that the uniform 
value N 2  = 0 is consistent with existing seismological data. We shall refer to his study again 
in Section 5 in discussing the sensitivity of our results to choice of Earth model. Hereafter, 
references to model 1066A will always be references to our N 2  = 0 variant of the original. 

The hydrostatic ellipticity ~ ( r )  of model 1066A has been calculated by numerical integra- 
tion of Clairaut’s equation (Jeffreys 1970) using the value of given in Table 2; Radau’s 
approximation was not used (although we found agreement between the two approaches to 
be quite good). The resulting ~ ( r )  was used, in turn, to compute a number of other 
quantities which depend only upon the hydrostatic ellipsoidal density distribution. Those 
results, not all of which are actually needed here, are given in Table 3.  The results tabulated 
are insensitive to our slight alteration of 1066A (except that for the unaltered model 1066A 

Table 3. Inferred properties of hydrostatic ellipsoidal model 
1066A. 

Quantity 

mean density 

polar moment of inertia 
equatorial moment of inertia 
mantle only 

core (inner plus outer) only 

inner core only 

surface ellipticity 
core-mantle boundary 
inner core-outer core 
Love number 

Value (cgs) 

5.5170 
0.33089 
8.0438 X loJ4 
8.0177 X 
7.1242 X 
7.1005 X 
9.1332 X 
9.1100 X 
6.174 X lo4’ 
6.159 X lo4‘ 
11299.8 
11393.0 
11414.9 
0.30088 
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the ellipticity of the inner core-outer core boundary is E ,  = 1/416.5). The quantity M =  
(4/3)npoa3 is the model's mass, and I =  (C+ 2A)/3 is its mean moment of inertia; both are in 
agreement with observed values. The polar and equatorial moments C and A were computed 
using the first-order formulae (Sasao, Okubo & Saito 1980) 

M. L. Smith and F. A.  Dahlen 

and 

(3.6a) 

(3.6b) 

with similar formulae (only the limits of integration are changed) for CM,AM, etc. The final 
quantity tabulated in Table 3, k ,  is not related to the Earth's hydrostatic ellipticity, but is 
the spherical Earth's static Love number taken from Dahlen (1976). 

The hydrostatic value of g = (C - A ) / A  for model 1066A, according to Table 3,  is 

1 

307.8' 
g1066A = ~ 

whde the observed value for the Earth from Table 2 is 

1 
VEaf th=304.4 .  

(3.7) 

The 1 per cent discrepancy between g1066A and g~arth occurs because the Earth is not in 
perfect hydrostatic equilibrium. If it were, as Jeffreys (1970) has pointed out, 'the solid 
surface would be a level surface, the oceans would cover it, and we should have no interest 
in the matter'. The Earth, then, insists upon VE&h while the internal hydrostatic theory o f  
Clairaut insists on V1066A; the difference must be somehow supported by global deviatoric 
stresses. The 0.5 per cent discrepancy between the observed surface ellipticity ea=l /298.255 
and the corresponding hydrostatic value E , =  1/299.8 is a more familiar indication of the 
Earth's departure from hydrostatic equilibrium, since it was the first major discovery of 
satellite geodesy (Henriksen 1960; Jeffreys 1963). It does not seem to be as well known that 
the dynamical ellipticity H ,  and therefore g =H/(1 - H ) ,  depart from their respective hydro- 
static values by about twice as much. This important discrepancy was not perceived by 
Smith (1977), and his results for the Chandler period To as well as those of Dahlen (1980a) 
must be modified accordingly. That modification is the topic of the next section. 

4 The oceanless, dissipation-free Chandler period 

In order to make geophysical hay of the Earth's observed To we must be able to predict 
theoretically the To associated with a particular model of the Earth's properties with 
sufficient accuracy to discriminate between competing, geophysically interesting, 
possibilities. (An accuracy of order 1 month, for example, is sufficient to reveal that the 
Earth has a fluid outer core; unfortunately, models lacking such a feature are not geophysi- 
cally interesting.) In the present instance we wish to know theoretical To with significantly 
better accuracy than observed To. As we shall see, current uncertainty about the density and 
elastic structure of the Earth will place a limit of about ?h day on the accuracy of our 
theoretical calculations. 
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The period and Q of the Chandler wobble 233 

In this section we concentrate upon the computation of To for an oceanless, perfectly 
elastic, but otherwise complete, Earth (oceans are the topic of the next section). There are 
two ways to undertake such a calculation, neither of which is entirely satisfactory by itself. 
We discuss both here and show how they may be combined to arrive at a satisfactory result. 

The first of these techniques is based upon the Liouville equation, a global statement of 
the conservation of angular momentum. This equation forms the basis for an approximate 
(but as we shall see remarkably accurate) calculation which shows clearly the role of such 
properties of the Earth as core fluidity, mantle elasticity, and dynanucal and geometrical 
ellipticity. Since this approach depends upon an ad hoc allowance for each of the principal 
physical processes contributing to wobble, it is difficult to generalize beyond the level we 
develop below. 

The second technique is an application of elastic-gravitational normal mode theory. This 
is a rigorous calculation which is, in principle, capable of arbitrarily high accuracy provided 
that the Earth satisfies certain assumptions. The most important of these, here, is that the 
unifoimly rotating Earth is in a state of hydrostatic equilibrium. The departure of the real 
Earth from hydrostatic equilibrium, as noted earlier, introduces an unacceptable in- 
consistency into the normal mode results. Since almost three-quarters of To depends on 
only the parameter 7) with the remaining quarter depending upon other properties of the 
Earth, no matter how accurately normal mode theory may take account of some of those 
other properties, its results are not useful if it is applied indiscriminately to an Earth model 
(such as hydrostatic ellipsoidal model 1066A) having an incorrect value of 77. 

This discussion will lead naturally to two different reference frames from which to view 
the wobbling Earth, and it is worth while devoting some attention to these before intro- 
ducing the complications of dynamics. For brevity, we shall often use the word mantle to 
denote both mantle and crust. The first frame, denoted El, is the invariably rotating frame. 
Let 2 be a fixed vector in inertial space and suppose that, in its equilibrium state, the Earth 
has angular velocity 

where s2 is a constant. We suppose FI to rotate with the constant angular velocity S2 and to 
be aligned so that the fixed unit vector 2 is one of the coordinate vectors of FI. The Earth, 
in its equilibrium state, is stationary when viewed from FI (it is not stationary in inertial 
space; it is spinning). No matter what befalls the Earth, FI continues to spin with the 
constant angular velocity S2, and the Earth as viewed from FI is not generally stationary; 
earthbound observatories appear to move about with respect to their equilibrium positions 
etc. The frame F, has two principal virtues: it is conceptually the simplest of all rotating 
frames, and if the Earth is not subject to external torques its net angular momentum H is 
forever constant in Fl and aligned along i. 

The other frame, denoted FM,  is the mantle Tisserand frame, and is uniquely defined as 
that frame in which the mantle’s relative angular momentum (defined below) vanishes at all 
times and whch coincides with FI when the Earth is in equilibrium. Let w(t)  be the 
instantaneous angular velocity of FM; in general, if the Earth is in a state of motion, 

w ( t )  # 522. 

The frame FM is precisely defined below but, to visualize it, it is sufficient to regard it as 
the frame tied to the ‘mean mantle’ (i.e. the mantle apart from non-rigid rotational dis- 
tortion). We have chosen a mantle frame rather than a whole Earth Tisserand franie (Munk 
& MacDonald 1960) in anticipation of the lack of participation of the core in the wobble. 
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4.1 E U L E R ,  H O U G H .  L O V E  A N D  L A R M O R  

Suppose that the Earth is undergoing some slight disturbance about its equilibrium state of 
steady diurnal rotation. Pick a reference frame which also varies only slightly (and in an as 
yet undescribed manner) from a state of steady rotation. Since the frame varies only slightly 
with respect to the Earth, the instantaneous position of any particle in the Earth can be 
described by 

M. L. Smith and F. A. Dahlen 

r(x, t )  = x + s’(x, t ) ,  (4.1) 

where x is the initial or reference position of the particle currently at r and s‘ is guaranteed 
to  be small. (The choice of a frame which deviates only slightly from the Earth itself is 
necessary if we are to have both s’ small and x constant.) The instantaneous inertia tensor 
C is given by 

C = IE po [(x +- s’). (x f s’)I - (x + s’) (x + s’)] du 

and the instantaneous relative angular momentum by 

h(t) = sEpo(x + s’) x ats’dv (4.3) 

where E is the Earth. If &i form a Cartesian basis for our reference frame, we may represent 
its instantaneous angular velocity as 

w ( t )  = + Slm (4.4) 

where ] m 1 is small compared with unity. Then the total angular momentum of the Earth is 

H ( t ) = C ( t ) . w ( t )  + h(t). (4.5) 

The vector H is independent of how we choose the frame, although C, w and h are not. For 
definiteness, we select the frame so that the contribution 
so that 

hM = IMp0(X + S’) X a, S’ dIJ = 0 

where M denotes the mantle. In that case our frame is 
above. 

It is useful to decompose C into 

where c is the assemblage of all terms in equation (4.2) 

to h from the mantle vanishes. i.e. 

precisely the frame F M  described 

(4.6) 

containing s’. The tensor c is the 
contribution to the instantaneous inertia tensor C arising from any movement of mass 
relative to F M .  In general, it arises from both non-rigid rotational distortion as well as rigid 
rotation of the aspherical Earth with respect to FM. In the present instance, it wiU be largely 
due to elastic deformation of the mantle and, to a lesser extent, deformation of the core. 

A linearized Liouville equation is obtained by applying the conservation principle 
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to equation (4 .9 ,  inserting equations (4.2)-(4.4) and (4.6), and linearizing in s‘. The result 
is 

iaoml + a m , =  - r,”) 1 
~- [iuoc13 - 
A 

+ i ( u o / a ) h 1  - 

1 
ioom2- (‘i -- A ) a m ,  = -2 [iuoc23 + Qc13 + i(uo/a)h2 f h1l (4.8) 

1 

C 
ioom3 = - - ( i ( ~ ~ c ~ ~  + h3), 

where cii are the Cartesian components of c ,  etc., and we have assumed time-dependence of 
the form exp (iuot). Equations (4.8) are a complete accounting of the angular momentum 
balance of the Earth. Together with rules for computing hi and cii, equation (4.8) is an 
exact equation of motion for any normal mode of the Earth which imparts non-vanishing 
net rigid rotation to the mantle. Equations (4.8) are symmetric in m ,  and m2 but not in m3. 
The absence of complete symmetry reflects the alignment of m3 along the axis of steady 
rotation. (If C2 -+ 0, (4.8) becomes wholly symmetric.) 

The ease with which we reached (4.8) suggests that the real effort must lie In computing 
h and c ,  and that is so. For any motion small enough that the Earth’s response is linear, s‘ 
must be linear in m. Since h and c in turn are linear in s‘, there must be a linear relation 
connecting each of h and c to m, so long as the motion is infinitesimally small. In general, 
then, there is a second-order tensor transforming m into h and a second-order tensor trans- 
forming m into c . e 3  (which is all we need to know for 4.8). These two possibly complex 
and frequency-dependent tensors, together with the values of A and C, completely determine 
the Chandler period To. They thus convey everything we need to know about the density, 
geometry and rheology of the Earth. This information is encapsulated in the nine 
coefficients Dii of 

c. =D..m. (4.9a) 

and the nine coefficients Eii of 

hi = uoE..m., (4.9b) 

where we have extracted a factor of uo from Eii for later convenience. 
For the moment we shall consider only the case of an Earth without oceans, and in that 

case the above connection can be greatly simplified. Specifically, we may then take the 
Earth to be both dynamically as well as geometrically axisymmetric. Dynamical axisymmetry 
not only means that A = B ,  but also imposes powerful symmetry relations on Dii and Eii. 
Those relations are given by Dahlen (1976) for Dii, and here take the form 

Dij = D(6i16jl t 6 i 2 6 j z )  f D’6i36j-3, (4.10a) 

where D and D‘ are scalars. The corresponding symmetries of Eij are somewhat more compli- 
cated, because an m, spin of the mantle can induce both an h ,  and k ,  component in the 
core’s relative angular momentum. The most general axisymmetric form of Eii is, as a result, 

E.. 11 = E(6i,6il t 6 i 2 6 i 2 )  t E’eij3 t E6i36j3, (4.10b) 

where E, E’,  and are scalars. We have extracted a factor of i from E’ so that, in the treat- 
ment which follows, both E and E’ will be real. 

13 11 I 

11 I 

- 
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Furthermore, in treating the Chandler wobble of an axisymmetric Earth, we may consider 
only motion for which nz3 = 0; this may be done without loss of generality since axi- 
symmetry prohibits spin-wobble coupling. For our purposes, then, the general form (4.9) 
reduces to  

and 

(4.1 la) 

(4.1 lb)  

Only the three scalars D ,  E and E’ appear in (4.1 1); the other two, D‘ and i, are absent 
since m3 = 0. 

Using (4.1 1)  it is straightforward to reduce (4.8) to a characteristic or secular equation 
for uo. That equation is 

ioo [A  + D t E’ t (uo/a)E]  
~ 

n [ C - A  - D ]  - uo[E + ( u o / n ) E ’ ]  I 
A(uO) = det 

[C - A - D ]  + uo[E t (u,/R)E’] iuo [A  t D t E’ t ( u o / n ) E ]  

(4.12) 

Given C, A ,  and D, E and E‘,  (4.12) determines uo. In deducing (4.12), we exploited 
axisymmetry and supposed the wobble to be linearly small. Within those limits. however, 
(4.12) is both exact and general. It has no a prion notions of the rheology or internal 
dynamics of the Earth. We shall exploit (4.1 2) to estimate the Chandler period of an Earth 
model which is everywhere elastic, and which has a fluid outer core. We will approach t h s  
result by examining a sequence of calculations which account for increasingly complex 
behaviour in the Earth. 

The simplest possible case is a rigid Earth. Such a body cannot deform, nor can different 
portions of it possess relative angular momentum; thus D, E and E’ vanish and (4.12) 
reduces to 

(4.13) 

the classical result for an axisymmetric rigid body. For the Earth this gives, as noted earlier, 

To = 304.4 day, 

about 70 per cent of the observed period. 
A more sophisticated calculation is due to Love (1909) and Larmor (1909). Both 

computed the contribution to  c from elastic yielding by the wobbling Earth. This calculation 
was made possible by the approximation that the Earth responds to  the centripetal potential 
associated with wobble exactly as a non-rotating Earth model would to a static potential 
of the Same amplitude and type. This approximation neglects the effects of rotation upon 
the Earth’s elasto-dynamics. Further, in any reasonable application of Love-Larmor theory, 
the Earth’s response is computed using a spherically symmetric Earth model, and thus 
ellipticity as it modifies the Earth’s elastic response is also ignored. 
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The reasoning behind the Love-Larmor calculation is insightful. In the absence of 
wobble, F, and FI coincide and the Earth is in strain-free equilibrium with both its own 
gravitational field and the centripetal forces due to steady rotation. At any instant during 
wobble, the mantle is tilted away from the i axis of FI but the Earth’s instantaneous angular 
velocity, as discussed in Section 3 ,  has hardly changed at all. In F’, which has moved with 
the Earth, the mean mantle appears stationary but the direction of the rotation axis has 
changed. In F M ,  then, the Earth sees a slightly different centripetal potential from the one 
which defined its equilibrium state; the difference is a potential associated with a spherical 
harmonic of the type Y i  ’, to which the Earth responds elastically. In FM, this elastic bulge 
moves around with the period instantaneous rotation axis. In FI, the rotation axis and the 
elastic bulge are nearly stationary. Thus the elastic portion of the bulge does not move with 
the wobbling Earth and this decreases the effective ‘restoring force’ C-A. 

In present terms, the content of spherical Love-Larmor theory is that 

D = ka5a2/3G (4.14) 

where k is the conventional Love number of degree 2; E and E’ are not accounted for in 
this calculation. With (4.14), the secular equation (4.12) gives the famous result (see, e.g. 
Jeffreys 1970) 

C -  A - D 

A +  D 

C -  A - ka5a2/3G a=-. 
A + k a 5 a 2 / 3 G  ’ 0 0  = (4.15) 

which in turn yields 

To=447.4 day 

or 103 per cent of the observed period (a misleading concordance as we see below). The 
denominator of (4.1 5), A + D ,  is often approximated (see, e.g. Munk & MacDonald 1960) 
as simply A since the difference is slight (0.3 per cent). The large effect of D, a 47  per cent 
increase in period, is due to its role in reducing the effective spring constant from C-A to 
C - A - D .  

The Love-Larmor calculation is often regarded as being appropriate to an elastic, every- 
where solid Earth, a view founded in the knowledge that its principal shortcoming is that it 
neglects the dynamic response of the rotating fluid in the core. This view is correct, but it is 
worth noting that the static, elastic response of a non-rotating spherically symmetric fluid 
core is accounted for in modern calculations of the Love number k such as that in Table 3. 
If the Earth were everywhere solid, the Love-Larmor result (4.15) would give a very 
accurate accounting of the period To, but the numerical value of the Love number k would 
be different from that appropriate to the Earth as we know it. The relatively good agreement 
between the period To produced by (4.15) and the observed To is coincidental. Neither the 
dynamics of the fluid core nor that of the oceans has yet been taken into account; it turns 
out they both affect the period by about 1 month but in opposite directions. 

The importance of the fluid core is immediately evident if we consider a planet with a 
rigid mantle, an inviscid core, and a spherical core-mantle boundary. In this limiting case the 
core and mantle are perfectly decoupled and the mantle wobbles alone. Then 

a. CM - A M  

AM 
uo = 
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Another consequence of the spherical core-mantle boundary is that CM - A M  = C - A SO 

M. L. SmithandF. A. Dahlen 

and the effect of the fluidity of the core is to reduce the effective ‘inertia’ from A to AM 
(and thereby shorten the period by the ratio A M / A ) .  To see what happens when the core- 
mantle boundary is ellipsoidal we must turn to fluid mechanics. 

The influence of a fluid core, in the absence of elasticity, was rigorously examined by 
Hough (1895) in an elegant study of the free wobble and nutation of an Earth model com- 
prising a rigid mantle and an ellipsoidal core of homogeneous, incompressible fluid. In F,, 
the rigid mantle is stationary and does not contribute to c .  Also, in this frame the boundary 
of the core is stationary. Since the fluid in the latter is homogeneous, the core cannot 
contribute to c .  Therefore, c vanishes and the effects due to the presence of a fluid core 
must appear as contributions to h. 

Hough solved explicitly for the motion of the core resulting from rigid rotation of the 
mantle and it is easy to infer the coefficients E and E’ of (4.1 lb) from his results. Appendix 
B quotes Hough’s exact results, and uses them to discuss briefly another rotational mode of 
the Earth, the nearly diurnal free wobble. Here it is sufficient, and much more convenient, 
t o  make use of the fact that uO< s2 and to use terms through first order in ellipticity. In 
that case we show in Appendix B that 

E = ((J,/.n)A c (4.16a) 

and 

E’ = - (1 - € b ) A c ,  (4.16b) 

where Ac and Eb are the equatorial moment of inertia and surface ellipticity of the core 
(see Table 3 ) .  Note that E is of order ellipticity (since u O / a  is), but E‘ is not. 

Using Hough’s values (4.16) for E and E‘ and setting D = 0, (4.12) yields 

C - A  
00 = -~-__ a 

AM ’ €b  
(4.17) 

for the Chandler eigenfrequency of an Earth with a fluid core and a rigid mantle. Using 
( C - A ) / A  from geodesy (Table 2 )  and AM/A,  A c / A  and f& for mode1 1066A (Table 3 ) ,  
gives 

To = 269.7 day, 

a shortening of 34.7 day from the value for a perfectly rigid Earth. 
As a first approximation, Hough’s result is still that the core does not participate in the 

Chandler wobble, and the effective ‘inertia’ (the denominator of 4.17) is reduced from A 
to AM, as was the case for the spherical core. The ‘restoring force’, however, is still C- A 
even though 

C - A # CM - AM 

and there is a small additional term, ebAC in the denominator. Since the term E b A C  is so 
small, we may without significant error use the hydrostatic value of Eb in evaluating it. 

We now combine both Hough and Love-Larmor to estimate the Chandler period for an 
elastic Earth with a fluid core. We regard the offspring, Hough-Love-Larmor (HLL) theory, 
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in the following light. Hough’s calculation is exact (save for the damage-of-convenience 
we have inflicted by linearizing in ellipticity). Let us now suppose Hough’s rigid, incom- 
pressible, wobbling planet is allowed to deform elastically. Then it will yield in response to 
the centripetal potential due to wobble in the fashion supposed by Love-Larmor theory. 
The resultant distortion will be linearly superimposed upon the motions described by 
Hough. This is not an exact solution: Love-Larmor theory is approximate and Hough’s 
results are only exact for a rigid mantle and a homogeneous incompressible fluid core. 
The phenomena we are combining, however, are quite distinct and we expect that HLL 
theory will be more accurate than either of its constituents. 

One might suppose (as the authors in fact did for a frustrating two-week period during 
the course of this research) that since the core is not wobbling with the mantle the centri- 
petal potential should only be allowed to act on the mantle and, thus, that k should be some 
sort of ‘mantle only’ Love number. That is, however, not so, as a glance at Fig. 2 clearly 
shows. From the point of view of an observer in the frame FM, the angular velocities o of 
the core and the mantle are very nearly the same, to within a part in 400 or so. As a result, 
the centripetal potential due to wobble is sensibly the same everywhere in the Earth whether 
the core wobbles or not. Therefore the standard Love number is the correct Love number to 
use in HLL theory. This same reasoning explains the presence of C- A rather than CM - AM 
in Hough’s result. 

Solving (4.12) with D, E and E’ present and retaining terms through order ellipticity 
yields the HLL hybrid formula 

C - A  - h~’52~ /3G 
(70 = 52. 

AM + ebAC + ka552’/3G 
(4.18) 

Using the observed values of ( C - A ) / A  together with values of the other parameters from 
model 1066A gives 
To= 396.4 day 

for the Earth. This, as we shall see below, turns out to be quite accurate. 
Sasao et al. (1980) have developed a theoretical description of the free and forced 

nutations of an Earth with a stratified fluid core and dissipative core-mantle coupling. Their 
results amount to a rather detailed version of HLL theory with the significant additions of 
dissipative core-mantle coupling and provision for deformation of the core-mantle 
boundary, as well as a more general approach to motion in the fluid core than was taken by 
Hough. However, the wobble-specific version we have developed here is both adequate for 
our purposes and simpler. 

4.2 N O R M A L  M O D E  T H E O R Y  

The HLL calculation has two great virtues: it is relatively simple, and the answer unveils 
itself in a form that clearly depicts the manner in whch  the Earth’s major features (its 
dynamical ellipticity, elastic rheology and fluid core) affect the Chandler period. It also has 
a number of drawbacks, the greatest of which is that it is difficult to see how to extend the 
calculation. HLL, as we have used it so far, ignores the influence of rotation and ellipticity 
of figure upon the Earth’s elastic response and also the effects of elasticity and structure 
upon the behaviour of the core during wobble. 

In this section we exploit an alternative method, elastic-gravitational normal mode 
theory in the frame FI, whch  in principle can account for the complete behaviour of an 
Earth model which is initially in hydrostatic equilibrium. This technique has its own short- 
comings: the Earth is not sufficiently close to hydrostatic equilibrium for our purposes and 
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normal mode theory is not susceptible to simple modification to account for that 
discrepancy. What we shall do is to use the normal mode calculation to arrive at  a wobble- 
effective Love number, k,, which accounts for the various phenomena HLL neglects, and 
then combine k,  with the HLL result (4.1 8) to estimate To. 

Normal mode theory for a non-rotating, spherically symmetric, self-gravitating, hydro- 
statically prestressed Earth with an isotropic, perfectly elastic constitutive relation was 
extended in an obvious way by Smith (1974) to account for rotation and slight ellipticity 
of figure. An intrinsic feature of this approach is that the Earth’s ellipticity of figure must be 
the unique ellipticity given by Clairaut’s equation for a planet in hydrostatic equilibrium. 

Smith (1 977) exploited this approach to study theoretically the Earth’s free wobble and 
nutation, and we only summarize the calculation here. If s(x, t )  is the Lagrangan particle 
displacement of the particle with initial position x in F,, and if the Earth is undergoing a free 
motion with angular frequency uo, then (s, ao) must satisfy 

M L. Smith and I? A.  Dahlen 

- po 0;s + 2iu0p0 sc x s = ~ ( s )  

where 

(4.1 9) 

T = ( K  - 2 / 3 / . ~ )  ( V  .s)I + ~ / . L E  

€ = $4 [(VS) + (VS)’] . 

(4.20a) 

(4.20b) 

(4 .20~)  

(4.20d) 

(4.20e) 

Here po is the Earth’s (ellipsoidal) equilibrium density field, K and /.L are the incompressi- 
bility and shear modulus, Go is the equilibrium gravitational potential, $ is the centripetal 
potential due to steady diurnal rotation, p1  is the incremental Eulerian density due to de- 
formation, is the incremental gravitational potential, T is’the Cauchy (conventional) 
stress tensor, and E is the infinitesimal strain tensor. 

If rotation ceases, ellipticity also vanishes in order to maintain hydrostatic equilibrium. 
The Earth, and therefore equations (4.19) and (4.20), become perfectly spherically 
symmetric. In this limit, normal mode solutions can be found using spherical harmonics, 
which serve as a set of perfectly decoupling basis functions. Since the ellipticity vanishes so 
does the Chandler wobble ‘restoring force’ C - A,  and so therefore does the Chandler eigen- 
frequency; its eigenfunction s becomes simply a pure rigid body equatorial rotation even 
though the Earth itself is not rigid. If rotation is present, both the Earth and equations 
(4.19) and (4.20) lose spherical symmetry and the general solution requires an infinite sum 
of spherical harmonic terms. 

Smith’s (1 977) study used a three-term series of the form 

s =Ti tu; +Ti (4.21) 

where T: is a toroidal vector field of degree and order 1, u; is a spheroidal vector field of 
degree 2 and order 1, and T: is a toroidal vector field of degree 3 and order 1. Smith (1974) 
argued on analytic grounds, and Smith (1977) demonstrated by numerical example, that the 
representation (4.21) is sufficiently general to yield either the Hough or Love-Larmor 
results as special cases. The 7: term accounts for the wobble itself and u: represents the 
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associated deformation of core and mantle. Smith (1974) has shown that the exact eigen- 
functions s must be of the form 

S=T: ta i  +T: t a i  t . .  . , 

and since it does not greatly increase the cost, T: has been added to the calculations 
discussed by Smith (1977) and those reported here for good measure. 

The normal-mode calculation is effected by inserting the representation (4.21) into (4.19) 
and (4.20). This leads to a tenth-order system of ordinary differential equations over radius 
governing the amplitudes of various components of T i , a :  and 7:. For simplicity (a precious 
commodity indeed in this rather expensive calculation), the differential equations are 
linearized in ellipticity, but not in the centripetal potential $, whch is retained exactly. 
The result is a tenth-order differential eigenvalue problem, the eigenvalues of whch  are uo 
and the eigenfunctions of which are s in the frame F,. 

The normal-mode calculation has several virtues. First (and least important here) it can 
be extended in principle to arbitrary accuracy by adding more terms to (4.21). Second (and 
most important here) the calculation as we have executed it accounts for the effects of 
rotation and ellipticity on the Earth’s elastic response and the effects of structure in the 
core. It is not possible to assess the accuracy with which the last effect is computed since we 
lack a prion knowledge of its importance but we can safely assume that the normal mode 
calculation is more accurate than HLL theory. 

Subjecting model 1066A to the normal mode calculation yields. 

To = 403.4 day. 

We would adopt this value as the best available theoretical estimate of the Chandler period 
of an oceanless but otherwise complete Earth except for the discrepancy discussed earlier 
between qEarth and q1066A. Our first thought was that we could safely account for this 
discrepancy by simply multiplying the hydrostatic ellipticity E(r) everywhere by the ratio 
307.8/304.4, to make v1066A agree with V E ~ .  We discovered, however, by exploring quasi- 
rigid test cases similar to those discussed by Smith (1977), that hydrostatic normal mode 
theory will not abide such tinkering with its fundamental assumptions. Specifically, if model 
1066A is made quasi-rigid by everywhere setting h = K - 2/3p = p = 10’’ dyn cm-’, its 
wobble period as calculated by normal mode theory shortens to 308.4 day. (The slight 
difference between this and q1066A = 1/307.8 can be attributed to the imperfect rigidity of 
this model; a rough estimate based on Lme (191 1) is that k = 1.6 x for such a model, 
and if this value together with 771066A is used in (4.15), we find that To = 308.4 day, in good 
agreement.) Upon altering this quasi-rigid model by increasing E throughout by 307.8/304.4, 
we computed a normal mode period of To = 300.6 day, a change almost exactly twice as 
large as we expected. We attribute this to a breakdown of the normal mode calculation in 
the face of an inconsistent model. This collapse at the 1 per cent level is surprising but, on 
reflection, we do not believe that we have a just cause for complaint. To be internally 
consistent, the ellipticity e cannot be modified without introducing initial deviatoric stresses 
into the operator H in (4.20). Evidently, the calculation fails because these terms are absent, 
and since we do not know what the deviatoric stresses in the Earth are, we cannot correctly 
account for them with a strictly normal-mode approach. 

4.3 A H Y B R I D  C A L C U L A T I O N  

We resolve this impasse by turning to HLL theory. The HLL secular equation (4.12) is exact 
to the extent that we are able to exactly determine the tensor components Dii and Eii. We 
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propose to use the normal mode calculation to do this. Suppose we choose a reference 
frame F,, in which the relative angular momentum is exactly equal in amplitude to that 
predicted by Hough’s calculation for an Earth model with an incompressible homogeneous 
core. Such a choice is admissible because the results of the last section, except for the 
specific values of D, E and E’ ,  are frame independent. In choosing F,,, we are simply 
choosing the frame that keeps E’ equal to its HLL value. This assures that the difference 
between HLL and normal-mode theory can be expressed solely as a change in D. The new 
frame may no longer exactly follow the mantle (presumably it will very nearly do so), but 
for the purpose of calculating To we do not care. Now the period equation (4.18) together 
with ‘q1066A can be used to infer an oceanless wobble-effective Love number k,. We take 
this to be simply the value of k which in (4.18) leads to a Chandler period of 403.4 day. 
That value is 

M. L. Smith and I? A. Dahlen 

k, = 0.301 58, 

or 0.2 per cent greater than the ordinary static Love number k for 1066A (see Table 3). 
(The quantity k ,  is not a new tidal Love number and is not a better measure of the Earth’s 
response to tidal forces than k .  It has no meaning outside of this calculation.) Now use 
k,  in (4.18) together with the observed value ??Earth to compute T,. The result 

(To = SL (4.21) 

yields a period 

To = 396.9 day. 

We believe this to be the best currently available estimate of the Chandler period of the 
Earth not accounting for the effects of oceans of anelasticity. 

This value, as the reader will doubtless note, is only 0.5 day greater than the simple HLL 
estimate, and one might conclude that we have gone to rather a lot of trouble (the normal 
mode calculation is both difficult and costly) for little benefit. That is not so. Until we had 
done the normal mode calculation, we could not know at the fraction-of-a-day level 
precisely how good HLL was. What we have gained beyond a more accurate result is the 
assurance of its accuracy. (Also, we will exploit the normal mode eigenfunction s in Section 

C -  A - kWa5SL2/3G 

A ,  t ebAc t kwa5SL2/3G 

8 .) 

5 The pole tide 

The principal kinematic feature of the Chandler wobble is the large rigid rotation of the 
mantle. The importance of the oceans in wobble is largely determined by the extent to 
which they do, or do not, partake of the mantle’s motion. 

Suppose that the oceans wholly abstained from wobble and for simplicity suppose for a 
moment that the Earth were spherical. An observer at a mid-ocean tide pole would perceive 
horizontal flow as the tide pole (which is affvred to the mantle) moved back and forth 
during the wobble, but he would not observe a change in sea level and thus would conclude 
that there is no tide associated with the Chandler wobble. (The ellipticity of figure of mantle 
and oceans would actually produce a change in sea level, in this case, about a factor of E 
smaller than the local horizontal motions but this effect is slight.) In this case, the effect on 
To would, much like the effect of the core, principally consist of a reduction in the effective 
‘inertia’ A with no sensible alteration of the ‘restoring force’ C - A .  The moment of inertia 
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of the oceans is roughly that of a shell of mass M and radius a, i.e. AOceanS = 2/3Maz. Using 
M =  1.4 x IOz4g (Sverdrup, Johnson & Fleming 1942), we find that Aoc,,,,/A = 5 x 
Lack of participation of the oceans in the wobble would thus decrease To by about 0.2 day. 

Suppose on the other hand that there is no slip at the ocean bottom, so that the oceans 
are essentially affuted to the mantle and wobble with it. In that case, there will be a visible 
pole tide since, as a parcel of ocean moves with respect to the rotation axis, it will 
experience a varying centripetal force. This is exactly the effect which gives rise to the slight 
deformation of the mantle and core during wobble, and the pole tide is in fact nothing more 
than the corresponding deformation of the oceans. The pole tide amplitude should thus be 
of the same order of magnitude as the deformation of the rest of the Earth, i.e. about 
u O / a  times the wobble amplitude or about 1 cm. The effect of this small tide will be to 
increase the period To, since the ‘restoring force’ C - A  will be diminished not only by the 
deformation of the mantle and core but also by that of the oceans. 

5.1 IS T H E  P O L E  T I D E  A N  E Q U I L I B R I U M  T I D E ?  

If the question ‘Do the oceans wobble with the mantle?’ is rephrased in the language of tidal 
theory, it becomes: ‘Is the pole tide an equilibrium tide?’ Because this question has received 
some recent attention (Dickman 1979; Naito 1979), and because it will prove in the end to 
be our greatest obstacle to placing firm constraints on the transient rheology of the mantle, 
we shall now consider this in some detail. If the Earth were everywhere solid, we could 
answer the equilibrium question for the corresponding solid Earth ‘pole tide’ without 
hesitation. In that case, the gravest natural resonnnce of the system (apart from the Chandler 
wobble itself) would be the mode oSz, with a period of about 1 hr. Since the period of 
Chandler forcing is much greater than that (see Fig. 3) ,  the associated response could surely 
be treated as quasi-static, or equilibrium. This simple argument is of course the basis of the 
Love-Larmor theory leading to equation (4.15). If the Earth were everywhere solid, that 
equation in terms of the static Love number k would yield a very accurate estimate of the 
Chandler period. 

The above argument breaks down in the presence of the core and oceans, since they 
endow the Earth with a wide variety of additional modes of arbitrarily low frequency. In 
a homogeneous, incompressible core, only one such mode turns out to be important (see 
the discussion by Smith 1977), and it is precisely this mode which is taken into account 
when Hough’s theory is combined with that of Love and Larmor. The modes of the ocean 
which are important in this context are of two types: barotropic Rossby modes of low but 
non-zero frequency and zero-frequency geostrophic currents. To decide whether the pole 
tide is equilibrium, we must examine the excitation of each of these classes. Baroclinic 
Rossby waves associated with the ocean’s stratification cannot be excited directly by a tidal 
potential and presumably play a minor role in the pole tide problem (the qualifier 
‘presumably’ is required here since baroclinic modes can be excited by interaction of 
barotropic motions with sea-floor topography). 

Historically, the question of the long-period tidal response of the oceans first arose in 
connection with Kelvin and Darwin’s well-known determination of the Earth’s mean rigidity 
from the height of the lunar fortnightly tide. To test the equilibrium hypothesis (which 
formed the basis of the rigidity determination), Darwin (1 886) and Hough (1 897) solved 
Laplace’s tidal equations in the long-period limit on a water-covered globe. They considered 
an external potential of the form Y!, as appropriate for a long-period luni-solar tide, rather 
than the form Y z  ’ appropriate to wobble and nutation. The solution they found consisted 
primarily of a zonal current system with an associated surface displacement which was 
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Figure 3. Top:  if the Earth were everywhere solid the Chandler forcing would be  well down o n  the flank 
of  the resonant elastic response and the solid-Earth pole tide would be quasi-static or equilibrium. 
Bottom: dispersion of barotropic Rossby waves on  a P-plane ocean of depth h = 4 km situated at 
colatitude 8.  At a period of 14 month, there are waves with wavelengths 2n/k longer than 106km which 
are  non-dispersive (u = @ghghk/f’) and have westward group velocities, and waves with wavelengths shorter 
than 100 km which are dispersive (u  = p/k) and have eastward group velocities. 

markedly less than equilibrium, particularly away from the equator (an illustration of their 
solution may be seen in Wunsch 1967). In effect, this departure from equilibrium in the 
water-covered case can be attributed to the excitation of a nearly-resonant geostrophic 
mode (although, since it is forced, the current system which comprises the solution is not 
strictly geostrophic). Confronted with these results, Darwin himself came to doubt whether 
‘it will ever be possible to evaluate the effective rigidity of the earth’s mass by means of tidal 
observations’. His pessimism was, however, countered by Rayleigh (1903), who pointed out 
that the Earth is not wholly water-covered and that continental barriers would impede the 
Darwin-Hough zonal current system. Arguing that geostrophic modes would not be 
efficiently excited in the presence of continental barriers, he concluded that the fortnightly 
tide should not differ materially from equilibrium. He cautioned, however, that this 
conclusion might be altered if the oceans possessed other normal modes with small but non- 
zero frequencies. It is now known that such modes, namely Rossby modes, do exist, and we 
shall describe below how their travelling wave counterparts interact with coastlines to play 
an  important role in the establishment of equilibrium. In any case the non-equilibrium 
character of the Darwin-Hough solution cannot be used as an argument against a non- 
equilibrium pole tide, since the corresponding long-period response of a water-covered globe 
to Y l ’  forcing has recently been shown by J. Wahr (private communication 1980) to be 
equilibrium. Although t h s  distinction between Y! and Y i  ’ forcing is significant, it does not 
by itself constitute a proof that the pole tide in the real oceans will be equilibrium as well, 
since the interaction of Rossby waves with coastlines where boundary conditions must be 
satisfied still requires consideration. 
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Rossby modes for closed oceanic basins with flat bottoms and simple shapes were first 

calculated by Longuet-Higgins (1964, 1965) and by Longuet-Higgins & Pond (1970). Very 
roughly, for a basin of lateral dimension I, centred on colatitude 9, the fastest such mode 
has a characteristic frequency of order u = PL/2n, where 0= 2fl  sin 9 /a  is the horizontal 
gradient of the Coriolis parameter f =  2fl sin 9. Higher modes have shorter wavelengths and 
longer periods, with an accumulation point at zero frequency and zero wavelength. In 
more realistic ocean basins, bottom topography affects the Rossby modes profoundly; the 
influence of variable water depth h has been studied by Rhines (1969a, b), Rhines & 
Bretherton (1973) and Ripa (1978), among others. In general, the role played in the flat- 
bottomed case by 0 is taken over in the presence of  topography by 0* = h I V, ( f /h ) / ,  where 
v a 
importance of  topography and the planetary 0-effect is therefore given by the ratio of 
hl V,hl to  P/f. Except within a few degrees of the equator, 0/f is of order a-', and 
topography should dominate, particularly on continental slopes and on the flanks of mid- 
ocean ridges. Such features will tend to give rise to  trapped modes, with length-scales L of 
the order of the width of the topography and with associated frequencies of order u =  
P*L/2n. In general, since P* may be large, some of these frequencies may be considerably 
higher than in the corresponding flat-bottomed case. The most concerted attempt t o  date t o  
calculate any Rossby modes for a realistic configuration of the oceans has been that of  
Platzman (1975, 1978) for the Atlantic and Indian Oceans. Because of the strong depen- 
dence of these modes on resolution of the topography, he found a rather poor agreement 
between the Rossby modes predicted by his earlier finite-difference and his later finite- 
element models, much poorer than for the higher frequency gravity modes. The fastest 
Rossby mode in the north Atlantic Ocean was in both cases found to be associated with the 
Grand Banks topography, but  the periods were quite different (55 hr versus 36 hr). 
Quantitative understanding of the oceans' Rossby mode spectrum near 1 4  months is clearly 
still a long way off. An atmospherically forced 4-6 day basin-wide Rossby mode of the 
Pacific ocean has been detected recently in island station sea level records by Luther (1980). 

Regardless of the richness or nature of the low-frequency resonant structure of the 
oceans, the response at long periods will be equilibrium if there is sufficient friction. Proud- 
man (1960) has used a simple semi-empirical law for turbulent dissipation in the benthic 
boundary layer t o  try to  estimate roughly what the relevant frictional time-scale Tf might 
be. Locally, the law predicts that Tf should be proportional t o  h / V ,  where V is the speed of  
the modulating short-period (semi-diurnal and diurnal) tidal currents. Assuming typical 
values, Proudman finds that in shallow seas Tf = 5 day whereas in mid-ocean Tf = 5 yr. The 
effective average value, if shallow seas occupy one-tenth of the world's oceans, would thus 
be of order ( T f )  = 5 0  day. Tides with periods much longer than this should, according t o  
Proudman, follow an equilibrium law, This would suggest, if it  is correct, that departures 
from equilibrium at the Chandler period To= 14 month should not be much larger than 
( T ~ ) / T ~ ,  or about  10 per cent. This estimate is obviously quite crude, since it ignores com- 
pletely any of  the dynamical details of the oceans' low-frequency response. 

A related problem, in which the role of dynamics is now understood reasonably well, is 
the response of the oceans t o  slowly varying winds. In several respects, however, this 
problem differs rather fundamentally from the tidal problem. In the first place, the quantity 
which acts as the driving force in the wind problem is the curl of  the surface wind stress 
whereas the tidal potential, since it is a potential, is curl-free. In addition, the wind stress is 
able t o  excite baroclinic as well as barotropic modes directly and these typically play an 
important role in the response. In spite of  these differences, it is possible t o  draw some 
qualitative inferences about the tidal problem from the wind stress studies. The problem 

[&a +@(sin O)-'a,] is the horizontal gradient operator on r = a. The relative 
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which has been most frequently studied is the initial value (spin-up) problem of the response 
to a wind which suddenly starts and continues to blow. The nature of the response of an 
ideahzed mid-latitude ocean has been summarized nicely by Anderson & Gill (1975), and 
Lighthill (1969) has considered some of the special features which arise near the equator. 
A series of numerical models with realistic wind forcing and North Atlantic topography have 
been described recently by Anderson et al. (1979). Although the transient response of an 
enclosed basin can be found in terms of its Rossby modes, the alternative formulation in 
terms of propagating Rossby waves provides more insight in this case. At long periods, there 
are two distinct types of Rossby waves: very long-wavelength waves which are non-dispersive 
with group velocities to the west, and very short dispersive waves with group velocities to the 
east. The wavelength of the former at  To 14 month is much larger than the radius of the 
Earth, whereas the latter are typically shorter than 100 km (see Fig. 3). The steady-state 
solution which plays the role of the equilibrium tide in the wind stress problem is known as 
Sverdrup balance. The fundamental result of all the wind adjustment studies is that, after 
an initial acceleration, a Sverdrup balance is established upon the arrival of the long non- 
dispersive Rossby waves which are generated at the eastern coasts of basins. Presumably, if a 
tidal potential were to be applied to an ocean basin suddenly, an equilibrium tide would be 
established by the same mechanism. The important time-scale in that case would not be the 
average frictional time-scale ( ~ f ) ,  but rather a dynamical time-scale Td set by the group 
velocity 0gh/f2 of the long Rossby waves. At a distance L from the eastern coast of a basin, 
the time scale Td is of order Td = LI2/Pgh. Since /3gh/f is typically of order 4000 km day-' 
in mid-latitudes, Td should be less than 4 days over most of the oceans. The simple formula 
Td = Lf2//3gh is not applicable near the equator, due to the existence of trapped equatorial 
waves (Lighthill 1969; Philander 1978), but the equatorial response is even more rapid, as 
the formal limit 74 -+ 0 suggests. 

The above theoretical arguments, based on the analogy with the spin-up problem, suggest 
that over most of the oceans the pole tide should not depart from equilibrium by more than 
Td/To, or about 1 per cent. Local departures from equilibrium may arise in small nearly 
enclosed basins or other regions of peculiar topography where the dynamics could differ 
radically from the open-ocean dynamics described above. Departures from equilibrium in 
the open ocean would, in this picture, be associated primarily with the short-wavelength 
Rossby waves whch  are generated along western boundaries, where they give rise to a 
western boundary current. Some friction is still required to damp out these departures, but 
it can be substantially less than that estimated by Proudman since their short wavelengths 
will make them very prone to dissipation. Topography should act to scatter these waves and 
break them up even more, thereby assisting the equilibrium adjustment process; this has in 
fact been noted in the numerical models of Anderson et al. (1979). 

Theoretical argument is seldom a good substitute for direct observation, and there have 
been several attempts to test the equilibrium hypothesis by analysing sea level records for 
the pole tide. This is clearly a marginal undertaking in view of the relative paucity of long 
tidal records, the expected small amplitude of the signal, and the rather high level of back- 
ground meteorological noise at the Chandler period. Recent attempts have nevertheless 
been made by Haubrich & Munk (1959), Miller & Wunsch (1973), Currie (1975), Hosoyama, 
Naito & Sat0 (1976) and Naito (1977), among others. One consistent finding has been that 
the pole tide in both the North and Baltic Seas is significantly enhanced above its equilibrium 
level. This enhancement has been modelled by Wunsch (1974) as a response of the local 
basin topography to forcing by a non-equilibrium open-ocean pole tide at its edge. Since at 
the present time no other model has been proposed, this could perhaps be taken as evidence 
that the open-ocean pole tide in the Atlantic does depart substantially from equilibrium. 

M. L. Smith and F. A.  Dahlen 
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On the other hand, it has not been shown that this assumption is required to be consistent 
with the observations, and on theoretical grounds a non-equilibrium open-ocean pole tide 
at the edge of the North Sea would appear to be particularly unlikely as it is on the eastern 
boundary of the Atlantic. Alternative explanations of the North and Baltic Sea anomalies 
should, in our opinion, be sought. 

The real question of interest for determining the Chandler period is whether the globally 
averaged pole tide is in equilibrium, and on this question the data founder. Miller & Wunsch 
conclude reluctantly that 'ports with lengthy records are too few, and too far apart, to allow 
one to say anything about the global structure of the pole t ide . .  . There is no evidence in the 
data to either confirm or deny the equilibrium hypothesis'. Hosoyama et al. disagree with 
this conclusion, and claim to see a consistent departure from the equilibrium amplitude at 
both low and high latitudes, with an approach to equilibrium values in the northern 
hemisphere near 45" N. It is, however, at 45" N and 45" S that the equilibrium tide, being 
roughly proportional to Y:', is maximum, decreasing to zero at both poles and the equator. 
Hosoyama et al., unlike Miller & Wunsch, have not made any allowance for the bias in their 
observed amplitudes due to noise. We suspect, as a result, that rather than a latitude- 
dependent departure from equilibrium, they may have actually observed nothing more than 
the expected latitude-dependence of the signal-to-noise ratio. 

Studies of the long-period tides, particularly the lunar fortnightly tide Mf and monthly 
tide Mm, have an obvious bearing on the equilibrium hypothesis. Since both of these tides 
are long compared with 4 days we would expect them both to be close to equilibrium in the 
open ocean if the above theoretical argument is valid. Mf and Mm are somewhat easier to 
study observationally than the pole tide, since the amplitudes are 2-4 times larger and the 
restrictions imposed by finite record lengths are diminished. The first modern observational 
study of Mf and Mm was undertaken by Wunsch (1967), using island stations in the Pacific 
Ocean. Despite high noise levels in the data, he reported substantial deviations from 
equilibrium, of order 50 per cent in amplitude and f 60" in phase, with fluctuations over 
distances of order 3000 km. Since this fluctuation scale-length is roughly equal to the wave- 
length of short fortnightly and monthly Rossby waves, he concluded that the tides were 
exciting the Rossby modes of the Pacific Ocean. 

More recently, longer tidal records from some of Wunsch's stations as well as records 
from a number of other island stations in both the Indian and Pacific oceans have been re- 
analysed by Luther (1 980). Upon comparing these observations with the self-consistent 
equilibrium tidal calculations of Agnew & Farrell (1978), he finds a much better agreement 
with the equilibrium theory than did Wunsch. In particular there is no evidence in his 
analysis for the short-scale (3000 km) fluctuations found by Wunsch; rather the observed 
departures are basin-wide in scale and of order 20 per cent in amplitude and f 20" in phase. 
This disagreement with the earlier study by Wunsch can probably be attributed to the higher 
noise levels expected with shorter records. The 20 per cent departure at a period of 14-28 
days observed by Luther is roughly consistent with the departure expected if the time-scale 
for establishmg equilibrium is Td = 4 day as estimated above. The argument that the de- 
parture at To= 14 month should be no more than 1 per cent is thus supported by his 
observations. More such analyses in other oceans could help to confirm this. 

One additional recent bit of evidence that the Mf and Mm tides are close to  equilibrium 
comes from studies of the fortnightly and monthly changes in the length of day; these are 
due to changes in the Earth's moment of inertia C produced by tidal deformation of the 
solid Earth and oceans. The combined results of Agnew & Farrell (1978) and Wahr, Sasao & 
Smith (1 980) demonstrate convincingly that the observed changes A(1od) are consistent 
with the equilibrium hypothesis. T h s  is an important conclusion for the present application, 
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since it more than any other available observation pertains truly to the globally averaged 
Mf and Mm tides. 

On the basis of all the above evidence, we think we are justified in adopting an equi- 
librium model of the pole tide. All of our quantitative estimates of the Chandler wobble 
period, and any implications we draw from them regarding mantle rheology will rest upon 
this assumption. In Section 10  we shall make a few remarks about the possible consequences 
of slight departures from equilibrium. As we shall see, our conclusions are only mildly 
weakened even if we admit that possibility. 

M. L. Smith and F. A. Dahlen 

5.2 T H E  E F F E C T  O F  A N  E Q U I L I B R I U M  P O L E  T I D E  O N  T H E  P E R I O D  

The equilibrium hypothesis is attractive because determining the equilibrium pole tide is a 
relatively straightforward matter, requiring only a purely static calculation of the deforma- 
tion of equipotential surfaces, together with the constraint that the total mass of the oceans 
is conserved. A self-consistent calculation, which takes oceanic self-attraction as well as tidal 
loading into account, has been performed by Dahlen (1976). By employing MacCullagh's 
theorem, the tensor Dii in equation (4.9a) can be found. Because of the irregular geophysical 
distribution of the oceans, Dii can no longer be written in the form (4.10a) appropriate to 
the axisymmetric case. We can, however, still write Dii in the form 

Dij = (a5a2/3  G)dii, (5.1) 

where the coefficients dij are dimensionless. One effect of the oceans is that wobble and 
changes in the lod are coupled by the small but non-vanishing values of 013 and Dz3; this 
effect, however, is minute (Dahlen 1976) and we shall ignore it here. If spin--wobble 
coupling is neglected the only coefficients required are d l l ,  d z z  and dlz  = d z l .  The values of 
these for model 1066A are 

dll = 0.35092, 

dzz= 0.3405 1, 

d12 = d z l =  - 0.00109. 

If the pole tide is equilibrium, the oceans remain affixed exactly to the mantle, so their 
relative angular momentum in the frame FM is zero. The tensor Eii is thus still due only to 
the core, and it retains the value (4.10b). If spin-wobble coupling is neglected the secular 
equation (4.1 2) generalizes in the absence of (4.10a) to 

No,) = 

io,[A +DI1+E' +(o,/Q)E] - a D Z l  
-SZ[C-A - D 1 l ] + o o [ E + ( a o / ~ ) E f ]  +iuoDzl 

a [ C - A  -022] - a o [ E + ( o o / ~ ) E ' ]  +iooD12 

iao[A +D22+Ef  + ( U ~ / ~ ) E ] + S ~ D ~ ~  
det 1 

= 0. 
(5.3) 

Substituting (4.10b), (4.16), (5.1) and (5.2) into (5.3) yields the Chandler eigenfrequency 
of a Hough-Love-Larmor Earth with equilibrium oceans. 

Inasmuch as both d,, and dl l  - dz2 are small, we use the approximate solution 

C- A - ?h(dll +dzz)a5SZz/3G 
(To = a. 

AM + ebAC + ?h (dll +dzz)a5fL2/3G 
(5.4) 

Downloaded from https://academic.oup.com/gji/article-abstract/64/1/223/635896
by guest
on 25 July 2018



The period and Q of the Chandler wobble 249 

This differs from the HLL result (4.1 5) in the absence of oceans only by the replacement of 
the Love number k = 0.30088 by the factor %(dll + dz2)  = 0.34572. The difference 

A k  = '/z(dll +d,,) - k = 0.04484 

reflects the increased fluid-elastic bulge and the consequent decrease in 'restoring force' due 
to the equilibrium pole tide. It should be noted that equation (5.3) is not consistent with the 
procedure used to determine the ocean's influence on the period in both Dahlen (1 976) 
and Dahlen (1980a), since in both of those earlier treatments the core was not properly 
accounted for. The upshot is that the increase in To due to the oceans is essentially a factor 
of A / A ,  larger than previously estimated. This error was also pointed out to us by T. Sasao 
(private communication 1980) independently of our own discovery. The error involved in 
approximating (5.3) by (5.4) is of order d:, or (dll - d22)2; the latter, which is larger, is 
about 

Our best estimate of the period can be obtained by adding the equilibrium oceanic 
correction A k  to the dynamical wobble Love number k,. We are thus led to define a new 
wobble-effective Love number 

so the corresponding error in To due to the approximation is less than 0.1 day. 

k,=k,+Ak, ( 5  a 
which takes the oceans into account. The corresponding improved eigenfrequency, which we 
shall now denote by u,, is then 

C -  A - k,a5G2/3G 

A M  + EbAC + k,a5522/3C Oe a. (5.7) 

The value of k ,  for model 1066A is 

k ,  = 0.34642 

and the corresponding Chandler period is 

T, = 426.7 day 

This is the Chandler period of an Earth which is everywhere perfectly elastic, and which 
has an equilibrium pole tide. The corresponding Chandler Q for such an Earth is of course 
Q,' = 0 or Q, = 03. The discrepancy between these two theoretical values T, and Q, and the 
corresponding observed values To and Qo is substantive. If To = 435.2 day, as estimated by 
Wilson & Haubrich, the difference To- T, is 8.5 day. Both T, and Q, thus differ from the 
observed values by more than three standard deviations. It is this discrepancy we shall now 
exploit to place onstraints on mantle anelasticity. 

First, however, let us consider the accuracy of the elastic period T,. According to (5.7), 
the factors which are relevant are ( C - A ) / A ,  a5n2 /3GA,  a, AM/A, k ,  and (1 + EbAC/AM + 
k,a5a2/3GAM). As discussed in Section 3 ,  the first three of these have all been determined 
geodetically to an accuracy which is more than adequate for our purposes. The final factor 
(1 + E,A,/AM + k,a5a2/3GAM) = 1.0017 for model 1066A, and is responsible for only a 
0.7 day increase in the period. It too is thus certainly known well enough that any 
possible error in its value can be ignored. The only really important parameters in estimating 
the possible error in T, are thus the ratio R = AM/A and k,. From equation (5.7), we find 
that the factional change 6T,/T, due to changes 6RIR and 6k,/k, is given by 

6T,/T, = 6R/R + 0.468 (6k,/k,). 
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To estimate the possible uncertainties in R = A,/A and k,, all we can do easily is to compare 
values for different seismologically derived Earth models. For model 1066B of Gilbert & 
Dziewonski (1975), we find that both R and k ,  differ from the corresponding values for 
model 1066A used here by about 0.03 per cent. To be conservative, let us say that the actual 
uncertainties are about three times this, i.e. that both 6R/R and 6k,/k, are of order 
The overall uncertainty ST, is then, according to (5.8), about * 0.5 day. This is five times 
smaller than the current observational uncertainty of 2 2.6 day, and it will henceforth be 
ignored. 

One of the concerns of Smith (1977) was the effect of the squared Brunt-Vaisala 
frequency N 2  of the core on the Chandler period. He found that if the core were highly 
stably stratified (N2 = 3.4 x s-’), the period would be increased by 1.6 day over that 
corresponding to a neutral (Nz  = 0) core. Since then, Masters (1979) has undertaken an 
extensive study of the stratification in the core, using a variant of free oscillation inversion 
theory. He has determined that N 2  is close to zero, and has an uncertainty of about k 5 x 
10-ss-2. The hypothetical model considered by Smith was thus, in this sense, at least 10 
times more stable than seismic data will allow. The uncertainty in T, due to our lack of 
knowledge of core stratification is, thanks to Masters, small: less than t 0.2 day. 

Finally, we should question whether or not we can trust the normal-mode theory, which 
was linearized in ellipticity, at the fraction-of-a-day level. We think that we can. We actually 
used the normal-mode calculation to determine the oceanless wobble-effective Love number 
k,  correct through effects of order ellipticity. This quantity in turn affects only about one- 
quarter of the total Chandler period. Thus errors from this source should not exceed about 
? 0.3 day, 

M. L. Smith and I? A.  llahlen 

6 Damping of the Chandler wobble 

An important feature of the Chandler wobble is, of course, that it has a finite Q and thus 
must be subject to one or more irreversible processes. In order to exploit the geophysical 
implications of Q, we must seek to identify the processes whch contribute to it. AU of the 
plausible candidates for sinks of the wobble’s energy known to us fall into one of three 
categories: 

(i) dissipation in the oceans; 
(ii) bodily imperfections of elasticity; and 
(ii) core-mantle coupling processes (such as viscosity, electromagnetism and topo- 

graphy) which were ignored in the calculations of Section 4. 

This section briefly introduces (i) and (iij, since they are discussed in detail later, and 
discusses (iii) at greater length. Fig. 4 indicates these possibilities schematically. 

With regard to (ij, if the response of the oceans to wobble is exactly a state of 
instantaneous static equilibrium, there will be no dissipation. However, any departure from 
equilibrium will generally be accompanied by dissipation, if for no other reason than that 
there wdl then be slip at the ocean bottom. (It is important to draw a distinction between 
active and passive motions in the oceans. The former are the various currents, etc. which are 
driven primarily by the Earth’s meteorological heat engine. These have no effect on the 
period and Q of the Chandler wobble; they could, however, provide a means of excitation 
(Wilson & Haubrich 1976; O’Connor 1980). The latter are the motions, not necessarily 
equilibrium, which arise directly in response to the instantaneous wobble of the mantle. 
These are a part of the Chandler wobble eigenfunction s, and they can affect its period and 
Q.) With regard to (ii), since the Earth is deformable, the Chandler wobble induces elastic 
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Figure 4. Schematic cross-section of the Earth illustrating the possible locations and mechanisms for 
dissipation of the Chandler wobble. 

strain most of which, as we discuss in Section 8. is shear strain in the mantle. Most of the 
rest of this paper is devoted to exploring the consequences of shear loss in the mantle. 

The remaining processes are core-mantle coupling mechanisms. The Chandler wobble is 
characterized by large relative rigid rotations of the core and mantle and thus by large 
transverse slip at the core-mantle boundary. In the perfectly elastic limit, only two 
relatively weak mechanisms tend to couple the rigid rotations of core and mantle. One of 
these is inertial or pressure coupling arising from the ellipticity of the core-mantle 
boundary, and the other is the gravitational torque generated by, and acting upon, the 
elliptically stratified density fields of core and mantle. Neither process is dissipative and both 
are accounted for in the normal mode calculations of Section 4. There are additional 
processes acting in the real Earth for which we have not accounted which may be important. 
Those of which we are aware (see Rochester 1970, for a review) are electromagnetic 
coupling associated with the field of the geodynamo, viscous coupling due to viscosity in the 
core, and topographic coupling arising from possible non-elliptical topography of the core- 
mantle interface. 

Of the three, topographic coupling is probably the most enigmatic. We do not currently 
know much about the magnitude, scale-length or geography of core-mantle topography nor 
do we clearly understand the hydrodynamics associated with this mechanism. A critical 
question, e.g. is the extent to which the Taylor-Proudman theorem may dominate 
circulation in the core during wobble. This theorem, which strictly applies to steady (non- 
oscillatory) disturbances in a homogeneous rotating fluid, suggests that small bumps in the 
surface of the container (the core-mantle boundary) may entrain quasi-rigid columns of 
fluid extending deep into the core. Such a circumstance would clearly play havoc with the 
dynamical notions of the Chandler wobble we have outlined, but the extent to which this 
concept is applicable to non-steady motions of stratified compressible fluids is not clear. The 
best we can do here is take refuge in the claim that in the course of this study we encounter 
no phenomenon which requires topographic coupling for its explanation. 

Viscous coupling occurs because a viscous fluid cannot slip freely past an interface but 
rather is dragged along by motion of the latter. For periods long compared with 1 day the 
thickness of the viscous Ekman boundary layer in the core is of order 

h = (v/s2)”2, (6.1 1 
where v is the kinematic viscosity. For a rough estimate of the magnitude of the influence of 
core viscosity on the Chandler wobble, we greatly simplify the details of the boundary layer 
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solution and suppose that the boundary layer behaves as a rigid shell of thickness h (in 
reality the transverse displacements decay exponentially with distance from the interface 
and h is the exponential scale length). If u is the amplitude of rigid rotation of the mantle 
during wobble, and u B  is the consequent rigid rotation of the boundary layer, then since 
this is a linear process we must have 

M. L. Smith and F. A. Daklen 

U B = h 9  (6.2) 

where h is a complex constant. In the absence of internal resonances in the core, we expect 
that 

1x1 5 1. (6-3) 

If X vanishes, the boundary layer (and therefore the entire core) is stationary and the mantle 
wobbles freely by itself. If h + 0, the mantle must drag the boundary layer about, thus 
affecting the period and, if h is not purely real, the Q of the wobble. We can estimate this 
effect by computing the torque the mantle must exert to drive the boundary layer. Since 
2n/oO is long compared with a day, the angular momentum conservation law for the shell can 
be written as 

- uOABCluB= r B ,  (6.4) 

AB = (8~ /3 )  pob4h (6.5) 

where 

is the moment of inertia of the boundary layer (assumed spherical, of radius b and density 
p o )  and I'B is the torque exerted on the boundary layer by the mantle. The torque 
experienced by the mantle, r M ,  must simply be r M  = - r B ,  i.e. 

r M  = o o A B C l h u .  (6.6) 

Equation (6.6) describes the torque the mantle experiences as it drags the boundary layer 
along. That torque, naturally, depends upon the complex parameter h and upon the size 
of the boundary layer through AB. By adding the homogeneous torque term (6.6) to 
Liouville's equation for a rigid wobbling mantle with a spherical core-mantle boundary, it 
is straightforward to compute the complex perturbation in the mantle's wobble eigen- 
frequency. If h = hR + ih I ,  that calculation yields 

and 

Q i ' =  [ -]XI. 
(1 6n/3) po b4h 

AM 
(6.8) 

The real part of h, equation (6.7), describes the in-phase relation of u g  to u and contri- 
butes only to a real change in frequency ao, while the imaginary part of A, equation (6.8), 
describes the out-of-phase relation of uB to u and contributes only to damping. If we accept 
that 1x1 5 1 ,  then the maximum possible effect of a boundary layer of thickness h must be 
bounded by 

(6.9) 
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(6.10) 

Note that (6.9) and (6.10) depend explicitly only upon h and not upon the mechanism 
which produces the boundary layer or determines h.  Physically, the main assumptions we 
have made are that the boundary layer passively follows the mantle and that all of the 
dissipation occurs through mechanical work on the boundary layer. Order-of-magnitude 
bounds on Qo similar to (6.10) have been given before, using essentially the same argument, 
notably by Munk & MacDonald (1960) and by Jeffreys (1970). Our estimate of Q,, is. if 
anything, a worst case since we have bounded XI by one (which would require a n/? phase 
lag of the boundary layer). The bound (6.9) on 6To/To could alternatively be derived by 
noting that the effect of an in-phase boundary layer is simply to increase the Chandler 
'inertia' A ,  by the amount A,. 

Toomre (1974) has inferred an upper bound of l o5  cm2 sC1 on the viscosity of the core 
from an estimate by Fedorov (1963) of the possible phase lag of the 18.6 yr nutation. A 
preliminary analysis (R. Gross, private communication 1980) of the recently recalculated 
and homogenized ILS latitude observations (Yumi & Yokoyama 1980) has provided a 
tighter bound than Fedorov's on the 18.6 yr phase lag and thus a more stringent bound on 
v, viz. 

v 5 4 x 104 cm2 s-'. (6.1 1) 

This bound, which we believe is reliable and which applies at  a period of 24 hr, implies a 
viscous boundary layer thickness of 

h 250 m. (6.12) 

Applying (6.9) and (6.10) to the Chandler wobble, with h from (6.12), shows that the 
effects of viscous coupling must be bounded by 

6ToS 0.02 day (6.13) 

and 

Q ?  12000, (6.14) 

which we regard as negligible. 
A better estimate of the kinematic viscosity of the core is thought to be that due to Gans 

(1972) based on the Andrade melting hypothesis; it suggests that v = lo-' cm2 s-' or even 
slightly smaller, which would greatly reduce the possibility of viscous coupling. The much 
larger bound on v given by the nutation analysis of Gross is, however, important, because it 
is valid even if flow in the boundary layer is turbulent rather than laminar. In that case the 
pertinent parameter, rather than the molecular viscosity v, would be some eddy viscosity 
V,ddy which could be much larger than Y due to the more efficient momentum transport by 
macroscopic fluid parcels. At a period of 1 day, however, we know that the bound (6.11) 
must pertain to both V,ddy and v, whichever may be appropriate. The mechanics of 
turbulent coupling is not well enough understood to know how strongly V,ddy may depend 
on frequency, but if that dependence is relatively weak, the bounds (6.13) and (6.14) show 
that the effect of turbulent coupling on the Chandler wobble should be small. 

A correct laminar viscous boundary layer calculation accounting for the details of the 
distribution of fluid flow within the boundary layer has been performed recently by 
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T. Sasao Cprivate communication, 1979). Using his results to estimate ST, and Q, for 
v = 4 x 1 O4 gives 

ST,= 0.01 day, 

Q, = 35 000. 

The agreement with our crude estimates is so good as to be clearly somewhat fortuitous, but 
not displeasing. 

Now consider electromagnetic coupling arising from the interaction of the dynamo field 
and the conducting mantle. As with the oceans, it is important t o  distinguish between active 
and passive mechanisms. In the first case secular variations in the main geomagnetic field 
induce currents in the mantle which in turn are subject t o  Lorentz forces from the dynamo 
field. (This same mechanism causes conducting rings to fly into the air in undergraduate 
physics labs when those rings are subjected to a rapidly changing magnetic field.) This 
process is a conceivable energy source for the wobble (see, e.g. Rochester 1970) but does not 
damp it. Passive coupling, on the other hand, occurs when the mantle moves relative to the 
dynamo field. In the case of the Chandler wobble the mantle’s motion causes currents t o  be 
induced in it which, as above, lead to  mechanical forces by interaction with the dynamo field. 
The essential distinction is that in the latter case the retarding force experienced by the 
mantle is linear in its motion while forces induced by fluctuations in the dynamo field do  
not arise from motion of the mantle. The passive coupling process is similar to the damping 
of the oscillatory motion of a conducting pendulum in the presence of a magnetic field and, 
as with the pendulum, it can affect both the period and Q of the motion. 

Current flowing in the mantle also leads to equal but opposite Lorentz forces acting on 
the conducting fluid of the core. Electromagnetic skin effects cause these stresses to be 
concentrated near the core’s outer surface and this leads to a boundary layer coupled 
electromagnetically to the mantle. Ths  boundary layer has the important property that its 
thickness scales like the electromagnetic skin depth in the core, or h - uO”~,  i.e. as period 
grows longer, h grows larger. 

A correct calculation of core-mantle electromagnetic interaction is not only difficult 
(Loper 1975) but, more to the point, it depends upon unknown properties of the magnetic 
field at the core-mantle boundary. We propose, instead, to place a rather loose bound on 
this effect. Suppose that the non-inertial coupling at all frequencies between core and 
mantle is due to electromagnetic interaction. Gross’ bound (6.1 1) on viscosity can in that 
case be regarded instead as a bound (6.12) on the thickness of the electromagnetic boundary 
layer at a period of 1 day. Then since h scales as 

h S 5 k m ,  (6.13) 

approximately. Using the latter value of h in (6.10) and (6.1 1) gives 

6 To 5 0.4 day 

and 

QoL 600. 

By this estimate, the maximum effect on the period of the wobble is about 15 per cent of 
the current observational uncertainty and the maximum effect on Qo is about 15 per cent of 
the observed Q,. We believe these estimates to be conservative, and we shall hereafter ignore 
the possibility of electromagnetic coupling between core and mantle. As we shall see below, 
we are supported in this decision by the observation that all of the Chandler wobble’s energy 
can without difficulty be dissipated in mantle shear losses. 

M. L. Smith and I? A. Dahlen 

we expect, at  14 months, 

Downloaded from https://academic.oup.com/gji/article-abstract/64/1/223/635896
by guest
on 25 July 2018



The period and Q of the Chandler wobble 255 
7 Models of mantle anelasticity and dispersion 

There is good reason to believe that the mechanism for the dissipation of elastic energy 
within the Earth's mantle is linear. The best direct evidence in this regard comes from the 
recent study of Earth strain tides carried out by Agnew (1979). By looking for hgher 
harmonics of the tides, he was able to demonstrate that 'for peak strains of lo-' the 
response of the Earth is linear to 1 part in 1000'. The strains associated with the solid Earth 
pole tide, like those associated with the seismic normal modes after even the largest earth- 
quakes, are at least an order of magnitude smaller than the luni-solar tidal strains. The 
assumption that mantle anelasticity is linear should therefore be justified in treating the 
attenuation of all the normal modes of the Earth, including the Chandler wobble. Roughly 
the same amount of extrapolation in frequency is required to make this argument in the two 
situations of interest, viz. down from the tides to the Chandler wobble or up from the tides 
to the seismic free oscillations. 

The phenomenology of linear anelasticity has been reviewed many times, notably by 
Zener (1948), Gross (1953) and Nowick & Berry (1972). In an isotropic solid, dissipation 
can occur independently in shear or in compression, but by adopting a general notation we 
can discuss both simultaneously. In what follows, we shall use M to denote either the real 
shear modulus p or the real bulk modulus K, and we shall denote the corresponding quality 
factors Q, and Q, by Q. We shall restrict attention here to spherically symmetric models of 
the Earth's Q structure. The resulting errors of order ellipticity in our subsequent theoretical 
calculations of To- T, and Qo are clearly negligible compared with the observational un- 
certainty of To and Q,. As well as depending upon radius r in the mantle, Q can depend upon 
frequency u. If dissipation at a given radius is limited to a certain absorption band, as we 
shall assume, then outside that band Q-' must look like one flank of a single Lorentzian 
response, that is it must be proportional to u below the absorption band and to u-' above it. 
Within the band, however, Q may be prescribed arbitrarily provided its dependence on 
frequency is nowhere more extreme than u or u-'. Once Q(u) has been specified, the 
corresponding dispersion or frequency dependence of the associated radial elastic structure 
M is determined by the restriction that the response be causal. Very approximately, we must 
have 

d(ln M)/d(ln a) = 2/7rQ, (7.1) 

which shows clearly that, since Q is positive, M must decrease with decreasing frequency. 
The approximation (7.1) is fairly good as long as Q is large and reasonably independent of u; 
if those conditions are not met, more elaborate methods must be used to determine an 
accurate description of the dispersion. 

In this paper we shall explore the hypothesis that there is a single absorption band in 
which Q varies only weakly with frequency all the way from the top of the seismic 
frequency band, i.e. periods of the order of a fraction of a second, down to the Chandler 
period of 14 month. For simplicity, we shall confine attention to the one-parameter family 
of models for which Q varies as uQ within t h s  absorption band. More precisely, if u1 and u2 
are two frequencies located well within the absorption band, we shall assume that 

where - 1 < a! < 1. The special case a! = 0 corresponds to frequency-independent Q, a model 
whch  is commonly invoked in seismic attenuation studies. In that case, the associated 
absorption band dispersion is described by the familiar result popularized by Kanamori & 
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Anderson (1977), uiz. 
M. L. Smith and E A.  Dahlen 

M(dM(o1)  = 1 + (2hQ)  In ( ~ U I ) .  (7.3) 

Equation (7.3), which follows immediately from (7.1), is actually an approximation valid in 
the limit Q > 1. The exact form of the constant Q dispeision law is now known (Kjartansson 
1979), but for the values of Q we shall consider, the approximation (7.3) will be adequate. 

In the general case of a non-zero a, the dispersion can be described by 

M ( a z ) / M ( ~ i )  = 1 - Cot ( C U ~ T / ~ ) Q - ’ ( U ~ ) [ ( U ~ / O ~ ) ~  - 1 I ,  (7.4) 

which in the limit cy -+ 0 reduces to (7.3). Equation (7.4) is a valid approximation so long 
as both u1 and u2 are located within the absorption band, and provided that Q(u,) s 1 and 
Q(u,) s 1. If cy is small, so that cot (cyn/2) can be replaced by (2/~rcy), then equation (7.4) 
follows from (7.1). The more general result for arbitrary Icy1 < 1 has been obtained by first 
determining the strain retardation spectrum (Nowick & Berry 1972) which gives rise to the 
law (7.2). That spectrum is in fact given by Anderson & Minster (1979), but the dispersion 
law they give does not agree with (7.4), and is either in error or a misprint. 

Equations (7.2)-(7.4) describe the frequency dependence of Q and the associated 
modulus M at a single point within the mantle. In general, then, the exponent cy could be an 
arbitrary function of radius, In principle, we could explore this possibility quantitatively by 
combining attenuation data from a wide variety of the Earth’s free oscillations, but in this 
paper we shall consider only a single value of cy for the mantle as a whole. For a given a, the 
attenuation structure throughout the entire absorption band is then determined completely 
by the radial distribution of Q at some given reference frequency within the seismic band. A 
large number of Q models derived from free oscillation, surface wave and body wave data 
are now available. We shall in this paper confme attention to two extremely simple recent 
models: model QMU of Sailor & Dziewonski (1978) and model B of Sipkin & Jordan 
(1980). 

Model QMU was obtained by parameter-space inversion of 38 selected normal mode 
attenuation measurements. It is a two-shell model with the boundary at  670 km depth 
within the mantle. The value of Q, in the upper mantle is 11 1, and that in the lower mantle 
is 350. There is no bulk dissipation, i.e. Q ,  = m throughout. This simple two-shell model 
satisfied their data set as well as did models with more detail. The radial modes, particularly 
oSo, were not well satisfied by model QMU, and that discrepancy was used by Sailor & 
Dziewonski to argue for bulk dissipation. The Q of oSo has, however, since been re- 
determined by Knopoff et al. (1979) and Riedesel et al. (1980) to be about 50 per cent 
higher than the value adopted by Sailor & Dziewonski, and that weakens their argument for 
significant bulk dissipation accordingly. Model QMU, being derived from normal mode 
observations, is indicative of the Q distribution within the seismic normal mode band; we 
shall assume it is an appropriate description at a period of 200 s, the approximate midpoint 
of that band. 

The average value of Q, at  200 s in the upper mantle is probably fairly well determined. 
In particular, the value Q, = 11 1 of model QMU is consistent with a wide body of recently 
acquired surface wave and free oscillation data which sample primarily the upper mantle 
(see Anderson & Hart 1978, for a recent review). The Chandler wobble is, however, as we 
shall see, much more sensitive to the Q of the lower mantle than that of the upper mantle. 
The lower mantle value Q, = 350 of model QMU was probably primarily determined by the 
measured Q’s of a rather small number of low-frequency modes such as 0S2. Measurements 
of the Q of 0S2 range from 370 to 815 (see the summary by Stein & Geller 1978), and the 
value Q,, = 350 for the lower mantle may not be as well determined as is Q,, of the upper 
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mantle. It is not for example consistent with the recent careful measurements of DsCs made 
by Sipkin & Jordan (1980). The predicted value of escs for model QMU is 213, whereas 
Sipkin & Jordan’s best estimate for the average Earth is Qscs= 170 rt 20. This discrepancy 
led Sipkin & Jordan to introduce their model B, which is also a two-shell model with the 
boundary at 670 km depth. It has Q, = 108 in the upper mantle, Q, = 225 in the lower 
mantle, and predicts oscs= 170 exactly. Since ScS waves do not involve compression, 
Sipkin & Jordan do not stipulate Q,, but we shall again assume that Q, = 00. The ScS waves 
they studied were recorded on High Gain Long Period seismometers, operating in the 
frequency interval 6-60 mHz. The approximate midpoint of this band is 30 s, and we take 
that value as the reference period for model B. 

As Sipkin & Jordan have pointed out, the discrepancy between the normal mode model 
QMU and the observation that gscs= 170 could be explained in terms of a frequency- 
dependence of Q, in the lower mantle between 30 s and 200 s. If that is so, it cannot be 
consistent with equation (7.2) unless the exponent CY is negative; in particular it implies 
CY = -0.2. A positive value of CY is, on the other hand, definitely implied by the Chandler 
wobble observations, To-Te and Qo, as we shall see. There is of course no reason why a 
single empirical law like (7.2) should be expected to hold with a constant value of CY across 
a span of eight decades from a fraction of a second to 14 month, and indeed the above in- 
consistency may imply that it does not. The conclusions we shall draw here regarding (Y 

should be indicative of the gross frequency dependence of Q, in the lower mantle in the 
band between a few tens or hundreds of seconds and 14 month. It should be possible in the 
very near future to make use of improved estimates of the Q’s of such modes as oS2 to de- 
termine the frequency dependence of Q, in the seismic band, so that we may see with more 
certainty whether it is or is not consistent with the conclusions we draw here from the 
Chandler wobble. Our only reason for making use of the two Q models QMU and B in this 
study is to determine the sensitivity of our conclusions to the value of Q, in the lower 
mantle, since that value may not be well determined. The fact that model QMU is thought 
to be appropriate at 200 s and model B at 30 s is relatively inconsequential in this applica- 
tion since, from the vantage point of 14 month, those two periods are fairly close. 

The elastic moduli K and p of model 1066A have been obtained by the inversion of free 
oscillation eigenfrequencies, without allowing for dispersion (Gilbert & Dziewonski 1975). 
They therefore also correspond to some average picture of the elastic structure withm the 
normal mode band, and we shall take them too to be the description appropriate at 200 s, 
regardless of whether model QMU or model B is used as the attenuation model. Density p o  
does not vary since it reflects simply the atomic composition of the Earth. 

In summary, the complete specification of the anelastic, dispersive Earth at the Chandler 
period is uniquely determined by: 

(i) specification of a perfectly elastic Earth model po, K ,  p and the period a t  which it is 
appropriate (in our case model 1066A at 200 s); 

(ii) specification of a Q model Q,, Q, and the period at which it is appropriate (in our 
case model QMU at 200 s or model B at 30 s); and 

(iii) specification of the frequency dependence of Q, and Q, over a domain containing, 
but not limited to, both seismic and Chandler periods, i.e. in our case specification of the 
exponent LY in equation (7.2). 
Each of the two Q models QMU and B leads, via equations (7.2)-(7.4), to a one-dimensional 
family of frequency-dependent anelastic Earth models parametrized by CY. Since in this 
paper we always assume that Q, = 00, only the rigidity p exhibits dispersion. In the case of 
model B, the Q, structure appropriate at 30s  must be adjusted to 200s before being 
employed in equation (7.4) to determine the shear modulus discrepancy 6 p .  

9 
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8 The period and Q for a dissipative Earth 

The number of theoretical Chandler periods and corrections to them which we have 
employed has gotten rather large. In defence, we would like to take refuge in Jeffrey’s 
famous assertion that responsibility for this complexity lies with the Earth, and not with the 
authors. Fig. 5 summarizes the path from rigid to dissipative Earth. It schematically portrays 
the rigid-Earth Chandler period, equation (4.13), and the sequence of modifications (4.13) -+ 

(4.1 5) .+ (4.22) .+ (5.7) we have pursued so far to the elastic period T,. Thls section deals 
with the uppermost, smallest and, above all, last modification shown, that due to anelastic 
dispersion. 

The manner in whch the period T, will be affected by dispersion is, from a physical point 
of view, clear. We see from equation (7.1) that the rigidity p will decrease with decreasing 
frequency if the Earth is dissipative. On an oceanless Earth, a decrease in p will decrease the 
Chandler wobble ‘restoring force’ since the instantaneous elastic part of the bulge will be 
larger. On an Earth with oceans there is an additional effect, viz. the amplitude of the pole 
tide will also be decreased, and this by itself will act to increase the wobble ‘restoring force’ 
since the pole tide’s contribution to the instantaneous bulge will be less. The relative 
importance of these two effects is roughly in the ratio of k,  to Ak, i.e. the direct effect of 
the larger elastic bulge is about seven times greater than the effect of the decreased pole tide, 
and so the net effect of a positive 01 will be an increase in the elastic period T,. A further 
effect of the oceans is to give rise to additional mantle damping due to the strains associated 
with the pole tide loading. The relative importance of this effect compared with the mantle 
damping due to the solid Earth pole tide itself is, as we shall see, also of order Aklk,. To use 
To- T, and Q, to constrain a, we must be able to compute the theoretical change in To 
due to a change in as well as the theoretical Q, associated with a given distribution of 
Q,. In Section 8.1 we shall show how to do this on an oceanless Earth, and in Section 8.2 
we shall consider the effect of the oceans. 

M. L. Smith and f? A. Dahlen 

8.1 N O R M A L  M O D E  P E R T U R B A T I O N  T H E O R Y  F O R  A N  O C E A N L E S S  E A R T H  

Estimation of the effect of small perturbations in the Earth’s rheology upon To and, 
especially, Q, of the Chandler wobble has been a perilous and, in retrospect, unrewarding 
undertaking for a variety of investigators. These estimates have usually been based upon 

To = 435 2 days 

Dispersion 

298 days 

505 days 2 1430 Elasticity days 

9igid Ear th  
To = 304 4 days 

I I I 1 
300 350 400 450 

Sidereal days 

Figure 5. Schematic summary of the extent to which the rigid Earth Chandler period To = 304.4 day is 
modified by the effects of elasticity, the fluid core, equilibrium oceans and mantle dispersion to its 
observed value To= 435.2 day. 
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attempts to unravel the difficult question of energy partition during wobble in an elastic, 
gravitating Earth. In this section we give a unified and rigorous treatment of the problem, 
consisting of an application of normal-mode perturbation theory or, equivalently, Rayleigh’s 
principle. 

We begin with a stationary condition on the normal mode eigensolution of a rotating 
Earth (Dahlen & Smith 1975). Define the inner product 

(s’,s)= lEp0s ’ . s*du  (8.1) 

where the asterisk denotes complex conjugation and E denotes the Earth. If (uo, s) is a 
normal mode eigensolution then uo and s must satisfy 

O:T(S ,  S) - 2oOw(s, S) - E ( ~ ,  s) - r(s, S) = 0,  (8.2) 

T(s, s) = (s,s>, (8.3) 

W(s ,  s) = (s, iS2 x s), (8.4) 

where 

E(s,  s) = IET: E * du, 

and 

r(s, s) = jE [pas .V@T + po( Vs: V s* - I V .  s I2 )  + pas. V V (Go + $) . s*] du (8.6) 

where $ is the centripetal potential and po is the hydrostatic prestress field satisfying 

vPo+Pov(@o+$)=o.  (8.6) 

The inner product T and the other three bilinear forms W ,  E and r are bilinear functionals of 
s if we stipulate that T and are defined by equation (4.20). 

The important property of equation (8.2) is that it is stationary under small perturbations 
in the eigenfunction s. If (oo, s) is a normal mode solution, then (8.2) holds with an error of 
order when we replace s by s + bs where 6 s  is small but otherwise arbitrary; this is 
Rayleigh’s principle for a rotating Earth. Suppose @ is an Earth model, and that T,  W ,  E and 
r are its associated bilinear forms and (u0, s) is one of its normal modes. Form a new Earth 
model @ + 6@ by perturbing @ and let @ + 6@ have eigensolution (u0 + 6o0, s + 6s) with 
functionals T + AT, etc. Rayleigh’s principle means that for a small perturbation A@ equation 
(8.2) remains true with only a second-order error if we replace uo by 00+6uo, each 
functional with its perturbed form, but do not replace s by s + 6s. This leads to 

whch  must be correct through terms of first order in the perturbation. 

instance, 6T, 6 W and 6r vanish and it is easy to show that 
We are interested in the effects of complex perturbations 6~ and 6 p  in K and p.  In this 

6E = [ 6 ~  I V . sI2 + 26pS: b*] du, (8.9) 
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where 

M L. Smith and F. A. Dahlen 

1 

3 
ti=€ - - ( V . s ) I  

is the deviatoric strain. If all effects of order ellipticity are ignored in evaluating the volume 
integral in (8.9) it can be simplified considerably. This procedure gives rise to an error of 
about 0.3 per cent in 6uo/uo and Q,', which is acceptable since To- T, is only 8.5 day. Let 
us rewrite (8.9) in the form 

(8.10) 

where (uET - u, W) is a scalar depending upon (u,, s) and the Earth model, and K and M 
are scalar functions of radius determined from s and computed in a straightforward way 
from (8.9). 

Combining (8.10) with (8.8) gives 

which is what we need. If 6 ~ ,  6 p  are real, (8.1 1) enables us to  compute their effect upon the 
normal mode eigenfrequency uo. If Q K ,  Q,, are the Q's of compression and shear at the 
frequency uOr then (8.1 1) leads to Q,, the Q of the normal mode 

(8.12) 

Table 4 lists values of KK and p M  (in km-3) versus radius for the Chandler eigenfunction 
of 1066A. The hybrid oceanless period of 396.9 day has been used to evaluate uET - uo W. 
The contributions to the strain from 7 :  and T: as well as that of the dominant term a; 

Table 4. Model 1066A: Chandler wobble Frtchet kernels for K and ,,. 

3484.3 
3691.4 
3899.2 
4107.0 
4349.4 
4557.2 
4730.3 
4938.1 
5145.9 
5353.7 
5561.5 
5700.0 
5700.0 
5950.0 
6180.6 
6360.0 
6360.0 
6371.0 

0.36663 X 10' 
0.26478 X lo9 
0.20774 X lo9 
0.16942 X 10' 
0.13527 X l o 9  
0.11132 X lo9  
0.93965 X 10' 
0.7.5445 X 10' 
0.59438 X lo8  
0.45371 X lo* 
0.35434 X l o 8  
0.26278 X 10' 
0.26278 X lo8  
0.15123 X lo8  
0.94746 X l o 7  
0.85823 X l o 7  
0.21104 X lo' 
0.21741 X 10' 

0.10285 X 10' 
0.32.558 X l o 7  
0.47182 X l o6  
0.49832 X 10' 
0.11553 X lo7  
0.27481 X l o 7  
0.42688 X 10' 
0.61331 X l o 7  
0.79180 X lo' 
0.93310 X l o 7  
0.10616 X l o 8  
0.98723 X lo' 
0.98721 X lo '  
0.76197 X lo7 
0.55573 X l o 7  
0.57084 X 10' 
0.11498 X l o 7  
0.10924 X l o 7  

0.552154 X 10" 
0.824828 X lo-'  
0.152385 X 10' 
0.214764 X 10' 
0.280374 X 10' 
0.330981 X 10' 
0.369203 X 10' 
0.410171 X 10' 
0.445656 X 10' 
0.475475 X 10' 
0.500332 X 10' 
0.513975 X 10' 
0.513975 X 10' 
0.530727 X 10' 
0.540773 X 10' 
0.546960 X 10' 
0.546960 X 10' 
0.547055 X 10' 

0.168988 X 10.' 
0.185632 X lo-'  
0.190382 X 10.' 
0.190769 X lo-' 
0.193013 X 1 0 - I  
0.200990 X lo-' 
0.214098 X lo- '  
0.239436 X lo- '  
0.276699 X lo-'  
0.326351 X lo- '  
0.388334 X lo-' 
0.434070 X lo-' 
0.434070 X lo-' 
0.507335 X lo-' 
0.561755 X lo- '  
0.600996 X lo-' 
0.600996 X lo-' 
0.601496 X lo- '  
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The period and Q of the ChanLEZer wobble 26 1 
have been accounted for in calculating K K  and pM. Both kernels KK and pM are non- 
vanishing in the inner-core and K K  is non-vanishing in the outer core, but the contributions 
from these two regions are slight and we do not show them. The shear kernel phf is every- 
where larger than K K  and, as we shall see, the Chandler wobble is about nine times more 
sensitive to  fluctuations in rigidity than to fluctuations in incompressibility. 

The last two columns of Table 4 are numerical values of the integrals 

(8.13) 

(8.14) 

These quantities ease the evaluation of (8.1 1) and (8.1 2) when ~ K / K ,  &ply, Q ,  or Q, are 
piecewise constant functions of radius. For example, suppose we wish to compute Qo 
from (8.12), given that Q,  = 00 and 

(350 3484 5 r 5 5700 
Qi'= i l l 1  57005  r 5  6371 ' 

In that case we find 

or 

Qo = 566. 

Since the parameters chosen are those of model QMU, the value Q,= 566 is the predicted 
Chandler Q for that model if Q, is frequency-independent and pole-tide loading is ignored. 
The corresponding value for model B is 

Qo = 386. 

The relative importance of shear as compared with bulk dissipation in damping the Chandler 
wobble is illustrated by the ratio 

L M  (6371) 

L K  (6371) 
__-- - 9.1 

Also note that 

LM(6371) - LM(5700) - 1 

L ~ ( 5 7 0 0 )  - LM(3484) 15.5' 
~~ - 

showing the strong dominance of the lower mantle. 
Fig. 6 shows the results of several different calculations of pM(r) for the mantle of 

1066A. The solid curve labelled CW is the result for the Chandler wobble eigenfunction 
using the theory outlined above and the rotating normal-mode eigenfunction. It is the most 
accurate answer for an oceanless Earth and is the quantity tabulated in Table 5 .  The long- 
dashed curve labelled HLL is an estimate of p.M(r) based on HLL theory. The Chandler 
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CORE MANTLE 

BOUNDARY S U R FAG E 

I I I 

Radius ( k m )  

Figure 6.  Plot of the Chandler wobble’s shear modulus Frkchet kernel g M i n  the mantle for model 1066A 
calculated using both normal mode and HLL theory and compared with the corresponding kernel for the 
,S, spheroidal mode. Note the steep rise with depth in the lower mantle emphasizing the relative im- 
portance of that region in determining the period and Q of both normal modes. If pole-tide straining is 
ignored, the Q’s of the Chandler wobble and of ,S ,  can be compared directly with no additional 
‘corrections’. 

wobble eigenfunction was taken to be exactly a rigid rotation plus the 0; static tidal de- 
formation caused by the wobble’s varying centripetal potential, and that eigenfunction was 
used in the perturbation theoretic expressions given above. Note that since only the elastic 
properties of the model are being perturbed, the numerator of (8.7) will involve only 0; and 
not rigid rotational motion. The denominator ui T - uo W generally involves both but it is 
easy to show that in the case of the Chandler wobble where uo 4 52 this quantity is almost 
entirely due to that portion of W associated with rigid rotation. In constructing the HLL 
curve shown, we have used the approximate equation (A.21) in Appendix A for u;T- ooW. 
This calculation did not require the full panoply of rotating normal-mode theory, but is in 
extremely good agreement with it and, as such, provides a way to reconstruct or expand 
the results presented here without recourse to the numerical complexities of rotating 
normal-mode calculations. 

The short-dashed curve labelled oSz is the functional pM(r) for the fundamental elastic 
mode of model 1066A. This result is based upon standard spherically symmetric normal- 
mode theory. (Note that the quantity heing perturbed is now the angular eigenfrequency 

Table 5. Value of x = [6 (Ao,)/Ao,]/[(6g/g)l0,,, mantle] for models 
QMU, B ,  and for a constant Q, model. 

X (6p/Cc)upper ~~ Corresponding Q, model 
(6fi’lfihowet mantle 

111/350 = 0.317 model QMU of Sailor & Dziewonski 0.50 
108/225 = 0.480 model B of Sipkin & Jordan 0.47 
1 Q, independent of depth 0.45 
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of 0S2, not that of the Chandler wobble.) The remarkable similarity between the latter result 
and that for CW means that these two normal modes sample the mantle and reflect its 
anelasticity at their separate periods in very similar ways. If it were not for the oceans, their 
respective Q's would be essentially measures of the same depth-average of the shear Q of 
the mantle at two very different frequencies. Since the effect of pole-tide loading is to 
decrease the theoretical Qo for a given distribution QCl by a little over 10 per cent and since 
there is no such effect on 0S2, the similarity between the two modes is actually somewhat 
less than Fig. 6 indicates. 

For the two Q models we consider here Q, = m and so only the rigidity 1-1 exhibits 
dispersion. In addition Q, = m in the inner core so the integration in (8.1 1) and (8.12) 
only needs to  be carried out over the mantle and crust b 5 Y 5 a.  Let urn be the Q model's 
defining frequency and let &(r, urn) be the model's shear Q at that frequency. Define 4 
by 

4 = / iQ; ' ( r ,  a,)p(r)M(r)r2 dr. 

Then the Chandler Q in the absence of oceans is obtained from 

(8.15) 

QG1 = (Dm /uo)"q 3 

and the fractional change in rigidity at radius r is, from equation (7.4), given by 

(8.16) 

Putting (8.17) into equation (8.1 1) yields the fractional change in Chandler eigenfrequency 

6u,/uo = - M cot (an/2)[(orn/u0)a - 114 (8.18) 

apart from the perturbation in the ocean correction. 

8.2 T H E  A D D I T I O N A L  EFFECT O F  T H E  O C E A N S  

Since the additional effect of the oceans is slight, we shall resort to a simple (but surprisingly 
good) approximation to calculate it. Let us denote the oceanic contribution to the response 
tensor Di, by AD,. On a dissipationless Earth, as we have seen in Section 5 ,  AD,, is given by 

ADii = (dii - k6ii)(a5i12/3G). 

From (5.2), the components of Adi, = dii - k6ij for model 1066A are 

(8.19) 

Ad11 = 0.05004, 

Ad22 = 0.03963, 

Ad12 = Ad21 = - 0.00109. 

(8.20) 

The amount Auo by which the oceans reduce the frequency uo is given very nearly, 
according to (4.21) and (5.7), by 

n u o =  - %(Adl l  + A d z 2 ) ( a 5 i 1 2 / 3 G A ~ ) i l .  (8.21) 
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The effect of dispersion will be to decrease the absolute value IAool, since the amplitude of 
the equilibrium pole tide will be smaller on a less rigid Earth (on a perfectly fluid Earth, 
there would be no ocean bottom and thus no distinct pole tide at all). The lengthening of 
the period by the oceans will thus be less than it would be on a dissipationless and therefore 
dispersion-free Earth. An exact calculation of the dispersive perturbation to A a, would 
require us to calculate the perturbation to the tensor Adij. This would be a rather large task, 
and instead we shall proceed as follows. 

If the Earth were completely covered by oceans, the equilibrium pole tide would be a 
pure Y i  harmonic, and the tensor Adii would be given by (Dahlen 1976) Adii = AdiiFii, 
where 

M. L. Smith and E A.  Dahlen 

3 [ ( l t k ’ ) ( l t k - h )  - - - I  
A d ,  = - ( P , / P o )  

5 1 - 7s (p ,  / P o )  (1 -+ k’ - h’)  
(8.22) 

The factors k ,  h ,  k’ and h‘ are the Love numbers and load Love numbers of degree two, 
pw = 1.025 g cm-3 is the density of sea water and P o  = 5.5 17 g ~ r n - ~  is the mean density of 
the Earth. Tidal loading and the gravitational self-attraction of the oceans have both been 
taken into account in the formula (8.22), i.e. it is exact for a water-covered Earth. If the 
Earth were water-covered, the frequency shift A a ,  would, by (8.21), be given by 

Aoo= - Ado(asCL2/3GAM)51. (8.23) 

To account approximately for the continents, we shall simply multiply this by the fraction 
of the Earth’s surface area covered by oceans; according to Sverdrup et ul. (1942), that 
fraction is 0.708. The approximation we shall use is thus 

Auo= - 0.708Ado(usCL2/3GA~))R. (8.24) 

A similar approximation was first used by Larmor (1915). For model 1066A, the quantity 
0.708Ado = 0.0465, which agrees rather well with the exact value %(dll t d Z 2 )  = 0.04484, 
so the approximation is fairly good. Its virtue of course is that it allows us to consider the 
perturbations to only the degree 2 Love numbers k ,  h ,  k’ and h’, without taking the others 
into account. 

For convenience, let us introduce the notation A = 1 + k - h and h’ = 1 + k’ - h‘. From 
(8.22) and (8.24), we find that the perturbation 6 (Au,) in Aao due to perturbations 6h and 
6h’ is given by 

6 (Aao)/Auo = 2(6h/h) t 0.234 (6h’lX’). (8.25) 

In deriving (8.25), we have made use of the reciprocity relation k‘ = k - h established 
independently by Molodensky (1977) and Saito (1978). We have calculated 6h and 6h’ due 
to  a perturbation 6p in the rigidity of the mantle of model 1066A by straightforward 
numerical differentiation. Three separate cases have been considered; in every case 6p /p  
was taken to be constant in the lower mantle below 670 km depth and in the upper mantle 
above 670 km depth; the ratio of the two constant values has, however, been varied. The 
three cases considered and the final results are shown in Table 5 in the easily used form 

6 (Auo)lAoo = X(6P/Vhower mantle. (8.26) 

The factor x changes very little, from x = 0.50 for model QMU to x = 0.45 if Q, is 
independent of depth in the mantle. Depending on the exponent a, the rigidity of the lower 
mantle may be as much as 10 per cent less at the Chandler period than in the seismic band. 
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The period and Q of the Chandler wobble 26 5 
The corresponding decrease in the period To due to  the effect of dispersion on  the amplitude 
of the pole tide could thus be as much as a day and a half. 

The amount 6 (Q,') by which Q,' is increased by the additional mantle damping due to 
the pole tide loading strain can be readily determined by considering an imaginary perturba- 
tion 6 p / p  = iQ,' in (8.26). This leads to the result 

S ( Q 0 ' )  = 2XIAoo/'ool(QC,')lower mantle. (8.27) 

where, as in (8.26), the factor x is given in Table 5 .  

Model QMU 

I 

9 Implications for mantle anelasticity 

The final expression for the theoretical Chandler eigenfrequency, when both anelastic 
effects are included, is 

UO = U, -t 6 CJO -t 6 ( A u ~ ) .  (9.1) 

The perturbation Soo is calculated by multiplying 6uo/uo from equation (8.18) times the 
elastic oceanless eigenfrequency 27r/(396.8 day) calculated in Section 4 while 6 (Aa,) is 
calculated by multiplying equations (8.21) and (8.25). The two perturbations 6ao and &(no,) 
are of opposite sign, the former negative because a decrease in rigidity decreases the size of 
the elastic bulge following the wobble, and the latter positive because the pole tide. which 
also follows the wobble, is reduced. The final expression for the theoretical Q,' is, 
likewise, given by the sum of equations (8.16) and (8.27). Both contributions to Q,' are 
positive, since both processes are energy sinks. 

Fig. 7 shows the locus of theoretical (To, Q,) for model 1066A for each of the Q models 
QMU and B, as a function of the exponent a. The best estimate of Wilson & Haubrich for 

90% 

-Model B 

Figure 7. Plot of To versus Q ,  for the Chandler wobble showing the preferred estimates of Wilson & 
Haubrich (WH) with their 68 and 90 per cent confidence limits as well as the preferred estimates of 
Currie (C), Jeffreys (J), and Ooe (0). The predicted values of Toand Q ,  for dissipation models QMU and 
B are shown as solid curves parametrized by 01 with tick marks at intervals of 0.02. 
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observed (To, Q,) is shown (as well as values found by other investigators) together with the 
68  per cent and 90 per cent confidence boxes. Fig. 7, the principal result of this paper, 
has a number of interesting features. 

In particular, it can be seen that frequency independent Q, models (the points for which 
a = 0) are not terribly bad from a Chandler wobble point of view. Model B, in particular, 
lies inside the 90 per cent box; QMU is farther off, being just outside the 90 per cent box, 
because of its greater lower-mantle Q,. The effect of extra pole-tide straining is to reduce the 
a = 0 values of Q, from 566 to 504 for model QMU and from 386 to 343 for model B. The 
latter falls as shown below the upper 68 per cent confidence limit of Wilson & Haubrich. 

M. L. Smith and F. A. Dahlen 

For model B, the 68 per cent box implies a range 

0 .045  a s  0.11, (9.2) 

with a = 0.09 preferred, while for QMU 

0.1 1 2  a 0.19, (9.3) 

with a = 0.1 5 preferred. Somewhat surprisingly, in both cases the bounds are established by 
the observed period and not the observed Q. 

As mentioned in Section 8,  the effects of anelasticity upon (To, Q,) are dominated by the 
contribution from the lower mantle. In the absence of pathological behaviour in the upper 
mantle and at the risk of some oversimplification, we might consider the bounds on a to 
be those appropriate to the lower mantle (below 670 km depth). The sensitivity of the 
bounds on a to the value Q, in the lower mantle can be easily gauged from a comparison of 
models QMU and B; as shown in Fig. 7 that sensitivity is significant but not extreme. In 
general the lower Q, in the lower mantle is, the less frequency dependence is required to be 
consistent with the data. 

The constraints placed by (9.2) and (9.3) on the frequency dependence of Q, in the 
lower mantle are lower than those inferred in previous investigations, in particular by 
Jeffreys (1978) and Anderson & Minster (1979). In addition, and more importantly, they 
have been derived in a more rigorous manner. The two hypotheses that the pole tide is 
equilibrium and that the Chandler wobble is entirely damped by mantle anelasticity have 
been shown to be definitely consistent with the observed Chandler period and Q. Only a 
slight decrease in Q, with decreasing frequency is required to obtain excellent agreement 
with both To and Q,. The implied frequency dependence of Q, within the seismic band is 
shown in Fig. 8 for model QMU with its best-fitting value of a, uiz. a = 0.1 5 ,  and for model 
B with its best-fitting value a = 0.09. In the first case, Q, decreases from 350 and 11 1 at  
200 s to 57 and 18  at 435.2 day. In the second, it decreases from 225 and 108 at 30 s t o  
64 and 31 at 435.2 day. The variation produced by an exponent as high as a = 0 . 1 5  is 
sufficiently strong that it could perhaps be detected by a few high-quality attenuation 
observations widely spaced within the seismic band itself. The variation produced by 
a = 0.09 is weaker and would be more difficult to detect. It is interesting to note that 
although model QMU with a = 0.15 does not agree with the long-period (30 s) Dscs observa- 
tions of Sipkin & Jordan (1980), it does agree rather well with the short-period observations 
collected earlier by Sipkm & Jordan (1979). They found that o&s at high frequencies (0.3 
to 3 s period) was of order 750, and interpreted this as evidence that the top of the 
absorption band was near 1 s. An alternative interpretation may be that a period of 1 s is 
still within the absorption band and that a is fairly large, near a = 0.1 5. 

The associated dispersion Sp/p within the seismic band is shown in Fig. 9 for models 
QMU and B with a = 0.1 5 and a = 0.09, respectively, as well as that which would be present 
in both cases if QP were frequency-independent (a = 0). It can be seen that the differences 
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Figure 8. The frequency dependence of Q, in the seismic frequency band for model QMU with 01 = 0.15 
and for model B with 01 = 0.09. 

between constant Q, dispersion and that associated with the weakly frequency-dependent 
Q, found here are not too great. In particular either a = 0 or a in the range 0.09 a 0.1 5 
can successfully explain the observed travel-time baseline discrepancy of normal-mode 
derived Earth models such as 1066A or 1066B (Akopyan, Zharkov & Lyubimov 1975, 
1976) at its current level of observational uncertainty. For model QMU with a = 0.15 the 

2 -  Upper Mantle ,*’ 

MODEL QMU 
a = 0.15 

Normol Mode Band - Body Wavrs 
3. 
\ 21 

‘ 

a = 0.09 

FREQUENCY (Hz) 

Figure 9. The solid curves show the seismic-band dispersion 6 p / p  in per cent for model QMU with 
01 = 0.15 and for model B with 01 = 0.09 and the dashed curves show the corresponding constantQc, or 
01 = 0 dispersion. The difference between solid and dashed curves is sufficiently slight that it will be 
difficult to detect using conventional seismological methods. 
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discrepancy 6p/p at the Chandler period To = 435.2 day is 6.2 per cent in the lower mantle 
and  19.4 per cent in the upper mantle; the corresponding values for model B with a = 0.09 
are 7.9 and 16.5 per cent, respectively. 

M. L. Smith and E A. DahIen 

10 A caveat: non-equilibrium pole tides 

As we have emphasized, the results found above are based upon the assumption that the 
global open pole tide is equilibrium. Let us now try to see how critical this assumption is. 
We can get a rough idea by considering the simplest possible hypothetical departure from 
equilibrium. Suppose the equilibrium tide is 5 = to exp (io, t) ,  and that the departure consists 
of a uniform amplification or reduction combined with a uniform phase lag over the Earth's 
oceans, i.e. suppose the tide is { = y to  exp [i(oot - E ) ]  where the amplification y and the 
phase lag E are constants. The effect of such a uniform departure from equilibrium on the 
period To and the quality factor Q, is easily determined, since the tensor Adii is clearly just 
changed to yAdij exp (- ie). Inserting this into the secular equation (5.3) yields a complex 
equation whose real and imaginary parts can be solved for uo and Q, separately. 

If the phase lag is small, the solution is very simple and in fact intuitively obvious. As 
before, let us use Ao, to denote the amount by which the equilibrium tide t = to exp (ioot) 
reduces the frequency GI,. The corresponding reduction due to { =  y to  exp [i(uot - E ) ]  is 
then simply yAoo, if E g 1. Under the same circumstances, the quality factor Qo (due to the 
oceans alone) is 

QG' = Y I Aoo/ool E .  (10.1) 

Correct to first order, a slight uniform phase lag E thus has no effect on To while the quantity 
QO1 is proportional to E .  Very roughly, if the tides are amplified or reduced by a factor y 
not  too different from 1, then the amount AT, by which the oceans act to increase the 
period will be multiplied by the same factor since ATo/To - - Aoo/o,. For a strictly equi- 
librium tide, we have seen that AT, = 29.8 day. Thus if the global departure from 
equilibrium is as little as 1 per cent, as the arguments in Section 5 suggest, the resulting 
effect on the period would only be about 0.3 day, which is negligible. The currently 
ambiguous state of direct observations of the pole tide however leaves some room for 
doubt here, especially since no explanation of the anomalous local pole tide observations in 
the North and Baltic Seas has been advanced which does not invoke departures from 
equilibrium in the open ocean at  the edge of those seas. If the global departure from equi- 
librium is as high as 30 per cent, which cannot really be ruled out on the basis of pole tide 
observations alone, the period could be affected by as much as the total difference between 
To and T,, uiz. 8.5 day. Although we are inclined to believe the actual uncertainty is really 
much less than this, it is fair t o  say that we cannot be absolutely certain. 

Small departures from equilibrium can affect the damping factor Q, much more than the 
period To. If y = 1, the phase lag required to give Q,= 100, according to  (lO.l), is 3O.7 or 
4.5 day. If the globally averaged phase lag is of this order, then the oceans alone could 
completely account for the damping. Since this is roughly equal t o  the time-scale on which 
we expect equdibrium of the oceans to be established, this is clearly a possibdity whch  must 
be taken seriously. A global phase lag of 4.5 day amounts t o  a departure from equilibrium 
of only 1 per cent, and is currently far below the level of direct detection. 

In summary, if the global departures from equilibrium are as small as we have argued, 
then their influence on To should be negbgible, but their contribution to the damping might 
be profound. The hypothetical case of a uniform amplification together with a uniform 
phase lag is clearly too simplistic, but it does suggest the order of magnitude of these effects. 
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Such models have in fact been considered before by both Dickman (1 979) and Naito (1 979). 
Since Dickman seems willing to contemplate much larger departures from equilibrium than 
we are, his conclusions about the extent to which they might influence To are somewhat 
more sensational than ours. In addition to considering the hypothetical model treated here, 
he has also estimated the effect of the anomalous tides observed in the North and Baltic Seas 
and, not surprisingly, finds their effect on To to be thoroughly negligible even when the small 
accompanying tides which must be present in the rest of oceans to conserve mass are taken 
into account. Both he and Wunsch (1974) find, however, that dissipation in the North and 
Baltic Seas may alone account for a significant fraction of the observed Chandler wobble 
damping. By means of rough extrapolation to the rest of the world’s shallow seas, Wunsch 
concludes that ‘the ocean is unlikely to be a primary sink of energy, but it still cannot be 
ruled out’. 

The conclusions we have drawn about the frequency dependence of Q, may be in error if 
the oceans, through departures from equilibrium, contribute measurably to the damping. 
We can, however, still place some useful bounds on the possible frequency dependence even 
if we admit this possibility. Let us now use QM to denote the contribution to Q,  in the 
absence of any pole tide whatsoever; QZ is thus just the right hand side of equation (8.15), 
i.e. 

Q Z  = 1; [Q,’ ( K K )  t Q,’ ( /AM)] r z  dr. (10.2) 

The observed quality factor Q, must be less than QM, since the purely passive pole tide plus 
the mantle strains it creates can only act as a sink and not a source of energy, regardless of 
the details or extent of any departures from equilibrium. This allows us to put an upper 
bound on the exponent a. If Q M  = 566 at 200 s as is the case for model QMU, then with 
68 per cent confidence we can say that (Y < 0.20 and with 90 per cent confidence CY < 0.23. 
If instead QM = 386 at 30 s as is the case for model B, the bounds are even stricter. In that 
case (Y < 0.15 with 68 per cent confidence and cy < 0.18 with 90 per cent confidence. These 
bounds are based on the lower 68 and 90 per cent confidence limits placed on Q, by Wilson 
& Haubrich, viz. Q, > 50 and Q, > 33 respectively. Values as high as cy = 1/3, as advocated 
by Anderson & Minster (1979), seem by the above argument to be out of the question. We 
believe this conclusion is based on sufficiently few possibly unwarranted assumptions that 
it is essentially incontrovertible. 

11 Conclusions 

Models of Q,(r, u) and QK(r, a) will no doubt be refined in the future as more and more 
accurate attenuation data is collected. In this paper we have shown how the measured period 
To and the measured quality factor Q, of the Chandler wobble can be used in this refinement 
process. There are two results in this paper we think will stand the test of time and prove to  
be of value in future Earth modelling studies. The first is the theoretical value of the 
Chandler period T, for a dissipationless Earth with an equilibrium pole tide. For model 
1066A of Gilbert & Dziewonski (1975), we have found that T, = 426.7 sidereal days. The 
uncertainty in this value due to current uncertainty about the internal structure of the Earth 
is thought to be no more than 0.1 per cent, i.e. about 0.5 day. The discrepancy between T, 
and the observed period To = 435.2 + 2.6 day determined by Wilson & Haubrich (1976) 
must be due either to dispersion associated with mantle anelasticity or to departures of the 
pole tide from equilibrium if, as we have argued, other effects are small. 
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The second result which should prove useful is the algorithm we have presented for 
calculating Q, and Gcro/cro due to a given model of mantle anelasticity QK, Q, and its 
associated dispersion G K / K ,  S p / p .  Our algorithm is based on a straightforward application of 
normal mode perturbation theory for a rotating, oceanless Earth model. The kernels KK 
and pll which relate Q,' to Q,' and Q;' and 2(6cr0/cr0) to 6 K / K  and Sp/p have been 
tabulated (for model 1066A) for future reference. Several previous attempts to relate Q,' 
t o  Q;' using energy arguments have been shown to be in error. 

The discrepancy To - T, and Q, can be used to place constraints on QK(r ,  cr) and Q, (r, cr)  
in a number of different ways, depending on how conservative one wishes to be about the 
pole tide. Theoretical considerations together with Mf and Mrn tidal studies suggest but do  
no t  prove that global departures of the pole tide from equilibrium should be quite small. 
If one is willing to assume there is no  departure from equilibrium whatsoever, Q, and Q, 
can be constrained most tightly; both To - T, and Q, must in that case be attributed solely 
to mantle anelasticity and dispersion. Given the present state of our oceanographic 
knowledge, a more conservative position might be thought appropriate. In that case, one 
may wish to  place more reliance on a good fit to To - T, rather than Q,, since a 1 per cent 
departure from equilibrium should affect the former by only about 0.3 day, but could 
potentially account for all of the dissipation. On the other hand, since the oceans can act 
only as a sink, any model of Q,, Q, which predicts too low a value of Q, must definitely 
be rejected. This is in fact the most conservative position of all, since it is independent of 
how large any departures from equilibrium might be. 

In this paper we have assumed that Q, = 00, and have investigated the frequency de- 
pendence of Q, under the assumption that the mantle has a single absorption band in which 
Q, - 8, where (Y is a constant independent of depth. Future studies will undoubtedly wish 
to  investigate the effect of relaxing these assumptions. Subject to these assumptions, 
however, we have found that the overall frequency dependence of Q, between a few tens or 
hundreds of seconds and 14 months can be constrained significantly. We can say with virtual 
certainty that cv must be less than 1/3, the value associated with the so-called Andrade creep 
law preferred by Anderson & Minster (1979). If the pole tide is exactly equihbrium, our 
preferred value for cv lies in the range 0.09-0.15, depending on whether the average Q, 
in the lower mantle is taken as 225 at 30 s (Sipkin &Jordan 1980) or as 350 at 200 s (Sailor 
& Dziewonski 1978). If the model of Sipkin & Jordan at 30 s is used, then frequency 
independence ( (u=O)  down to 14 months is consistent with the data at the 90 per cent 
confidence level (the predicted Qo is actually consistent at the 68 per cent level but the 
predicted To is not). 

In essence, all we have done here is to substantiate and refine a conclusion first reached 
by Sir Harold Jeffreys over two decades ago. Our preferred value of (Y is slightly lower than 
his, i.e. we find that even less frequency dependence of Q, is required to explain the data 
than he thought. An attenuation of the form Q, - cra implies a transient creep response, 
subsequent to the instantaneous elastic response, of the form E ( t )  - t". If the law Q,- cra 
persists down to geological periods, so will the transient creep law ~ ( t )  - tor. As Jeffreys 
(1972) has pointed out, thermal convection is precluded for any material which behaves 
for all t like E ( t )  - t", if (Y < 1. He has used this as his principal argument against plate 
tectonics and continental drift. In spite of the admiration we feel for his prescience regarding 
the implications of the damping of the Chandler wobble for mantle anelasticity, this is where 
we part company. In our opinion, the extrapolation involved in going from the Chandler 
wobble to either post-glacial rebound or plate tectonics cannot be justified. 

From a strictly phenomenological point of view, this extrapolation may not at first sight 
seem all that improbable. The time scale for post-glacial rebound, if placed on the logarithmic 
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scale of Fig. 1 ,  is after all only about as far below the Chandler wobble as the Chandler 
wobble is below the seismic band. It must, however, be borne in mind that substantial 
extrapolation in stress is also required. The strains involved in the Chandler wobble are of 
order bars. The stresses associated with 
post-glacial rebound and mantle convection are several orders of magnitude larger, in the 
range 10-1000 bars. The basic microscopic mechanism which governs the attenuation in the 
mantle of the Chandler wobble is likely as a result to be altogether different from that which 
governs high-temperature steady-state creep. For example the former may be governed by 
bowing in the glide plane of dislocations which are pinned as suggested by Anderson & 
Minster (1979) wlule the latter, which must take over above some critical stress, is thought 
to be due to dislocation climb (Weertman 1970; Stocker & Ashby 1973). 

The strongest argument against the validity of the extrapolation is, in our opinion, the 
wide body of evidence accumulated in the last 15 years in support of plate tectonics. 
Jeffreys (1972) has dismissed this evidence with the remark ‘I think most of it can be 
explained more convincingly otherwise’. We do  not agree. In fact the knowledge gained from 
studies of post-glacial rebound that the mantle can creep with an effective viscosity of order 
q = 1022poise can be used to constrain further the frequency dependence of its anelasticity. 
In particular this tells us that at a frequency near p/q = 10-9Hz both the rigidity p and Q, 
must exhibit a drop to very low values as described by Goetze (1977). 

There is one means whereby Jeffreys’ arguments based on the Chandler wobble could 
conceivably be rationalized with plate tectonics. He himself has, in a sense, pointed it out 
in the statement ‘A consequence of this law of creep is that where it holds (our italics) 
convection cannot take place’ (Jeffreys 1972). The Chandler wobble is, as we have shown 
here, much more sensitive to attenuation in the lower rather than the upper mantle. Thus 
although we have assumed that cy is depth-independent, the bounds we have determined 
actually pertain primarily to only the lower mantle. Advocates of upper mantle as opposed 
to whole mantle convection may wish to use this to bolster their case, but their adversaries 
are not likely to find the argument very persuasive in view of the strong probability that the 
microscopic mechanisms governing steady-state creep and the damping of the Chandler 
wobble are not the same. 

which means the stresses are only about 
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Appendix A: energetics and dissipation of the Chandler wobble 

The contribution to Q, from mantle anelasticity is given in terms of Q, and Q, in the 
mantle by equation (8.1 2), which was obtained using normal mode perturbation theory. 
In this section we shall re-derive equation (8.12) from first principles and comment on 
several past attempts to do so. 

We shall need a few more properties of the normal modes of rotating systems from 
Dahlen & Smith (1975). The first is that any two eigensolutions (uo, s) and (ob, s’) must 
satisfy the global relation 

a$T(s’, s) - 200W(s’, s) - E(d, s) - r(s’. s) = 0,  (-41 1 
where 

T(s‘, s) = (s’, s), 

W(SI, s) = (s’, isZ x s), 

E(s), s) = [ K (  v -  SI) ( v .  S*) + 2pb’: b*]dU, 1 
r(d,  s) = J [ p o d  .V  4; + p o (  Vs’: vs* - (V .sI) ( V  .s*)) + p o d .  v V (Go+ $), s*]du. (A2d) 

E 

If (uo, s) and (ob, s’) are the same, equation (Al )  reduces to (8.2), which was exploited in 
doing perturbation theory. If on the other hand u, and ub are distinct (Al)  implies that the 
associated eigenfunctions s and s’ are orthogonal in the sense 

T(s’ ,  s)- ~ ( u , + u ~ ) - ~ w ( s ’ , s ) = o .  643) 
Finally, we note that every normal mode including the Chandler wobble has two associated 
eigensolutions, since if (oo, s) is a solution so is (- uo, s*). In the special case that s’ = s*, 
the orthogonality relation (A3) reduces to 

W(S*,  s) = 0. (A41 

In the remainder of this section, we shall use (u,, s) and (- uo, s*), with normalization un- 
specified, t o  refer exclusively to the Chandler wobble. 

Suppose that at t = 0 the Earth is in the initial configuration 

s(x, 0) = Re [s(x)] 

a, ~ ( x ,  01 = o ( -45)  

where s(x) is the Chandler wobble eigenfunction. Upon release it will oscillate in a single 
mode, the Chandler wobble; in fact the motion for t 2 0 in the absence of dissipation will be 

s(x, t )  = Re [s(x) exp (ioot)]. (‘46) 

We wish to calculate the energy associated with this motion. If there is no dissipation s(x, t )  
must satisfy 

pea: s t 2 p , ~  x a, = H ( ~ ) ,  (-47) 

where H ( s )  is defined by equations (4.20). Upon taking the dot product of (A7) with a,s 
and integrating over the entire Earth E, we obtain after some manipulation the result 

d d l d t  = 0 (4 
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where 
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&= % [posts. a t s  t p o s .  v~~ + p o p s :  vs - ( v  . s)z) t pas. v v ( G o t  $1 . s  1:: 
t K (  V .  s ) ~  t 2p 6 :  6 ]du. (A91 

It is clear that 6 must be the energy of oscillation we seek. The quantity ? 4 p O a t s .  a, s is the 
relative kinetic energy density and the remaining terms in (A9), all of which are bilinear in 
s(x, t ) ,  comprise the elastic-gravitational potential energy density. Their sum, when 
integrated over the entire Earth, is according to (A8), conserved in the absence of dissipa- 
tion. The absence of a Coriolis term in (A9) is expected since the Coriolis force always acts 
a t  right angles to the motion and thus can do no work. 

If a small amount of dissipation is now introduced the motion s(x, t) and the associated 
energy of oscillation will decay exponentially, the former at a rate ao/2Qo and the latter at 
twice that rate. In the limit t -+ 00, the total energy dissipated must be precisely 8, the initial 
energy of oscillation. Upon substituting equation (A6) into (A9), we can rewrite 8 in the 
form 

8 = '/4 

This is independent of time as equation (A8) asserts; the terms which would otherwise 
oscillate as exp (? 2ioot) vanish identically by virtue of (Al) and (A4). To reiterate. 
equation (A10) gives the total energy dissipated in the Earth during the interval 0 5 t < m if 
the motion s(x, t)  is a slowly decaying version of (A6). Note that (A10) contains a relative 
kinetic energy term a; T ,  an elastic energy term E and a gravitational energy term r; there is 
no Coriolis term (which comprises most of the kinetic energy of rotation) for the reason 
stated above. We may, however, easily write 8 in two forms which do contain W by 
exploiting the identity (7.2). In particular we can eliminate T and write 

8 = 

or we can eliminate E and r and write 

T ( ~ ,  s) t ~ ( s ,  s) t r (s, s)]. ('410) 

[aow(s,  s) t ~ ( s ,  S) t r ( S ,  s)] ( A l l )  

The latter form for the total energy dissipated by a mode has been derived previously from 
a somewhat different point of view by Dahlen (1978, 1980b). He considered the more 
realistic (and more complicated) problem of excitation by an earthquake; see in particular 
equation (45') of Dahlen (1980b), wherein the normalization T(s,  s) - 00' W ( s ,  s) = 1 is 
employed. 

By definition 2nQ;' is the fractional energy dissipated per cycle. The rate at which energy 
is dissipated per cycle during the first few cycles is (Nowick & Berry 1972; O'Connell & 
Budiansky 1978) 

fe'dt = n IE [ K  Q,' ( v . s) ( v . s*) t 2pQ;' ( 6: S )*I du. 

From the definition 

(2;' = (1/2778)$&dt, 
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we find upon using (A1 2) the result 

[KQ;' (V . S) ( V . s*) t 2pQi1( 6 : 6 *) ] du 

(A151 
ik 

Q,'= - 
uET(s, s) - uoW(s,  s) 

This is precisely equation (8.12) derived earlier using normal mode perturbation theory and 
employed in this study. Normal mode perturbation theory is thus consistent with the 
energetics of the Chandler wobble, as of course it must be. 

Suppose now that we decompose E(s,  s) into its compressional and shear parts, viz. 

E = E, + E,, 

where 

E, = L[K( V . s ) ( V . s * ) l d u ,  

n 

E, = 1 [ 2 p S :  b*]du.  
- E  

To compare (A15) with previous approaches to this problem we shall restrict attention to 
the simple special case that QK = w everywhere and Q, = constant throughout the solid 
regions of the Earth. Equation (A1 5) reduces then to 

2 8  = u; T - aoW = '/2 [uET + E, t E, t 1-1 = uo W + E, + Es t r. (A1 7) 

Equations of this same general form giving Qo/Q, as a ratio of various energy expressions 
have been either derived or obtained on an ad hoc basis in a number of past investigations. 
If the Earth were axisymmetric and perfectly rigid, the eigenfrequency uo would be given by 
(3.3) and the associated eigenfunction s in the frame FI would be (Smith 1977) 

s = [so(% - iy)] x x, ('41 8) 

where 1 9 ~  is an arbitrary amplitude. The corresponding wobble eigenfunction m in the frame 
FM is 

m = imo(P - iy) (A 19a) 

where 

(A1 9b) 

It is easily shown that the quantity 8 is given (exactly) in this perfectly rigid case by 

B= %(A/C) ( C -  A)azm$ (A201 

As shown by Jeffreys (1970; p. 324) and Munk & MacDonald (1960; p. 167), this is 
precisely the incremental rotational kinetic energy of rigid body wobble. 
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Of the various previous attempts to estimate the ratio Q,/Q,, the one with which we can 
find the least fault is one of the earliest and most widely known, namely that of Stacey 
(1970). He wrote Q,/Q, in the form (A16) and used the rigid body value (A18) for 8, 
except that he replaced A/C by AM/C,  presumably to allow for the fact that the core does 
not participate in the wobble. Since the contribution to s from the Earth’s deformation is so 
small compared with (Al8) ,  this is not too bad an approximation. A slightly better approxi- 
mation, which we have used in conjunction with the HLL theory to construct the kernel 
shownin Fig. 7 , i s  tonote  that since I u ~ T I  < laoWl, 

M. L. Smith and F. A.  Dahlen 

Comparing this with the expression used by Stacey, we see that he has overestimated 8 only 
slightly, by about a factor of 4/3. For E,, Stacey uses a very simple order-of-magnitude 
estimate, viz. 

where p is the mean rigidity of the mantle and I/ is its volume, This leads him in Stacey 
(1970) to the estimate Qo/Q, = 7.5, while in Stacey (1977; p. 65), using different numbers 
but  essentially the same argument, he finds instead that Qo/Q, = 10. The actual value from 
Table 4 is 

Qo/Q, = 1.83. (‘423) 

HLL theory with the approximate value (A21) for 8 gives very nearly the same result, 
namely Qo/Q, = 1.84. The effect of pole-tide loading in the constant-Q, case is, from 
equation (8.27) and Table 5, to decrease (A23) to 

Qo/Q, = 1.62. 

In retrospect, the only thing wrong with Stacey’s argument is that the approximation 
(A22) is too crude. He essentially approximates the Chandler strain energy as a constant 
throughout the entire mantle whereas, as Fig. 6 shows, it varies by more than an order of 
magnitude from top to bottom. On the other hand, his calculation is only intended as an 
order-of-magnitude estimate, and it is within an order of magnitude of the actual answer. 
That, as Jeffreys wrote in 1924, is ‘all that the method claims’. As it happens, the direction 
in which it errs makes the mantle appear to be an unpromising contender as the sink of 
Chandler energy, whereas in fact very little frequency dependence of Q, is required for it to 
be the sole mechanism. 

Anderson & Minster (1979) tried to determine the exponent a by comparing the Q of 
the Chandler wobble to that of the mode oSz. Before making the comparison, however, they 
‘correct’ the observed Q of the Chandler wobble by dividing it by four. This, they argue, is 
necessary because in the absence of oceans the Earth’s deformation acts to increase the 
period from about 300 to about 400 day, ‘wluch means that only 24 per cent of the 
available energy is actually stored as deformational energy’. In fact, this correction is 
uncalled for since, as Fig. 8 shows, the kernels p M  for the Chandler wobble and oS2 are very 
similar without any alteration. The correct way to compare the Chandler wobble with ,S2, 
if one is willing to ignore pole-tide loading, is directly. 

A similar ad hoc correction to Qo seems to have been employed by Jeffreys (1978) in his 
most recent discussion of this problem. Taking 306 day as the rigid Chandler period and 
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433 day as the observed, he states that ‘Seventy-one per cent of the energy of the free 
nutation is due to rotation as a rigid body. Only the remaining 29 per cent is elastic and 
subject to damping. Thus the factor 0.29 must be taken out, to give l / Q  for motion un- 
affected by rotation’. He then goes on to compare the resulting corrected value of Q,’ 
with a theoretical value obtained by weighted integration of a QL’ distribution due to  
Berzon, Passechnik & Polikarpov (1974). That distribution is based on the observed attenua- 
tion of short-period teleseismic P waves, and is assumed by Jeffreys to be valid at a period of 
1 s. Jeffreys’ description is, characteristically, somewhat terse and it is not clear to us how 
the weighting function M (his version of our kernel p M )  was obtained, but we think the only 
conceptual error in his procedure is the ‘correction’ factor 0.29. This, together with an 
arithmetical error in his equation (7) and the seemingly rather high Q, values of Berzon 
et al. (1974) all combine to yield the relatively high value of a (namely 0.20 & 0.05) he 
obtains. 

The most ambitious discussion to date of the energy budget of the Chandler wobble is 
that of Merriam & Lambeck (1979). They attempted to improve Stacey’s order-of- 
magnitude estimate in the constant-Q, case by numerically integrating the elastic shear 
energy distribution and by taking gravitational energy into account. Unfortunately, they too 
do so in a somewhat ad hoc fashion, without using the equipartition relation cr; 7‘- 2 uo W - 
E, - E, - I‘ = 0. Their expression E which corresponds to the numerator 2 6  in equation 
(A16) consists of a sum of rotational, elastic and gravitational energies, all of which are 
positive. Our numerator can be written in a form rather similar to theirs, namely as 
2 B = ooW t E, t E, t r, but in that expression the factor ooW is negative. Their conclusion 
that Qo/Q, = 8.75 is, as a result of their overestimation of 2 8, too large by almost a factor 
of 5. 

Appendix B:  exact Hough 

Hough (1895) undertook to fmd the small oscillations of a rigid mantle of arbitrary 
triaxiality enclosing in its centre a triaxial ellipsoidal cavity filled with homogeneous in- 
compressible fluid. A remarkable feature of Hough’s original solution, which is given in his 
Appendix, is that it not only yields the free mantle wobbles of interest but also points to the 
existence of internal modes in the fluid core which were later studied extensively by Green- 
span (1964) and co-workers. In the body of his paper Hough discusses a much simpler, but 
still exact, approach which is restricted to the case of normal modes which impart rigid 
rotation to the mantle. 

We follow Hough (1 895) in adopting a mantle Tisserand frame, FM. As in Section 4 let 

o ( t )  = i2 k 3  t 

be the frame’s, and therefore the mantle’s, instantaneous angular velocity. The motion of the 
fluid core comprises an instantaneous rigid rotation and an irrotational flow driven by the 
ellipticity of the core-mantle boundary in conjunction with differentia1 rigid rotation of the 
core and mantle. Let the instantaneous angular velocity of the core be st(m + q), so ’1 is the 
difference in angular velocities of core and mantle. 

m 

Hough showed that the total angular momentum of such a planet is given by 
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where we have specialized to the axisymmetric case; the terms qQql and qQq2 arise from 
the  irrotational flow in the core. From Hough (1895), and after some algebra, we have that 
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Clearly the relative angular momentum in F, is simply 

hi = (Ac - q)avi. (B3 1 
In order to use (B2) and (B3) to infer E and E’ of equation (4.1 lb), we must connect q to 
m. That connection, also inferred from Hough compounded with some manipulation, is 

Combining (B3)-(B5) gives 

E = -Ac(l - Ajo!2/(02 - E2a2) 
and 

and 

These results are exact in the core-mantle boundary ellipticity q,. 
In the limit of small ‘b 

A = E: t O(e2) 

and 

and we have, through terms of first order in Eb 

- Acd2  

(0’ - n2) [ 1 + 2Eba2/(O2 - a’)] 
E =  
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and 

Equations (B12) and (B13) are appropriate for small Eb but arbitrary u (in particular, they 
remain valid if u = R). For the Chandler wobble, u Q R and (B12) and (B13) simplify 
further to yield (4.16a) and (4.16b). 

By employing equations (B12) and (B13) in the secular equation (4.12) we can look for 
wobble modes of the Earth other than the Chandler wobble. In the rigid body case (D = 0) 
treated by Hough it is known that there is only one other solution, the nearly diurnal free 
wobble (NDFW) or free core nutation. By employing D = ka5R2/3G together with (B10) 
and (B1 1) in (4.12) we can investigate the influence of mantle elasticity on this mode. The 
eigenfrequency of the NDFW is near R and that is where we shall look. In particular, E and 
E' are singular at 

u = * 3 R 2 ,  

so we look for a solution of the form 

U=%2+{R 

where we suppose, and can a posteriori verify, that { = o(fb).  We obtain, after some algebra, 

and thus 

u = R + € b  (1 + z ) n .  A,' 

The result (B16) for the NDFW eigenfrequency u has several interesting features. If 
Eb + 0, u -+ f2 and this mode becomes the tilt-over mode of the core (see Dahlen & Smith 
1975; Smith 1977) which is now perfectly decoupled from the mantle. More generally the 
extent to which u depends on Eb and on the relative moments of inertia of core and mantle 
is explicit; for the Earth the quantityAc/AM = 0.13. 

The result of most interest to us is that the elastic deformation term D is absent; in fact 
(B16) is precisely Hough's rigid mantle formula. This implies that the eigenfrequency is, to 
first order in ellipticity, completely unaffected by the elasticity of the mantle. That, in turn, 
implies that this normal mode has virtually no strain energy and that, even if we could 
some day measure its period, it would not be likely to contribute appreciably to our 
knowledge either of mantle anelasticity or dispersion. 

T. Sasao (private communication, 1980) has pointed out to us, however, that this con- 
clusion, based on our version of HLL theory, does not survive a more accurate test 
unscathed. In particular, a more general form of HLL theory (Sasao et al. 1980) shows that 
elastic deformation of the core-mantle boundary (which we have neglected) does modify 
the NDFW eigenfrequency, by an amount of order 25 per cent of the effect of core-mantle 
boundary ellipticity. It is not inconceivable, then, that sufficiently accurate measurements of 
its eigenfrequency in the future could provide information about the Earth's anelastic 
rheology at diurnal periods. It should be remembered, however, that to date the NDFW 
has not been incontrovertibly detected. 
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