
FORMAL SEMANTICS FOR INTERACTING UML
SUBSYSTEMS

Jan Jiirjens*
Department of Informatics, TU Munich, Germany

Computing Laboratory, University of Oxford, GB

http://www.jurjens.de/jan- juerjens@in.tum.de

Abstract So far most work on formal semantics for the Unified Modeling Language
(UML) has concentrated on single diagrams. To provide a formal foundation
for complete system specifications, one needs to put models for the different
diagrams into context. We provide a formal semantics for UML subsystems that
incorporates a formal semantics of the diagrams contained in a subsystem. It
provides message-passing between objects or components specified in different
diagrams, including a dispatching mechanism for events, and the handling of
actions. It enables one to compose subsystems from sets of subsystems and
allows them to interact by passing messages.

We give consistency conditions for the diagrams in a subsystem and de­
fine a notion of behavioural equivalence and two kinds of refinement for UML
subsystems.

Keywords: UML, formal semantics, refinement, Abstract State Machines.

1. Introduction

The Unified Modeling Language (UML) (Rumbaugh et al., 1999) is the
de-facto industry standard for specifying object-oriented software systems (for
an introduction cf. (Stevens and Pooley, 2000)). Even though rather precisely
defined compared with other modelling languages, its semantics is given only in
prose form (UML, 2001), leaving room for ambiguities (a problem especially
when providing tool support or trying to establish behavioural properties of
UML specifications). Thus we need a mathematically precise semantics for
UML.

There has been a substantial amount of work towards providing a formal
semantics for UML diagrams (including (Evans et al., 1999; BOrger et al.,

*Supported by the Studienstiftung des deutschen Volkes when carrying out this research.

http://dx.doi.org/10.1007/978-0-387-35496-5_19

30 FMOODS2002

2000; Stevens, 2001)). However, most work only provides models for single
UML diagrams in isolation. When trying to give a precise mathematical
meaning to whole UML specifications, one needs to be able to combine the
formal models for the different kinds of diagrams.

Joint formal execution. In this paper we describe some results on how to
formally model UML diagrams in context. We provide a formal semantics
for UML subsystems that incorporates the formal semantics of the diagrams
contained in the subsystem (here we consider statechart and activity diagrams;
a treatment of the remaining diagrams is given in (Jiirjens, 2002)). Specifically,
our semantics

• models actions and internal activities explicitly (rather than treating them
as atomic given events), in particular the operations and their parameters
employed in them,

• provides message-passing between objects or components specified in
different diagrams, including a dispatching mechanism for events and
the handling of actions, and thus

• allows whole specification documents to be based on a formal foundation.

In particular, we show how to compose subsystems by including them into
other subsystems.

Thus it prepares the ground for further work that may

• provide tool-support based on this precise semantics, in particular allow­
ing complete specifications to be simulated, and

• provide the possibility of complete executable UML specifications.

Statechart, activity diagrams, subsystems. The semantics for statecharts
presented here is based on (Borger et al., 2000), which however had to be
extended significantly to incorporate the features mentioned above. Our formal
semantics for subsystems and their interactions seems to be the first given in
the published literature.

Consistency. Furthermore we give some conditions for consistency, relating
different diagram kinds in a UML system specification, which is an issue that
seems to attract increasing attention.

Equivalence. We define a notion of behavioural equivalence between UML
subsystems. This can be used e.g. to verify consistency of two subsystem
specifications that are supposed to describe the same behaviour, e.g. one of
which uses statecharts to specify object behaviour, and the other sequence
diagrams (the treatment of sequence diagrams can be found in (lirjens, 2002)).

Formal Semantics for Interacting UML subsystems 31

Refinement. In UML, refinement denotes a certain kind of dependency
relation between model elements (UML, 2001, 2-18). There is no constraint
on the semantic relationship between the model elements (also in the heuristics
for state machine refinement at (UML, 2001, 2-177)).

When trying to establish system properties, behavioural conformance of
refinement can lead to great savings (properties may be easier to establish at
a more abstract level; preservation by refinement means that this is in fact
sufficient). We define a kind of refinement (inspired by (Bray and
2001)) that provides full behavioural conformance.

UML for security. One of the motivations for this work is to provide a
foundation for using UML for developing security-critical systems (lirjens,
2001-b), where a mathematically precise modeling is indispensable. The se­
mantics presented here has been extended to include possible adversary be­
haviour to reason about security requirements (Iirjens, 2002). In particular,
the preservation results in (Ji.irjens, 2001-a) extend to the refinement presented
here.

For readability, we consider simplified UML diagrams. Our approach works
just as well without the simplifications. More details can be found in (lirjens,
2002).

Outline. In Section 2 we give basic definitions of Abstract State Machines
needed for our semantics We provide a sketch of the semantics of statechart
diagrams and activity diagrams in Section 3, in order to be able to show how
these fit together in the context of UML subsystems, the semantics of which
is presented in Section 3.3. We define two kinds of refinement for UML
subsystems in Section 4 and give an example in Section 5. We end with
pointers to related work, a conclusion and indication of future work.

2. Abstract State Machines

ASMs (Gurevich, 1995) provide a rather flexible framework for formal
modelling. They have have been used e.g. to give a formal semantics for a
non-trivial part of Java (Sifuk et al., 2001).

We collect some central concepts. A vocabulary is a finite collection of
function names, each of a fixed arity. We assume a set of variables. A state
A of vocabulary Voc(A) is a non-empty set X containing distinct elements
true, false, and undef together with interpretations of the function names in
Voc(A) on X. Relations and sets are viewed as functions taking values in
{true ,false}. An ASM is executed by updating its state (e.g. changing the
interpretations of the names in the vocabulary) iteratively by applying update
rules some of which are given in the following.

32 FMOODS2002

Update The update rule f(s) := t of the ASM A updates fat the tuples to
map to the element t.

Conditional For a Boolean term g rules R, S, the rule if g then R else S
executes R if g holds, otherwise S.

Blocks The rule do- in- parallel R1, ... , Rk enddo executes the rules
R1, .. . , Rk simultaneously if they are mutually consistent: for any two
update rules f(s) := t and f(s) := t!, we have t = t'. Otherwise,
execution stops.

Sequential Composition ForrulesR, S, the rule seq R, S endseqexecutes
RandS sequentially.

Do-forall For a variable v, a Boolean term g(v), and a rule R(v), the rule
forall v with g(v) do R(v) executes R(a) for all a such that g(a)
holds, if they are mutually consistent. Otherwise, execution stops.

Loop through list For a variable v, a list X, and a rule R(x), the rule
loop v through list X R(v) executes R(x) iteratively for all x EX.

An abstract state machine consists of a set of states and an update rule. It is
executed by iteratively firing the update rule.

For multi-sets, we write { } instead of the usual brackets. For two multi­
sets M and N, M I±J N denotes their union and M \ N the subtraction of N
from M. For a multi-set Manda set X, we write M \,X for the multi-set of
those elements in M (preserving their cardinalities) that are also elements of
X.

3. Formal Semantics for a fragment of UML

The set MsgN m of message names consists of finite sequences of names
n1.n2 nk where nt. ... , nk-2 are names ofUML subsystems (to be defined
below), nk-1 is a name of an object, and nk is the local name of the message.
The idea is that a message n1.n2 nk will be delivered as the message
with name nk to the object with name nk_1 which is part of the (iteratively
nested) sequence of subsystems flk-2, ... , n1. Messages in MsgNm can be
operations, signals, and return messages. For each operation op there is a
corresponding return signal return(op), assumed to be given explicitly. We
write Events for the set of events of the form op (exp1 , ... , expn) with op E
MsgNm and exp1 , ... , expn E Exp (for a set Exp of expressions which

includes a set Var Exp of variables). We define msgname(m) msg to
be the name of the message m = msg(exPJ_, ... , expn)· In our model, every
object 0 has associated multi-sets inQueue(O) and outQueue(O). We model
sending a message msg from an object S to an object R as follows:

(1) The objectS puts R.msg into its multi-set outQueue(S).

Formal Semantics for Interacting UML subsystems 33

(2) A scheduler distributes the messages from out-queues to the intended
in-queues (removing the head); in particular, R.msg is removed from
outQueue(S) and msg added to inQueue(R).

(3) The object R removes msg from its in-queue and processes its content.

In the case of operation calls, we also need to keep track of the sender to allow
sending return signals. Modelling communication is thus very flexible; we
can adjust the scheduler according to the underlying communication layer (and
take account e.g. of security (Jtirjens, 2001-b) or performance issues).

In the following sections, we define the abstract syntax of various UML
diagrams using mathematical notation, and then give a precise semantics of
the modelled system behaviour using ASMs. For space reasons, we can only
present simplified versions of the diagrams; more details are in (lirjens, 2002).

3.1. Statechart Diagrams
Abstractsyntax. AstatechartdiagramD = (ObjD, ClsD, StsD, lniD, TrsD)
is given by an object name ObjD, a class name ClsD, a set of states StsD,
an initial state lniD, and a set of transitions TrsD. StsD is a set of tuples
S = (nm(S), ety(S), init(S), sta(S), int(S), ext(S)) where

• nm(S) is a string of characters called the name ofthe state,

• ety(S) E Action is called the entry action,

• init(S) E StsD U { undef} is the initial substate of S,

• sta(S) <;;:; StsD is the set of substates of S,

• int(S) is called the internal activity (or do-activity), and

• ext(S) E Action is the exit action.

Here we write Action for the set of actions of the following forms:

CalJ/sendaction: ... ,an)) resp. send(msg(a1, ... ,an)) for
msg E MsgNm and ai E Exp.

Assignment: att := exp for an attribute att and exp E Exp.

We assume that for every internal activity actv there is an ASM rule
ActvRule(actv).

TrsD is a set oftuples t = (src(t), evt(t), grd (t), act(t), tgt(t)) where

• src(t) E StsD is the source state oft,

• evt(t) E Events is the triggering event oft,

• grd(t) is a Boolean expression called the guard oft,

• act(t) E Action is an action (to be performed when firing t),

34 FMOODS2002

• tgt(t) E Stsv is the target state oft.

evt(t) must be of the form op(exp1 , ... , expn) with mutually disctinct
exp1 , . .. , expn E Var. We assume a special event CompiEv E Events
(without parameters) as in (Borger et al., 2000). If intern(t) = true then tis
called an internal transition, otherwise it is called external.

Behavioural semantics. We give a formal semantics of statechart diagrams
using ASMs. It is based on (Borger et al., 2000), which however had to be
extended significantly to incorporate explicit modelling of actions and internal
activities and message-passing between objects or components in different

diagrams. We fix a statechart diagram D modelling an object 0 Objv and
give its behavioural semantics as an ASM [Dfc.

The vocabulary of [D]8 c consists of the following names:

• the set name currState (storing the set of currently active states),

• the multi-set names inQueue(O), outQueue(O) (the input resp. output
queue),

• the function name trigsusy() mapping each operation name to the object
or subsystem that last sent it (to allow sending back return values),

• the function name finished (mapping states to Boolean values, indicating
whether a given state is finished), and

• all variables names in evt (t) for all t E T rsv.

The Boolean finisheds is set to true at the end of an internal activity
ActvRule(int(S)).

The ASM [Dfc has two rules, Initialize(D) and Main(D), given below
(defined using other rules omitted for space restrictions; they are adapted from
(Borger et al., 2000) and can be found in (JU.rjens, 2002)). The former rule
initializes the variables of the ASM. The latter rule consists of selecting the
event to be executed next (where priority is given to the completion event) and
executing it, and then executing the rules for the internal activities in a random
order.

Rule Initialize(D)
do - in - parallel

inQueue(Objv) := 0 outQueue(Objv) := 0
currState := {lniv} finishedlniD :=false

end do
Rule Main(D)
seq if Completed# 0 then eventExecution(CompiEv)

else choose e with e E inQueue(0) do

Formal Semantics for Interacting UML subsystems

seq inQueue(O) := inQueue(O) \ {e}
if e = OPsenderfargs] E Operation

then seq e := op[args]
trigsusy(e) := sender endseq

event Execution (e)
endseq

loopS through set currState
seq finisheds :=false

ActvRule(int(S))
endseq

endseq

35

Here event Execution (e) is a macro whose execution models the execution
of the event e, which involves firing its associated action as follows.

Rule ActionRule(call(op[args]))
outQueue(O) := outQueue(O) l±J {op0 [args]}

Rule ActionRule(send (e))
outQueue(0) := outQueue(0) l±J { e}

Rule ActionRule(send(return(op)(a)))
outQueue(O) := outQueue(O) l±J {trigsusy(op).return(op)(a)}

3.2. Activity diagrams

An activity diagram is a special case of a state machine that is used to model
processes involving one or more classes (UML, 2001, B-2). The internal
activities in an activity diagram are given as an object or subsystem name S.
Thus activity diagrams coordinate the execution of objects and subsystems.
Note that these can be specified to proceed at different speeds, for example by
including delay actions.

3.3. Subsystems and System Specifications
A subsystemS = (name(S), Msgs(S), lnts(S), Ssd(S), Ad(S), Bd(S)) is

given by

• the name name(S) of the system,
• a set of accepted messages Msgs(S),
• a set of interfaces lnts(S),

• a static structure diagram Ssd(S) (defined in Section 3.3)

• an activity diagram Ad(S), and

• a set Bd(S) of statechart diagrams (each for a different object). Each
statechart specifies the behaviour of one object in the subsystem, so
Bd(S) is empty if there are no classes (but only subsystems) in Ssd(S).

36 FMOODS2002

Subsystems may contain further kinds of diagrams omitted here.
For simplicity, we do not explicitly model creation and deletion of objects,

but only activation and inactivation (following (Kleppe and Warmer, 2001,
p. 15)). The run-to-completion step for each object is performed in parallel,
subject to the flow of control specified by the activity diagram.

Class Diagrams or Static structure Diagrams.
(cname, att, mess, int) is given by

• a name cname,
• a set of attribute names att,
• a set of message names mess,

A class model C

• and a set int of interfaces of the form I = (ina me, msg) where ina me
is the interface name and msg a set of message names.

A dependency is a tuple (dep, indep, int, stereo) consisting of

• class or subsystem names dep and indep,

• an interface name int, and

• a stereotype stereo E {«call», «send»}.

Note that the existence of a dependency (dep, indep, int, stereo) with
stereo E {«call», ((send»} implies that the object dep knows of the object
indep (otherwise dep could not send a signal to or call the object indep).

A static structure diagram D = (SuSys(D), Dep(D)) is given by a set
SuSys(D) consisting of class models or subsystems, and a set Dep(D) of
dependencies (dep, indep, int, stereo). Other modelling elements (such as
associations) can be added without complication. A static structure diagram is
called a class diagram if it contains no subsystems.

Consistency between UML diagrams. A subsystem is called consistent if
the following conditions are satisfied:

• The object and subsystem names appearing as activities in the activity
diagram are part of the static structure diagram. The behaviour of the
objects is defined by statecharts.

• For each call resp. send action in a statechart diagram, the static structure
diagram C must have a dependency stereotyped ((call» resp. ((send»
between the objects (or their interfaces) in question. For each assignment
action att := exp in S, att is contained in the set of attributes of Cl%'
given in D.

• The operations offered by the subsystem must be offered by class models
or subsystems in the static structure diagram.

• For statecharts SandT we haveS= Tor Obj8 -=/:- Objr.

Formal Semantics for Interacting UML subsystems 37

Behavioural semantics of Subsystems. Suppose we are given a consistent
subsystemS. The behavioural interpretation of Sis given by the ASM [SfuSy
with the rules Initialize(S) and Main(S) defined in the following.

We write Acts(S) for the set of object and subsystem names giving the
activities in Ad(S). If act E Acts(S) is an object whose behaviour is given
by a statechart diagram D E Bd(S) (i. e. ObjD = act), we write
for [D]8 c, BDinitializes(act) for Initialize(D) and BDMains(act) for
Main(D). If act E Acts(S) is a subsystem in Ssd(S), we write for
[act]SuSy, BDinitializes(act) for Initialize(act) and BDMains(act)
for Main(act).

The vocabulary of [S]SuSy includes the following names:
• the names in the vocabularys of [S]susy for all S E SuSys(Ssd(S)),

[Ad(S)]AD and for all S E Acts(S),
• the names inQueue(S) and outQueue(S) (in and out queue of S).

We define the two rules.

Rule Initialize(S)
do - in - parallel

Initialize (Ad (S))
for all S with S E Acts(S) do

BDinitializes(S)
inQueue(S) := 0 outQueue(S) := 0

enddo

Rule Main(S)
seq

forall S with S E Acts(S) do
inQueue(S) := inQueue(S)i±J

{tail(e) : e E (inQueue(S) \ Msgs(S)) !\ head(e) = S}
inQueue(S) := 0
Main(Ad(S))
forall S with S E Acts(S) do

inQueue(S) := inQueue(S)i±J
l:!:lrEActs(S) {tail(e) : e E outQueue(T) !\head(e) = S}

outQueue(S) := outQueue(S)i±J
I:!:JrEActs(S) {tail(e) : e E outQueue(T) !\head(e) = S}

forall S with S E Acts(S) do
outQueue(S) := 0

endseq

System specifications. A UML system is given by a UML subsystem which
is intended to model the complete system under consideration (rather than just
a part).

38 FMOODS2002

Given a system S and a sequence I;_, ... , I;, of multi-sets, the timed be­
haviour [S]t(J;_, ... , I;,) is defined to be the set of possible contents of
outlist(S) after the execution of any instantiation of the following ASM rule
on the ASM [S]susy.

Rule tSysA(S)
seq out list(S) := 0

Initialize (S)
loop i through list [1 ... n]

endseq

seq inQueue(S) := inQueue(S) I±J /;_
Main(S)
outlist(S) := outlist(S).outQueue(S)
outQueue(S) := 0

end seq

The untimed behaviour of a systemS is a function [Sf() from multi-sets
of events (the inputs to the system during its execution) to sets of multi-sets of
events (the possible outputs of the system during its (possibly non-terminating)
execution). It is defined at the meta-level. Given a multi-set I, we define
[S]u(I) to be the fix-point of the content of outQueue(S) after firing the rule

seq Initialize(S) in Queue(S) := I endseq

and iterating the rule Main(S). The fix-point exists, because S changes
outQueue(S) only by adding elements: it is the directed union of the contents
of outQueue(S) after each execution of Main(S).

4. Equivalence and Refinement

Definition 1 (Property Refinement) Suppose we are given two subsystem
specifications S and S' and a set M of message names. S' is a timed (resp.
untimed) M-refinement ofS if conditions I and Ila (resp. conditions I and lib)
are fulfilled:

I Msgs(S) n M Msgs(S') n M

Ila for all sequences I1, ... , In of multi-sets of events such that
msgname(e) E Mfor each e E Ui=l, ... ,n h we have

lib for each multi-set I of events such that msgname(e) E M for each
e E I, we have [S']u(I) n.. M [S]u(I) n.. M

Formal Semantics for Interacting UML subsystems 39

where for a set S of multi-sets of events we define S 1\- M { M \ { e E
Events : msgname(e) E M} : M E S} to be the set of multi-sets obtained
by removing all events e with msgname(e) tf. M (and extend the definition
to sequences of multi-sets by applying it to the elements of the sequence). A
timed (resp. untimed) MsgNm-refinement is simply called a (resp. untimed)
refinement.

For a motivation of the refinements and comparison to other kinds, see (lirjens,
2002). Both kinds of M-refinement are reflexive and transitive for each M.
They preserve all M-safety properties (i. e. sets of sequences of event multi­
sets with names in M). We show that refinement is preserved by substitution
(i. e. a precongruence wrt. composition by subsystem formation).

A parameterized subsystem S(Yb ... , Yn) is a subsystem specification
where n of the subsystems are replaced by subsystem variables)/. For sub­
systems S1, ... , Sn, S(S1, ... , Sn) is the subsystem obtained by substituting
si for Yi, for each i, ins.

Theorem 1 If SI is a timed refinement for each i = 1, ... , n then for any
parameterized subsystem S(Y1, ... , Yn). S(SL ... , is a timed refinement
ofS(SI, ... ,Sn)·

The theorem does not hold for untimed refinements (.Jlirjens, 2002).

Definition 2 (Behavioural Equivalence) Two subsystem specifications Sand
S' are timed (resp. untimed) behaviourally equivalent ifMsgs(S) = Msgs(S),
S is a timed (resp. untimed) Msgs(S)-refinement of S, and S' is a timed (resp.
untimed) Msgs(S)-refinement of S.

The above facts on timed refinement imply that timed behavioural equivalence
is a congruence wrt. composition by subsystem formation.

Behavioural equivalence can be used e.g. to verify consistency of two sub­
system specifcations that are supposed to describe the same behaviour.

5. Example: Secure channel establishment

Figure 1 gives a high level system specification S for communication from
a sender object to a receiver object, including a class diagram with appropriate
interfaces (we leave out the activity diagram which simply specifies that the
two objects are executed in parallel).

Assume that an assessment of the physical layer of the system shows that
security requirements are not provided. Thus we construct a refinement S in
Figure 2. The class diagram needs to allow the receiver to send his certificate to
the sender. The behaviour of the sender includes retrieving the public key and
the certificate from the sender, checking the certificate, and encrypting the data.

40 FMOODS 2002

Chatmel n I
send(d:Data)

snd:Sender send(d)

receiveQ:Data /transmit(d)

rcv:Receiver

d
receive()
/return(d)

I sending
«Interface» I I . . «Interface» I

recetvmg

j send(d:Data) I I receive():Data I

IQ Sender <<send» Receiver -------
sending send(d:Data) receive(): Data

receiving trnnsmit(d:Data)

Figure 1. Sender and receiver

SecureChannel n
send(d:Data)
receive():Data

sending

send(d:Data)

Sender

sending send(d:Data)

rcv:Receiver

«<nterface»
receiving

receive():Data

«send» .,.j:::::R:::ec:::e:::iv:::er==f---(

receiving <<call»

request():Exp

Figure 2. Secure channel

The receiver gives out the key and certificate first, and decrypts the received
data. We assume that VerK(SignK(m), m) = true (i.e. VerK(m, 0) is true
if m is a valid signature of 0 with key K).

Theorem 2 S' is an untimed {send, receive, returnreceive}-refinement ofS.

The (straightforward) proof can be found in (Jiirjens, 2002). Note that the
theorem does not imply that the refined protocol is secure; this has to be
established by other means (including an extension of the formal semantics
with adversary scenarios), see (Jiirjens, 2002).

Note that S' is not a timed {send, receive, returnreceive}-refinement of S
(because of the delay caused by the key exchange).

Formal Semantics for Interacting UML subsystems 41

6. Related Work

There has been a considerable amount of work towards a formal semantics for
various parts ofUML (see (Jiirjens, 2002) for an overview). (Evans et al., 1999)
discusses some fundamental issues concering a formal foundation for UML.
(Borger et al., 2000) uses ASMs to give a semantics for statecharts. (Stevens,
2001) gives a semantics for use case diagrams based on the process algebra
CCS. (Overgaard and Palmkvist, 2000) considers interacting UML subsystems,
but without giving a formal semantics. A combined formal semantics for UML
statecharts and class diagrams has been given in (Reggio et al., 2001). (Scliifer
et al., 2001) gives a semantics for statecharts and shows exemplarily how
to check whether a set of statecharts satisfies a collaboration. Refinements
have been investigated in the object-oriented setting e.g. in (Derrick and Smith,
2000; Derrick and Boiten, 2001) where the introduced structural refinement has
a similar motivation as our interface refinement. In the context of subtyping,
refinement has been considered e.g. in (Poetzsch-Heffter, 1997).

7. Conclusion and Future Work

Our work shows that giving a formal foundation for complete UML specifi­
cations, rather than just single diagrams, is possible. While in our presentation
here we left out some of the more advanced features of some of the consid­
ered diagrams, incorporating them is not a problem (except for an increase in
complexity). This paves the way for unambigous modelling with UML, and
in particular for tool-support that can simulate specifications in their entirety.
This would seem to be very useful indeed, since one of the main challenges in
constructing large-scale software systems is to ensure that different components
act together as expected.

ASMs proved to be a quite adequate tool to handle the complexities in
formally combining the different UML diagrams, due to their flexibility. In
particular, the crucial extensions over the semantics for statecharts in (llirger
et al., 2000) could be done in a rather natural way.

The notions of subsystem equivalence and refinement seem to be valuable
tools in the construction and analysis of UML specification (although here we
could only present a toy example).

On the application side, the semantics presented here has been useful in the
context of security-critical systems (cf. e.g. (Ji.irjens, 2001-b)).

In further work (Jiirjens, 2002) we have treated other kinds ofUML diagrams
and other kinds of refinements (including one inspired by action refinement
(Gorrieri and Rensink, 2000)). We aim to give conditions for checking equiv­
alence and refinement on the level of syntax or by combining an object-based
logic (e.g. (Distefano et al., 2000)) with a logic for ASMs (e.g. (Poetzsch­
Heffter, 1994)).

42 FMOODS2002

In terms of tool-support we intend to extend the ASM-based statechart
simulator presented in (Campo et al., 2001) to the semantics presented here.

Acknowledgements. Discussions with A. Cavarra about formal semantics
for UML and constructive suggestions by the anonymous referees to improve
the presentation of the paper are gratefully acknowledged.

References
Borger, E., Cavarra, A. and Riccobene, E. (2000). Modeling the dynamics of UML State Ma­

chines. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Abstract State Machines.
Theory and Applications, volume 1912 of LNCS, pages 223-241. Springer-Verlag.

Broy, M. and St0len, K. (2001). Specification and Development of Interactive Systems. Springer­
Verlag.

Campo, R., Cavarra, A. and Riccobene, E. (2001). Simulating UML state machines. In E. Borger
and U. Glasser, editors, ASM'200I, LNCS. Springer-Verlag. To be published.

Derrick, J. and Boiten, E. (2001). Refinement in Zand Object-Z: Foundations and advanced ap­
plications. Formal Approaches to Computing and Information Technology. Springer-Verlag.

Distefano, D., Katoen, J.-P. and Rensink, A. (2000). On a temporal logic for object-based
systems. In Smith and Talcott (Smith and Talcott, 2000), pages 305-326.

Derrick, J. and Smith, G. (2000). Structural refinement in Object-Z I CSP. In W. Grieskamp,
T. Stanten, and B. Stoddart, editors, Integrated Formal Methods (IFM 2000), volume 1945
of LNCS, pages 194-213. Springer-Verlag.

Evans, A., France, R., Lano, K. and Rumpe, B. (1999). The UML as a formal modeling notation.
In J. Bezivin and P.-A. Muller, editors, The Unified Modeling Language- Workshop UML'98:
Beyond the Notation, LNCS, pages 297-307. Springer-Verlag.

Gorrieri, R. and Rensink, A. (2000). Action refinement. In J. Bergstra, A. Ponse, and S. Smolka,
editors, Handbook of Process Algebra. Elsevier.

Gurevich, Y. (1995). Evolving algebras 1993: Lipari guide. In E. Borger, editor, Specification
and Validation Methods, pages 9-36. OUP.

HuBmann, H., editor. (2001). Fundamental Approaches to Software Engineering (FASE, 4th
International Conference), volume 2029 of LNCS. Springer-Verlag.

Jtirjens, J. (2001-a). Secrecy-preserving refinement. In Formal Methods Europe (International
Symposium), volume 2021 of LNCS, pages 135-152. Springer-Verlag.

Jiirjens, J. (2001-b). Towards development of secure systems using UMLsec. In HuBmann
(HuBmann, 2001), pages 187-200.

Jiirjens, J. (2002). Principles for Secure Systems Design. PhD thesis, Oxford University Com­
puting Laboratory. Submitted.

Kleppe, A. and Warmer, J. (2001). Unification of Static and Dynamic Semantics of UML.
Overgaard, G. and Palmkvist, K. (2000). Interacting Subsystems in UML. In A. Evans, S. Kent,

and B. Selic, editors, The Unified Modeling Language: Advancing the Standard (UML'2000),
volume 1939 of LNCS. Springer-Verlag.

Poetzsch-Heffter, A. (1994). Deriving partial correctness logics from evolving algebras. In
B. Pehrson and I. Simon, editors, IFIP 13th World Computer Congress '94, pages 434-439.
Elsevier.

Poetzsch-Heffter, A. (1997). Specification and verification of object-oriented programs. Habili­
tation thesis, Technical University of Munich.

Formal Semantics for Interacting UML subsystems 43

Reggio, G., Cerioli, M. and Astesiano, E. (2001). Towards a Rigorous Semantics of UML
Supporting its Multiview Approach. In HuBmann (HuBmann, 2001).

Rumbaugh, J., Jacobson, I. and Booch, G. (1999). The Unified Modeling Language Reference
Manual. Addison-Wesley.

Schafer, T., Knapp, A. and Merz, S. (2001). Model checking UML state machines and col­
laborations. In S.D. Stoller and W. Visser, editors, Workshop on Software Model Checking,
volume 55 of ENTCS. Elsevier.

Stevens, P. and Pooley, R. (2000). Using UML. Addison-Wesley.
SHirk, R., Schmid, J. and Borger, E. (2001). Java and the Java Virtual Machine- Definition,

Verification, Validation. Springer-Verlag.
Smith, S. F. and Talcott, C. L., editors. (2000). 4th International Conference on Formal Methods

for Open Object-Based Distributed Systems (FMOODS 2000). IFIP TC6/WG6.1, Kluwer
Academic Publishers.

Stevens, P. (2001). On use cases and their relationships in the Unified Modelling Language. In
HuBmann (HuBmann, 2001), pages 140--155.

UML Revision Task Force. (2001). OMG UML Specification v. 1.4. OMG Document ad/01-09-
67. Available at http : / jwww.omg.org/uml.

	FORMAL SEMANTICS FOR INTERACTING UML SUBSYSTEMS
	1. Introduction
	2. Abstract State Machines
	3. Formal Semantics for a fragment of UML
	3.1. Statechart Diagrams
	3.2. Activity diagrams
	3.3. Subsystems and System Specifications

	4. Equivalence and Refinement
	5. Example: Secure channel establishment
	6. Related Work
	7. Conclusion and Future Work
	References

