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Abstract So far most work on formal semantics for the Unified Modeling Language 
(UML) has concentrated on single diagrams. To provide a formal foundation 
for complete system specifications, one needs to put models for the different 
diagrams into context. We provide a formal semantics for UML subsystems that 
incorporates a formal semantics of the diagrams contained in a subsystem. It 
provides message-passing between objects or components specified in different 
diagrams, including a dispatching mechanism for events, and the handling of 
actions. It enables one to compose subsystems from sets of subsystems and 
allows them to interact by passing messages. 

We give consistency conditions for the diagrams in a subsystem and de­
fine a notion of behavioural equivalence and two kinds of refinement for UML 
subsystems. 

Keywords: UML, formal semantics, refinement, Abstract State Machines. 

1. Introduction 

The Unified Modeling Language (UML) (Rumbaugh et al., 1999) is the 
de-facto industry standard for specifying object-oriented software systems (for 
an introduction cf. (Stevens and Pooley, 2000)). Even though rather precisely 
defined compared with other modelling languages, its semantics is given only in 
prose form (UML, 2001), leaving room for ambiguities (a problem especially 
when providing tool support or trying to establish behavioural properties of 
UML specifications). Thus we need a mathematically precise semantics for 
UML. 

There has been a substantial amount of work towards providing a formal 
semantics for UML diagrams (including (Evans et al., 1999; BOrger et al., 

*Supported by the Studienstiftung des deutschen Volkes when carrying out this research. 

http://dx.doi.org/10.1007/978-0-387-35496-5_19


30 FMOODS2002 

2000; Stevens, 2001)). However, most work only provides models for single 
UML diagrams in isolation. When trying to give a precise mathematical 
meaning to whole UML specifications, one needs to be able to combine the 
formal models for the different kinds of diagrams. 

Joint formal execution. In this paper we describe some results on how to 
formally model UML diagrams in context. We provide a formal semantics 
for UML subsystems that incorporates the formal semantics of the diagrams 
contained in the subsystem (here we consider statechart and activity diagrams; 
a treatment of the remaining diagrams is given in (Jiirjens, 2002)). Specifically, 
our semantics 

• models actions and internal activities explicitly (rather than treating them 
as atomic given events), in particular the operations and their parameters 
employed in them, 

• provides message-passing between objects or components specified in 
different diagrams, including a dispatching mechanism for events and 
the handling of actions, and thus 

• allows whole specification documents to be based on a formal foundation. 

In particular, we show how to compose subsystems by including them into 
other subsystems. 

Thus it prepares the ground for further work that may 

• provide tool-support based on this precise semantics, in particular allow­
ing complete specifications to be simulated, and 

• provide the possibility of complete executable UML specifications. 

Statechart, activity diagrams, subsystems. The semantics for statecharts 
presented here is based on (Borger et al., 2000), which however had to be 
extended significantly to incorporate the features mentioned above. Our formal 
semantics for subsystems and their interactions seems to be the first given in 
the published literature. 

Consistency. Furthermore we give some conditions for consistency, relating 
different diagram kinds in a UML system specification, which is an issue that 
seems to attract increasing attention. 

Equivalence. We define a notion of behavioural equivalence between UML 
subsystems. This can be used e.g. to verify consistency of two subsystem 
specifications that are supposed to describe the same behaviour, e.g. one of 
which uses statecharts to specify object behaviour, and the other sequence 
diagrams (the treatment of sequence diagrams can be found in (lirjens, 2002)). 
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Refinement. In UML, refinement denotes a certain kind of dependency 
relation between model elements (UML, 2001, 2-18). There is no constraint 
on the semantic relationship between the model elements (also in the heuristics 
for state machine refinement at (UML, 2001, 2-177)). 

When trying to establish system properties, behavioural conformance of 
refinement can lead to great savings (properties may be easier to establish at 
a more abstract level; preservation by refinement means that this is in fact 
sufficient). We define a kind of refinement (inspired by (Bray and 
2001)) that provides full behavioural conformance. 

UML for security. One of the motivations for this work is to provide a 
foundation for using UML for developing security-critical systems (lirjens, 
2001-b), where a mathematically precise modeling is indispensable. The se­
mantics presented here has been extended to include possible adversary be­
haviour to reason about security requirements (Iirjens, 2002). In particular, 
the preservation results in (Ji.irjens, 2001-a) extend to the refinement presented 
here. 

For readability, we consider simplified UML diagrams. Our approach works 
just as well without the simplifications. More details can be found in (lirjens, 
2002). 

Outline. In Section 2 we give basic definitions of Abstract State Machines 
needed for our semantics We provide a sketch of the semantics of statechart 
diagrams and activity diagrams in Section 3, in order to be able to show how 
these fit together in the context of UML subsystems, the semantics of which 
is presented in Section 3.3. We define two kinds of refinement for UML 
subsystems in Section 4 and give an example in Section 5. We end with 
pointers to related work, a conclusion and indication of future work. 

2. Abstract State Machines 

ASMs (Gurevich, 1995) provide a rather flexible framework for formal 
modelling. They have have been used e.g. to give a formal semantics for a 
non-trivial part of Java (Sifuk et al., 2001). 

We collect some central concepts. A vocabulary is a finite collection of 
function names, each of a fixed arity. We assume a set of variables. A state 
A of vocabulary Voc(A) is a non-empty set X containing distinct elements 
true, false, and undef together with interpretations of the function names in 
Voc(A) on X. Relations and sets are viewed as functions taking values in 
{true ,false}. An ASM is executed by updating its state (e.g. changing the 
interpretations of the names in the vocabulary) iteratively by applying update 
rules some of which are given in the following. 
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Update The update rule f(s) := t of the ASM A updates fat the tuples to 
map to the element t. 

Conditional For a Boolean term g rules R, S, the rule if g then R else S 
executes R if g holds, otherwise S. 

Blocks The rule do- in- parallel R1, ... , Rk enddo executes the rules 
R1, .. . , Rk simultaneously if they are mutually consistent: for any two 
update rules f(s) := t and f(s) := t!, we have t = t'. Otherwise, 
execution stops. 

Sequential Composition ForrulesR, S, the rule seq R, S endseqexecutes 
RandS sequentially. 

Do-forall For a variable v, a Boolean term g(v), and a rule R(v), the rule 
forall v with g( v) do R( v) executes R( a) for all a such that g( a) 
holds, if they are mutually consistent. Otherwise, execution stops. 

Loop through list For a variable v, a list X, and a rule R(x), the rule 
loop v through list X R(v) executes R(x) iteratively for all x EX. 

An abstract state machine consists of a set of states and an update rule. It is 
executed by iteratively firing the update rule. 

For multi-sets, we write { } instead of the usual brackets. For two multi­
sets M and N, M I±J N denotes their union and M \ N the subtraction of N 
from M. For a multi-set Manda set X, we write M \,X for the multi-set of 
those elements in M (preserving their cardinalities) that are also elements of 
X. 

3. Formal Semantics for a fragment of UML 

The set MsgN m of message names consists of finite sequences of names 
n1.n2 ..... nk where nt. ... , nk-2 are names ofUML subsystems (to be defined 
below), nk-1 is a name of an object, and nk is the local name of the message. 
The idea is that a message n1.n2 . ... . nk will be delivered as the message 
with name nk to the object with name nk_1 which is part of the (iteratively 
nested) sequence of subsystems flk-2, ... , n1. Messages in MsgNm can be 
operations, signals, and return messages. For each operation op there is a 
corresponding return signal return( op ), assumed to be given explicitly. We 
write Events for the set of events of the form op ( exp1 , ... , expn) with op E 
MsgNm and exp1 , ... , expn E Exp (for a set Exp of expressions which 

includes a set Var Exp of variables). We define msgname(m) msg to 
be the name of the message m = msg(exPJ_, ... , expn)· In our model, every 
object 0 has associated multi-sets inQueue(O) and outQueue(O). We model 
sending a message msg from an object S to an object R as follows: 

(1) The objectS puts R.msg into its multi-set outQueue(S). 
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(2) A scheduler distributes the messages from out-queues to the intended 
in-queues (removing the head); in particular, R.msg is removed from 
outQueue(S) and msg added to inQueue(R). 

(3) The object R removes msg from its in-queue and processes its content. 

In the case of operation calls, we also need to keep track of the sender to allow 
sending return signals. Modelling communication is thus very flexible; we 
can adjust the scheduler according to the underlying communication layer (and 
take account e.g. of security (Jtirjens, 2001-b) or performance issues). 

In the following sections, we define the abstract syntax of various UML 
diagrams using mathematical notation, and then give a precise semantics of 
the modelled system behaviour using ASMs. For space reasons, we can only 
present simplified versions of the diagrams; more details are in (lirjens, 2002). 

3.1. Statechart Diagrams 
Abstractsyntax. AstatechartdiagramD = (ObjD, ClsD, StsD, lniD, TrsD) 
is given by an object name ObjD, a class name ClsD, a set of states StsD, 
an initial state lniD, and a set of transitions TrsD. StsD is a set of tuples 
S = (nm(S), ety(S), init(S), sta(S), int(S), ext(S)) where 

• nm(S) is a string of characters called the name ofthe state, 

• ety(S) E Action is called the entry action, 

• init(S) E StsD U { undef} is the initial substate of S, 

• sta(S) <;;:; StsD is the set of substates of S, 

• int(S) is called the internal activity (or do-activity), and 

• ext(S) E Action is the exit action. 

Here we write Action for the set of actions of the following forms: 

CalJ/sendaction: ... ,an)) resp. send(msg(a1, ... ,an)) for 
msg E MsgNm and ai E Exp. 

Assignment: att := exp for an attribute att and exp E Exp. 

We assume that for every internal activity actv there is an ASM rule 
ActvRule(actv). 

TrsD is a set oftuples t = (src(t), evt(t), grd (t), act(t), tgt(t)) where 

• src(t) E StsD is the source state oft, 

• evt( t) E Events is the triggering event oft, 

• grd(t) is a Boolean expression called the guard oft, 

• act(t) E Action is an action (to be performed when firing t), 
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• tgt(t) E Stsv is the target state oft. 

evt(t) must be of the form op( exp1 , ... , expn) with mutually disctinct 
exp1 , . .. , expn E Var. We assume a special event CompiEv E Events 
(without parameters) as in (Borger et al., 2000). If intern(t) = true then tis 
called an internal transition, otherwise it is called external. 

Behavioural semantics. We give a formal semantics of statechart diagrams 
using ASMs. It is based on (Borger et al., 2000), which however had to be 
extended significantly to incorporate explicit modelling of actions and internal 
activities and message-passing between objects or components in different 

diagrams. We fix a statechart diagram D modelling an object 0 Objv and 
give its behavioural semantics as an ASM [Dfc. 

The vocabulary of [D]8 c consists of the following names: 

• the set name currState (storing the set of currently active states), 

• the multi-set names inQueue(O), outQueue(O) (the input resp. output 
queue), 

• the function name trigsusy() mapping each operation name to the object 
or subsystem that last sent it (to allow sending back return values), 

• the function name finished (mapping states to Boolean values, indicating 
whether a given state is finished), and 

• all variables names in evt ( t) for all t E T rsv. 

The Boolean finisheds is set to true at the end of an internal activity 
ActvRule(int(S)). 

The ASM [Dfc has two rules, Initialize( D) and Main( D), given below 
(defined using other rules omitted for space restrictions; they are adapted from 
(Borger et al., 2000) and can be found in (JU.rjens, 2002)). The former rule 
initializes the variables of the ASM. The latter rule consists of selecting the 
event to be executed next (where priority is given to the completion event) and 
executing it, and then executing the rules for the internal activities in a random 
order. 

Rule Initialize(D) 
do - in - parallel 

inQueue(Objv) := 0 outQueue(Objv) := 0 
currState := {lniv} finishedlniD :=false 

end do 
Rule Main(D) 
seq if Completed# 0 then eventExecution(CompiEv) 

else choose e with e E inQueue( 0) do 
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seq inQueue(O) := inQueue(O) \ {e} 
if e = OPsenderfargs] E Operation 

then seq e := op[args] 
trigsusy( e) := sender endseq 

event Execution (e) 
endseq 

loopS through set currState 
seq finisheds :=false 

ActvRule(int(S)) 
endseq 

endseq 

35 

Here event Execution (e) is a macro whose execution models the execution 
of the event e, which involves firing its associated action as follows. 

Rule ActionRule( call( op[ args])) 
outQueue(O) := outQueue(O) l±J {op0 [args]} 

Rule ActionRule( send (e)) 
outQueue( 0) := outQueue( 0) l±J { e} 

Rule ActionRule(send(return( op )(a))) 
outQueue(O) := outQueue(O) l±J {trigsusy(op).return(op)(a)} 

3.2. Activity diagrams 

An activity diagram is a special case of a state machine that is used to model 
processes involving one or more classes (UML, 2001, B-2). The internal 
activities in an activity diagram are given as an object or subsystem name S. 
Thus activity diagrams coordinate the execution of objects and subsystems. 
Note that these can be specified to proceed at different speeds, for example by 
including delay actions. 

3.3. Subsystems and System Specifications 
A subsystemS = (name(S), Msgs(S), lnts(S), Ssd(S), Ad(S), Bd(S)) is 

given by 

• the name name(S) of the system, 
• a set of accepted messages Msgs( S), 
• a set of interfaces lnts(S), 

• a static structure diagram Ssd(S) (defined in Section 3.3) 

• an activity diagram Ad(S), and 

• a set Bd(S) of statechart diagrams (each for a different object). Each 
statechart specifies the behaviour of one object in the subsystem, so 
Bd(S) is empty if there are no classes (but only subsystems) in Ssd(S). 
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Subsystems may contain further kinds of diagrams omitted here. 
For simplicity, we do not explicitly model creation and deletion of objects, 

but only activation and inactivation (following (Kleppe and Warmer, 2001, 
p. 15)). The run-to-completion step for each object is performed in parallel, 
subject to the flow of control specified by the activity diagram. 

Class Diagrams or Static structure Diagrams. 
(cname, att, mess, int) is given by 

• a name cname, 
• a set of attribute names att, 
• a set of message names mess, 

A class model C 

• and a set int of interfaces of the form I = (ina me, msg) where ina me 
is the interface name and msg a set of message names. 

A dependency is a tuple ( dep, indep, int, stereo) consisting of 

• class or subsystem names dep and indep, 

• an interface name int, and 

• a stereotype stereo E {«call», «send»}. 

Note that the existence of a dependency ( dep, indep, int, stereo) with 
stereo E {«call», ((send»} implies that the object dep knows of the object 
indep (otherwise dep could not send a signal to or call the object indep). 

A static structure diagram D = (SuSys(D), Dep(D)) is given by a set 
SuSys(D) consisting of class models or subsystems, and a set Dep(D) of 
dependencies (dep, indep, int, stereo). Other modelling elements (such as 
associations) can be added without complication. A static structure diagram is 
called a class diagram if it contains no subsystems. 

Consistency between UML diagrams. A subsystem is called consistent if 
the following conditions are satisfied: 

• The object and subsystem names appearing as activities in the activity 
diagram are part of the static structure diagram. The behaviour of the 
objects is defined by statecharts. 

• For each call resp. send action in a statechart diagram, the static structure 
diagram C must have a dependency stereotyped ((call» resp. ((send» 
between the objects (or their interfaces) in question. For each assignment 
action att := exp in S, att is contained in the set of attributes of Cl%' 
given in D. 

• The operations offered by the subsystem must be offered by class models 
or subsystems in the static structure diagram. 

• For statecharts SandT we haveS= Tor Obj8 -=/:- Objr. 
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Behavioural semantics of Subsystems. Suppose we are given a consistent 
subsystemS. The behavioural interpretation of Sis given by the ASM [SfuSy 
with the rules Initialize(S) and Main(S) defined in the following. 

We write Acts(S) for the set of object and subsystem names giving the 
activities in Ad(S). If act E Acts(S) is an object whose behaviour is given 
by a statechart diagram D E Bd(S) (i. e. ObjD = act), we write 
for [D]8 c, BDinitializes(act) for Initialize( D) and BDMains(act) for 
Main(D). If act E Acts(S) is a subsystem in Ssd(S), we write for 
[act]SuSy, BDinitializes(act) for Initialize(act) and BDMains(act) 
for Main( act). 

The vocabulary of [S]SuSy includes the following names: 
• the names in the vocabularys of [S]susy for all S E SuSys(Ssd(S)), 

[Ad(S)]AD and for all S E Acts(S), 
• the names inQueue(S) and outQueue(S) (in and out queue of S). 

We define the two rules. 

Rule Initialize( S) 
do - in - parallel 

Initialize (Ad ( S)) 
for all S with S E Acts( S) do 

BDinitializes(S) 
inQueue(S) := 0 outQueue(S) := 0 

enddo 

Rule Main(S) 
seq 

forall S with S E Acts( S) do 
inQueue(S) := inQueue(S)i±J 

{tail( e) : e E (inQueue(S) \ Msgs(S)) !\ head(e) = S} 
inQueue( S) := 0 
Main(Ad(S)) 
forall S with S E Acts(S) do 

inQueue(S) := inQueue(S)i±J 
l:!:lrEActs(S) {tail( e) : e E outQueue(T) !\head( e) = S} 

outQueue(S) := outQueue(S)i±J 
I:!:JrEActs(S) {tail( e) : e E outQueue(T) !\head( e) = S} 

forall S with S E Acts( S) do 
outQueue(S) := 0 

endseq 

System specifications. A UML system is given by a UML subsystem which 
is intended to model the complete system under consideration (rather than just 
a part). 
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Given a system S and a sequence I;_, ... , I;, of multi-sets, the timed be­
haviour [S]t(J;_, ... , I;,) is defined to be the set of possible contents of 
outlist(S) after the execution of any instantiation of the following ASM rule 
on the ASM [S]susy. 

Rule tSysA(S) 
seq out list( S) := 0 

Initialize ( S) 
loop i through list [1 ... n] 

endseq 

seq inQueue(S) := inQueue(S) I±J /;_ 
Main(S) 
outlist(S) := outlist(S).outQueue(S) 
outQueue(S) := 0 

end seq 

The untimed behaviour of a systemS is a function [Sf() from multi-sets 
of events (the inputs to the system during its execution) to sets of multi-sets of 
events (the possible outputs of the system during its (possibly non-terminating) 
execution). It is defined at the meta-level. Given a multi-set I, we define 
[S]u(I) to be the fix-point of the content of outQueue( S) after firing the rule 

seq Initialize( S) in Queue( S) := I endseq 

and iterating the rule Main(S). The fix-point exists, because S changes 
outQueue(S) only by adding elements: it is the directed union of the contents 
of outQueue(S) after each execution of Main(S). 

4. Equivalence and Refinement 

Definition 1 (Property Refinement) Suppose we are given two subsystem 
specifications S and S' and a set M of message names. S' is a timed ( resp. 
untimed) M-refinement ofS if conditions I and Ila (resp. conditions I and lib) 
are fulfilled: 

I Msgs( S) n M Msgs( S') n M 

Ila for all sequences I1, ... , In of multi-sets of events such that 
msgname(e) E Mfor each e E Ui=l, ... ,n h we have 

lib for each multi-set I of events such that msgname(e) E M for each 
e E I, we have [S']u(I) n.. M [S]u(I) n.. M 
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where for a set S of multi-sets of events we define S 1\- M { M \ { e E 
Events : msgname( e) E M} : M E S} to be the set of multi-sets obtained 
by removing all events e with msgname(e) tf. M (and extend the definition 
to sequences of multi-sets by applying it to the elements of the sequence). A 
timed (resp. untimed) MsgNm-refinement is simply called a (resp. untimed) 
refinement. 

For a motivation of the refinements and comparison to other kinds, see (lirjens, 
2002). Both kinds of M-refinement are reflexive and transitive for each M. 
They preserve all M-safety properties (i. e. sets of sequences of event multi­
sets with names in M). We show that refinement is preserved by substitution 
(i. e. a precongruence wrt. composition by subsystem formation). 

A parameterized subsystem S(Yb ... , Yn) is a subsystem specification 
where n of the subsystems are replaced by subsystem variables )/. For sub­
systems S1, ... , Sn, S(S1, ... , Sn) is the subsystem obtained by substituting 
si for Yi, for each i, ins. 

Theorem 1 If SI is a timed refinement for each i = 1, ... , n then for any 
parameterized subsystem S(Y1, ... , Yn). S(SL ... , is a timed refinement 
ofS(SI, ... ,Sn)· 

The theorem does not hold for untimed refinements (.Jlirjens, 2002). 

Definition 2 (Behavioural Equivalence) Two subsystem specifications Sand 
S' are timed (resp. untimed) behaviourally equivalent ifMsgs(S) = Msgs(S), 
S is a timed ( resp. untimed) Msgs( S)-refinement of S, and S' is a timed ( resp. 
untimed) Msgs(S)-refinement of S. 

The above facts on timed refinement imply that timed behavioural equivalence 
is a congruence wrt. composition by subsystem formation. 

Behavioural equivalence can be used e.g. to verify consistency of two sub­
system specifcations that are supposed to describe the same behaviour. 

5. Example: Secure channel establishment 

Figure 1 gives a high level system specification S for communication from 
a sender object to a receiver object, including a class diagram with appropriate 
interfaces (we leave out the activity diagram which simply specifies that the 
two objects are executed in parallel). 

Assume that an assessment of the physical layer of the system shows that 
security requirements are not provided. Thus we construct a refinement S in 
Figure 2. The class diagram needs to allow the receiver to send his certificate to 
the sender. The behaviour of the sender includes retrieving the public key and 
the certificate from the sender, checking the certificate, and encrypting the data. 
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Chatmel n I 
send(d:Data) 

snd:Sender send(d) 

receiveQ:Data /transmit( d) 

rcv:Receiver 

d 
receive() 
/return( d) 

I sending 
«Interface» I I . . «Interface» I 

recetvmg 

j send(d:Data) I I receive():Data I 

IQ Sender <<send» Receiver -------
sending send(d:Data) receive(): Data 

receiving trnnsmit(d:Data) 

Figure 1. Sender and receiver 

SecureChannel n 
send(d:Data) 
receive():Data 

sending 

send(d:Data) 

Sender 

sending send(d:Data) 

rcv:Receiver 

«<nterface» 
receiving 

receive():Data 

«send» .,.j:::::R:::ec:::e:::iv:::er==f---( 

receiving <<call» 

request():Exp 

Figure 2. Secure channel 

The receiver gives out the key and certificate first, and decrypts the received 
data. We assume that VerK(SignK(m), m) = true (i.e. VerK(m, 0) is true 
if m is a valid signature of 0 with key K). 

Theorem 2 S' is an untimed {send, receive, returnreceive}-refinement ofS. 

The (straightforward) proof can be found in (Jiirjens, 2002). Note that the 
theorem does not imply that the refined protocol is secure; this has to be 
established by other means (including an extension of the formal semantics 
with adversary scenarios), see (Jiirjens, 2002). 

Note that S' is not a timed {send, receive, returnreceive}-refinement of S 
(because of the delay caused by the key exchange). 
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6. Related Work 

There has been a considerable amount of work towards a formal semantics for 
various parts ofUML (see (Jiirjens, 2002) for an overview). (Evans et al., 1999) 
discusses some fundamental issues concering a formal foundation for UML. 
(Borger et al., 2000) uses ASMs to give a semantics for statecharts. (Stevens, 
2001) gives a semantics for use case diagrams based on the process algebra 
CCS. (Overgaard and Palmkvist, 2000) considers interacting UML subsystems, 
but without giving a formal semantics. A combined formal semantics for UML 
statecharts and class diagrams has been given in (Reggio et al., 2001). (Scliifer 
et al., 2001) gives a semantics for statecharts and shows exemplarily how 
to check whether a set of statecharts satisfies a collaboration. Refinements 
have been investigated in the object-oriented setting e.g. in (Derrick and Smith, 
2000; Derrick and Boiten, 2001) where the introduced structural refinement has 
a similar motivation as our interface refinement. In the context of subtyping, 
refinement has been considered e.g. in (Poetzsch-Heffter, 1997). 

7. Conclusion and Future Work 

Our work shows that giving a formal foundation for complete UML specifi­
cations, rather than just single diagrams, is possible. While in our presentation 
here we left out some of the more advanced features of some of the consid­
ered diagrams, incorporating them is not a problem (except for an increase in 
complexity). This paves the way for unambigous modelling with UML, and 
in particular for tool-support that can simulate specifications in their entirety. 
This would seem to be very useful indeed, since one of the main challenges in 
constructing large-scale software systems is to ensure that different components 
act together as expected. 

ASMs proved to be a quite adequate tool to handle the complexities in 
formally combining the different UML diagrams, due to their flexibility. In 
particular, the crucial extensions over the semantics for statecharts in (llirger 
et al., 2000) could be done in a rather natural way. 

The notions of subsystem equivalence and refinement seem to be valuable 
tools in the construction and analysis of UML specification (although here we 
could only present a toy example). 

On the application side, the semantics presented here has been useful in the 
context of security-critical systems (cf. e.g. (Ji.irjens, 2001-b)). 

In further work (Jiirjens, 2002) we have treated other kinds ofUML diagrams 
and other kinds of refinements (including one inspired by action refinement 
(Gorrieri and Rensink, 2000)). We aim to give conditions for checking equiv­
alence and refinement on the level of syntax or by combining an object-based 
logic (e.g. (Distefano et al., 2000)) with a logic for ASMs (e.g. (Poetzsch­
Heffter, 1994)). 
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In terms of tool-support we intend to extend the ASM-based statechart 
simulator presented in (Campo et al., 2001) to the semantics presented here. 

Acknowledgements. Discussions with A. Cavarra about formal semantics 
for UML and constructive suggestions by the anonymous referees to improve 
the presentation of the paper are gratefully acknowledged. 

References 
Borger, E., Cavarra, A. and Riccobene, E. (2000). Modeling the dynamics of UML State Ma­

chines. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Abstract State Machines. 
Theory and Applications, volume 1912 of LNCS, pages 223-241. Springer-Verlag. 

Broy, M. and St0len, K. (2001 ). Specification and Development of Interactive Systems. Springer­
Verlag. 

Campo, R., Cavarra, A. and Riccobene, E. (2001 ). Simulating UML state machines. In E. Borger 
and U. Glasser, editors, ASM'200I, LNCS. Springer-Verlag. To be published. 

Derrick, J. and Boiten, E. (2001). Refinement in Zand Object-Z: Foundations and advanced ap­
plications. Formal Approaches to Computing and Information Technology. Springer-Verlag. 

Distefano, D., Katoen, J.-P. and Rensink, A. (2000). On a temporal logic for object-based 
systems. In Smith and Talcott (Smith and Talcott, 2000), pages 305-326. 

Derrick, J. and Smith, G. (2000). Structural refinement in Object-Z I CSP. In W. Grieskamp, 
T. Stanten, and B. Stoddart, editors, Integrated Formal Methods (IFM 2000), volume 1945 
of LNCS, pages 194-213. Springer-Verlag. 

Evans, A., France, R., Lano, K. and Rumpe, B. ( 1999). The UML as a formal modeling notation. 
In J. Bezivin and P.-A. Muller, editors, The Unified Modeling Language- Workshop UML'98: 
Beyond the Notation, LNCS, pages 297-307. Springer-Verlag. 

Gorrieri, R. and Rensink, A. (2000). Action refinement. In J. Bergstra, A. Ponse, and S. Smolka, 
editors, Handbook of Process Algebra. Elsevier. 

Gurevich, Y. (1995). Evolving algebras 1993: Lipari guide. In E. Borger, editor, Specification 
and Validation Methods, pages 9-36. OUP. 

HuBmann, H., editor. (2001). Fundamental Approaches to Software Engineering (FASE, 4th 
International Conference), volume 2029 of LNCS. Springer-Verlag. 

Jtirjens, J. (2001-a). Secrecy-preserving refinement. In Formal Methods Europe (International 
Symposium), volume 2021 of LNCS, pages 135-152. Springer-Verlag. 

Jiirjens, J. (2001-b). Towards development of secure systems using UMLsec. In HuBmann 
(HuBmann, 2001), pages 187-200. 

Jiirjens, J. (2002). Principles for Secure Systems Design. PhD thesis, Oxford University Com­
puting Laboratory. Submitted. 

Kleppe, A. and Warmer, J. (2001). Unification of Static and Dynamic Semantics of UML. 
Overgaard, G. and Palmkvist, K. (2000). Interacting Subsystems in UML. In A. Evans, S. Kent, 

and B. Selic, editors, The Unified Modeling Language: Advancing the Standard ( UML'2000), 
volume 1939 of LNCS. Springer-Verlag. 

Poetzsch-Heffter, A. (1994). Deriving partial correctness logics from evolving algebras. In 
B. Pehrson and I. Simon, editors, IFIP 13th World Computer Congress '94, pages 434-439. 
Elsevier. 

Poetzsch-Heffter, A. (1997). Specification and verification of object-oriented programs. Habili­
tation thesis, Technical University of Munich. 



Formal Semantics for Interacting UML subsystems 43 

Reggio, G., Cerioli, M. and Astesiano, E. (2001). Towards a Rigorous Semantics of UML 
Supporting its Multiview Approach. In HuBmann (HuBmann, 2001). 

Rumbaugh, J., Jacobson, I. and Booch, G. (1999). The Unified Modeling Language Reference 
Manual. Addison-Wesley. 

Schafer, T., Knapp, A. and Merz, S. (2001). Model checking UML state machines and col­
laborations. In S.D. Stoller and W. Visser, editors, Workshop on Software Model Checking, 
volume 55 of ENTCS. Elsevier. 

Stevens, P. and Pooley, R. (2000). Using UML. Addison-Wesley. 
SHirk, R., Schmid, J. and Borger, E. (2001). Java and the Java Virtual Machine- Definition, 

Verification, Validation. Springer-Verlag. 
Smith, S. F. and Talcott, C. L., editors. (2000). 4th International Conference on Formal Methods 

for Open Object-Based Distributed Systems (FMOODS 2000). IFIP TC6/WG6.1, Kluwer 
Academic Publishers. 

Stevens, P. (2001). On use cases and their relationships in the Unified Modelling Language. In 
HuBmann (HuBmann, 2001), pages 140--155. 

UML Revision Task Force. (2001 ). OMG UML Specification v. 1.4. OMG Document ad/01-09-
67. Available at http : / jwww.omg.org/uml. 


	FORMAL SEMANTICS FOR INTERACTING UML SUBSYSTEMS
	1. Introduction
	2. Abstract State Machines
	3. Formal Semantics for a fragment of UML
	3.1. Statechart Diagrams
	3.2. Activity diagrams
	3.3. Subsystems and System Specifications

	4. Equivalence and Refinement
	5. Example: Secure channel establishment
	6. Related Work
	7. Conclusion and Future Work
	References




