
Chapter 9

Fault Management in a Multicast Routing
Environment

Kernel Based Tree Protocol, a Case Study·

Mohamed Datir ECH-CHERIF EL KETTANI (1)

Younes SOUISSI (2)

(I) Ecole Nationale Superieure d'Informatique et d'Analyse des Systemes
ENSIAS - BP 713 - Rabat Agdal- Morocco
e-mail: dajir@ensias.um5souissi.ac.ma
(2) Ecole Mohammedia d'Ingenieurs
Department o/Computer Science - EMI - BP 765 - Agdal, Rabat - Morocco
e-mail: souissi@emi.ac.ma

Key words: Inter Domain Multicast Routing, Consensus, Fault Management, Adaptive
Communications, Scalability

Abstract: The conception of multicast routing protocols relies generally on the
optimisation of Quality of Service parameters. Unfortunately, we rarely find
propositions that consider fault tolerance as a criterion to enhance QoS
associated to the group: We mean by "fault tolerance" the ability to manage
failures of nodes and links of the distribution tree, in the network. A fault
tolerant approach at the routing level will allow more reliability at the network
and service levels.
Currently, in a multicast routing environment, when a failure occurs, the
solution consists in destroying the distribution tree, and starting from the
beginning to construct again the whole distribution tree, which is a costly
solution.
We propose a solution avoiding that, by giving fault tolerant extensions to
multicast routing protocols. Our proposition is based on the resolution of the
consensus problem. Consensus problems were studied by Chandra and Toueg:
We propose an inter domain version of the algorithm. We put the emphasis on
scalability issues, due to the hierarchical structure of the network, such as the
Internet. We study the case of KBT protocol, a QoS-sensitive protocol,
adapted to inter domain multicast routing.

* This work is partially supported by PARS MI 16 project

http://dx.doi.org/10.1007/978-0-387-35532-0_21

118 Part Three - Multimedia Networks and Services

1. INTRODUCTION

In this paper, we are interested in fault management in a multicast routing
environment. The solution that we propose gives fault tolerant extensions to
multicast routing protocols in general, and particularly to inter domain
multicast routing protocols. We mean by "fault tolerance" the ability to
manage failures associated to nodes and links that belong to the distribution
tree, in the interconnection network. A fault tolerant approach at the routing
level will allow more reliability associated to such network protocols. It will
also associate to the multicast routing protocol a reliable multimedia service.

Currently, in a multicast routing environment, when a failure occurs, the
solution generally consists in destroying the distribution tree, and starting
from the beginning to construct again the whole distribution tree, since every
member will join the group again individually, which is a costly issue. This
is the case of CBT protocol. Also, resource discovery relies on a mechanism
that does not scale [I].

We look for a solution that avoids these problems, and takes advantage of
the hierarchical structure of the interconnection network: it supposes that the
interconnection network is organised into domains. When the failure of a
node occurs, the distribution tree breaks out, but no pruning of the
distribution tree happens. We propose a solution that "elects" a new node to
replace the failing one, and makes the necessary work to connect all the
components of the broken distribution tree to that new node.

Indeed, we first partition the initial distribution tree into sub-trees (one
sub-tree per domain). Then each sub-tree will have to decide the value
associated to the new "elected node": But, that decided value must be the
same among all the domains, which justifies the use of a consensus protocol.

Our proposition is based on the resolution of consensus problem in an
inter domain multicast routing environment. Consensus problems were
studied by Chandra and Toueg [3]. We propose an inter domain version of
this protocol, solving thus scalability issues, especially in terms of
transmitted messages. We study the case of KBT protocol, a QoS-sensitive
protocol, adapted to inter domain multicast routing. We also analyse the
complexity of the solution, and show the advantages of such a policy.

The rest of the paper is structured as follows: In section 2, we present the
paradigms associated to KBT protocol, in order to illustrate further fault
management in that case. In section 3, we describe the system model,
including the failure detector model in an inter domain routing environment.
In section 4, we present the consensus algorithm associated to KBT protocol.
In section 5, we evaluate the performance of the protocol: We analyse the
complexity of the algorithm and compare results with other algorithms.
Section 6 corresponds to the conclusion and perspectives of the work.

Fault Management in a Multicast Routing Environment 119

2. KBT PROTOCOL: STATE OF THE ART

2.1 Overview

Kernel Based Tree protocol is an adaptive inter domain multicast routing
protocol. Such a solution has already been presented as part of a hole project,
the goal of which was to define an "Inter Domain QoS Multicast Routing
Protocol". The first experimentation led to encouraging results [6]. The
details of KBT protocol have already been presented in [4]. We present in
this paragraph the main characteristics ofKBT, in order to treat fault tolerant
extensions in next sections.

KBT protocol combines both of the strategies associated to the
construction of distribution trees: "Source Based Tree" strategy (noted SBT),
and "Shared Tree" strategy (noted ST). These strategies are adapted to two
extreme situations of group members configurations referring to the density
of group members in the Internet, called "dense" and "sparse" [7].
Combining SBT and ST leads to adaptation properties of the group.

Our strategy consists in grouping initially group members through a core
based tree (noted CBTo, figure l.a) -according to CBT protocol [1]-, and
then defining "interception points" on that tree. The position of
"interception points" may change, according to the evolution of group
membership and network characteristics [4]. These points represent the
"kernel" of the future distribution tree associated to the group. A message
sent from a source will transit through 2 trees: the first is a source based tree
(SBT) linking that source to "interception points", and the second is the
branch of CBTo, starting at the "interception point". We call the obtained
distribution tree "Kernel Based Tree" (KBT). Since KBT is an inter domain
multicast routing protocol, we suppose that we place one "interception
point" per domain involved in the construction of KBT tree. Figure 1.b
corresponds to the situation where the (KBT) has 4 "interception points": a
source based tree (SBT) links Sl source to the "interception points".

Figure l.a. the initial CBTo Figure l.b. the resulting KBT

120 Part Three - Multimedia Networks and Services

2.2 Management Organisation of KBT Protocol

From a network management viewpoint, and in association to the
distribution tree, we can say that KBT architecture is composed of (figure 2):
- The group manager (or group co-ordinator)

The group initiator (the first node asking for group creation)
The "core" of CBTo
The "Interception Point" (noted SIP for Source Interception Point and
RIP for Receiver Interception Point)
The "Receiver Interception Point" Candidate
The rou member (Receiver or Source)

Notation: Manager

Core

Figure 2. Nodes' dependency

Figure 2 illustrates the dependency graph between KBT nodes. The
group manager and the "core" are the main components of the group. The
failure of one of them will provoke the failure of the whole group.

3. MODELING FAILURES

3.1 Classification of Failures

We can divide failures into two categories: local and global.
A local failure will not stop the multicast service toward the totality of

group members. Its impact on the coherence of the group will be limited.
The failure of an "Interception Point" in KBT [5] is an illustration.

A global failure is a failure that will stop the multicast service to the
whole group members. Its influence on system coherence will be serious,
otherwise disastrous. For example, the failure of the "core" of the multicast
tree in CBT or KBT is considered as global. Also, the failure of the "group
manager" in KBT will be global.

The purpose of this paper is to deal with global failures only.

Fault Management in a Multicast Routing Environment 121

3.2 Working Rules

The global system works according to 2 main principles:
1. Communications between nodes:

The nodes of the multicast tree associated to a group will be partitioned
into domains. Communications inside a domain will be supported by the
local multicast tree associated to the group in that domain, whereas we'll
have point to point communications at the inter domain level: since a failure
is global, intra domain communications are not affected by this failure.
2. Detection of a failure:

We associate a failure detector model to our inter domain working
environment. Indeed, we suppose that each node of the multicast tree has a
failure detector, which is a module that must be able to test the failure of any
other node, no matter where the other node is localised (whether inside the
same domain, or not). Failure detector model is presented in the next section.

3.3 Failure Detector Model

A failure detector is defined as a module associated to each node of the
distribution tree. It outputs the set of nodes of the distribution tree that it
currently suspects to have crashed [3]. From a consensus problem viewpoint,
two different nodes n1 and n2 may not necessarily suspect the same set of
failing nodes, because the network is an asynchronous system [10]. So, a
failure detector is defined by 2 sets of properties [3]:

Completeness
- Strong Completeness: eventually every node that crashes is permanently

suspected by every correct node.
- Weak Completeness: eventually every node that crashes is permanently

suspected by some correct node.
Accuracy

- Strong Accuracy: no node is suspected before it crashes.
- Weak Accuracy: some correct node is never suspected.
- Eventual Strong Accuracy: there is a time after which correct nodes are

not suspected by any correct process.
- Eventual Weak Accuracy: there is a time after which some correct

process is never suspected by any correct process.
Chandra and Toueg deduce 8 classes of failure detectors:

Strong Weak Eventual Strong Eventual Weak

Strong p S OP OS

Weak 0 W 00 OW

122 Part Three - Multimedia Networks and Services

They also show that in an interconnection network environment (like the
Internet), the behaviour of a failure detector associated to a node is
characterised by "Strong Completeness" and "Eventual Weak Accuracy"
properties: such a failure detector belongs to OS class.

However, due to the structure of the interconnection network (organised
into domains), we can extend the failure detector model proposed by
Chandra and Toueg, based on the class OS [3].

Hence, we define a new class of failure detectors, noted by OS, giving
hierarchical extension to the failure detector model: This class will act as if
each node maintains two failure detectors, the first dedicated to internal
(intra domain) communications, and the second for inter domain
communications.

This class OS will be characterised by two properties, noted by:
- "hierarchical strong completeness": intra domain completeness and inter

domain completeness
- "hierarchical weak accuracy": intra domain weak accuracy and inter

domain weak accuracy
It is important to make this hierarchical distinction, since the

interconnection network may be confronted to important heterogeneity
characteristics, such as delay, or bandwidth, between intra and inter domain
communications.

4. THE CONSENSUS PROTOCOL

4.1 Related Work

Chandra and Toueg proposed solutions to the consensus problem,
specific to the different basic classes of failure detectors [3].

We can describe informally a consensus protocol as follows, given a set
of correct nodes. At the beginning of the protocol, each correct node is given
an input value, and at the end, the non-crashed nodes must have decided on a
common output value, belonging to the set of input values.

The following properties define the consensus problem [3]:
- Termination: every correct node eventually decides some value.
- Integrity: a node decides at most once.
- Agreement: no two correct nodes decide different values.
- Validity: if a node proposes some value, then this value must have been

proposed by some node.
Chandra and Toueg show that the consensus problem can be solved using

OS class, with at least a majority of correct nodes: no blocking happens.

Fault Management in a Multicast Routing Environment 123

4.2 Overview and Example

We propose an inter domain version of the consensus protocol, solving
thus scalability issues. Failure detectors belong to OS class.

For example, suppose that we have a group working under KBT protocol
(figure 3). We consider that "core" failure is a global failure. If the failure of
the node C happens (C is the "core" of the group), we'll first partition the
initial multicast tree CBTo into sub-trees, according to domains (figure 3).

At the end of this first step, each sub-tree proposes one potential new
"core" candidate to the group. The choice of this new "core" candidate is
operated thanks to QoS considerations, locally to each domain.

However, the final value of the new "core" must be the same
among all the sub-trees: a consensus protocol, at the inter domain level, will
let all the sub-trees decide on a common final value.

Figure 3. KBT multicast tree (4 domains, 1 source, 7 receivers)

Notation:

Link in the interconnexion network

- Link ofKBT tree (CBTo)

- Link of KBT tree (SPT)

o Node ofKBT tree:

- C : core of the multicast tree

- S : member of the group (source)

- R : member of the group (receiver) '-------'

Domain 2

4.3 Principle of the Solution

The consensus problem -based on OS class- can be solved with the
hypothesis that the maximum number of failing nodes is less than half of
implied nodes. Chandra and Toueg show at any time, all the nodes may
be erroneously added to the list of suspects. However, there is a correct node
and a time after which that node is not suspected to have crashed [3]. In the
case of OS class, we make the same suppositions, since:

- A node of OS class has at the same time two failure detectors.
- The properties of each failure detector are taken from OS class.
So, the proposed consensus protocol can be solved with the hypothesis:
- Each implied correct domain proposes a local value. So, it is supposed

not to be a failing domain. In a failing domain, the maximum number of
failing nodes is less than half of the nodes of the group in that domain.

- A majority of implied domains in the consensus process are not failing:
they are correct.

124 Part Three - Multimedia Networks and Services

4.4 Description of the protocol

The proposed protocol uses the rotating co-ordinator paradigm [2] [9], at
the intra and inter domain levels. Our solution is summarised in 3 main steps
(figure 4). Details are presented in section 4.5.

Step 1:
We start with a local consensus in each domain Di of the interconnection

network. That's why each domain Di will have a local co-ordinator. The
rotation of local co-ordinators will act in an asynchronous way in terms of
rounds. Each round is characterised by the four classical steps of consensus
protocol [3]. At the end of this first step, each domain Di proposes a common
value -noted to all the nodes of that domain among the proposed values

The local co-ordinator of domain Di is noted P1ocal(i).
Step 2:
We apply the consensus algorithm at the inter domain level, on the set of

local co-ordinators Plocal(i) of domains Di. Hence, each domain Di proposes
an initial value This second step needs a global co-ordinator, which will
meet one of the local co-ordinators P1ocal(i), defined in step 1.

At the end of this step, each local co-ordinator has received the common
final value decided by the global co-ordinator.

Step 3:
In this last step, each local co-ordinator P1ocal(i) in domain Di broadcasts

the decided value to each node of his domain.
The following figure summarises the main steps of the proposed

protocol. In this example, we suppose that we have three domains D], D2,

and D3• We also suppose that P1ocal(l) is the global co-ordinator.

Figure 4. Illustration of inter domain consensus protocol (Steps and Phases)

StYe 1 St;p 2 SX:p 3
r..------ '\ ('\ ("

in Di among Deciding among --+ __ Deciding

_ __
(Plocal(1)-P global.

I

I

(Plocal(2).

(Plocal(3).

, ___ , ,_------------1 , __ , __ ._-'
Phase 0 Phase 1

------, .,,-- ,-------, ,
,,'

Phase 3 5

Fault Management in a Multicast Routing Environment 125

4.5 Algorithm

Each local co-ordinator node Plocal(i) executes the following algorithm. It
will either execute that algorithm totally or partially, depending on the role
of that node in the consensus protocol, which will be one of the following:

Local co-ordinating node, noted Plocal(i), belonging to a domain Di
Global inter-domain co-ordinating node, noted P global.
Notation:
Local_consensusO: consensus algorithm of Chandra and Toueg, executed

in the domain mentioned as a parameter. It returns the estimated value
F_Broadcast_locaIO: function that broadcasts the estimated value

from a local co-ordinator to each node of its domain.
F_BroadcastJ;lobalO: function that broadcasts the estimated value

from the global co-ordinator to local co-ordinator of each domain.
FJcv_msg_bcastO: reliable function launched by each domain's local

co-ordinator, waiting for the estimated value from the global co-ordinator.
It broadcasts reliably (locally to each domain) the decided value.

DecideO: function that makes the final decision.
Estimateglobal,Plocal(i): the estimate of the global expected value in Plocal(i)

node of domain Di.
Figure 4 summarises the main phases of the algorithm. The algorithm of

the "inter-'propose" procedure of the inter domain consensus protocol is:

Procedure inter -'propose(Plocal(i),

Phase 0 (executed bv each local co-ordinator)
EstimategIObal,Plocal(i) = Local_ Consensus(Di) = Statei = 0; R = 0; TSi = 0;
while (Statei = 0) do

{R= R+l; Pglobal = (R mod G)+I;}

Phase 1
Send (Plocal(i), R, Estimateglobal,Plocal(i), TSi) to P global;

Phase 2
if (Plocal(i)= P global) then

wait until [fOlf (G+ 1)/21 nodesPlocalU), withj:;t:i :
receive (PlocalU), R, Estimateglobal,Plocal(j), TSj)];

msgsi[Ri] = {(Plocal(i), R, Estimateglobal,Plocal(j), TSj) /
Plocal(i) received (Plocal(i), R, Estimateglobal,PlocalGh TSj)};

t = max {TSj};
Estimateglobal,Plocal(i) = Estimateglobal,Plocal(j) / {t=TSj and

(Plocal(i), R, Estimateglobal,Plocal(j), TSj) E msgsi[Ri]};
send (Plocal(i), R, Estimateglobal,Plocal(i» to all Plocal(i), with j:;t:i;

126 Part Three - Multimedia Networks and Services

Phase 3
wait until ({received(P global. R, Estimateglobal,c» or suspect failure of (P global)};
if (received(P global. R, Estimateglobal,c)=true) then

Estimateglobal,Plocal(i)=Estimateglobal,Pglobal;TSi=r;send(Plocal(i),R,ack) to P global;
else

send(Plocal(i), R, nack) to P global;

Phase 4
if (Plocal(i)= P global) then

wait until (for r (G+ 1)/21 nodes Plocal(i), with j:;t:i :
received(Plocal(j), R, ack) or received(Plocal(i), R, nack»;

if (for r(G+l)/21 nodes Plocal(i), with j:;t:i: received(Plocal(j),R,ack)=true)
then

F _ Broadcast_global(Plocal(i), R, Estimateglobal,Plocal(i),decide);

Phase 5 (executed bv each local co-ordinator)
when (F JCV _ msg_ bcast (Plocal(i), R, Estimateglobal,Plocal(j),decide»

if (Statei = 0) then
11 = Estimateglobal,Plocal(j);
Decide(I1); Statei = 1; F _BroadcastJocal(Plocal(i), R, l1,decide);

4.6 Proof of Correctness

We proof that the proposed algorithm verifies the four properties that
characterise the consensus problem (Section 4.1). The adopted approach to
proof these properties is similar to the one chosen by Chandra and Toueg.
For more information, a detailed description exists in [3]. A failure detector
of class OS, is characterised by intra and inter domain strong completeness,
and intra and inter domain eventual weak accuracy

4.6.1 Property 1

Termination: every correct node eventually decides some value.
Proof: It means that no node is blocked on a wait statement.
Let us suppose that a node blocks on a wait statement, and let us take the

earliest round and point on that round where this blocking occurs.
Ifit is local consensus, it can't be blocking, by consensus [3].
If it is a waiting statement in phase 2, 3, or 4 of the algorithm, the

"hierarchical strong completeness" property will ensure that the waiting will
stop. In the case of a waiting statement of the global co-ordinator, then the
hypothesis of a majority of correct domains (see section 4.1) guarantees the
reception of at least a majority of messages. So, no blocking occurs.

Fault Management in a Multicast Routing Environment

4.6.2 Property 2

Integrity: a node decides at most once.
Proof:

127

The algorithm satisfies the integrity property, because each node decides
at most once (Phase 5): the decide function is called once.

4.6.3 Property 3

Agreement: no two correct nodes decide different values.
Proof:
If no process decides, the property is trivially true.
If any process decides, let us take the time at which the first decision has

been taken. The global inter domain co-ordinating node has eventually
received a majority of acknowledgements. This implies that r (0+1)/2l of
local co-ordinating nodes detain this estimate. We proof that this estimate
holds indefinitely. We apply the demonstration in [3], considering in that
case each domain as a process. The proof is by induction on the round
number. More details can be found in lemma 19 of [3].

In phase 5, since each correct local co-ordinating node has previously
executed the F rev msg beast function, it will broadcast this value to all the
nodes of the domain. The decided value must have been previously decided
by the global co-ordinator.

4.6.4 Property 4

Validity: if a node proposes some value, then this value must have been
proposed by some node.

Proof:
From the algorithm, the decided values are taken from estimates at two

levels:
Intra domain level: all the estimates received by any local co­

ordinator in phase 0 are proposed values from the nodes of the same domain.
The result is a proposed value at the intra domain level.

Inter domain level: all the estimates that a global co-ordinator receives in
phase 2 are proposed values from local co-ordinators. So, the value decided
by a global co-ordinator must be the value proposed by some node.

As a consequence, the algorithm proposed in section 4.5 solves
Consensus using OS class.

128 Part Three - Multimedia Networks and Services

5. PERFORMANCE EVALUATION

5.1 Complexity Analysis of the Solution

Suppose that we have G domains, and 'n' nodes in each domain. The
complexity of the algorithm proposed in section 4.5 in terms of exchanged
messages is in O(G2)+O(Gn2):

Indeed, the local consensus operation (phase 0) consumes 4(n-l)+(n_l)2
messages per domain: 4(n-l) is the number of exchanged messages between
the nodes and the local co-ordinator, in order to take the local consensus
value. (n_l)2 is the number of exchanged messages due to the final local
broadcast function [3]. This broadcast function is supposed to be reliable.
So, the global number of messages is equal to G*[4(n-l)+(n-I)2].

The global inter domain consensus operation (phases I, 2, 3, and 4)
consumes 4(G-I)+(G-lt The reasons are the same that in local consensus
problem, considering in that case a domain instead of a node.

The final broadcast function in phase 5 consumes (n-l i messages per
domain: the broadcast function is a reliable broadcast function. So, the total
number of messages is G*(n-l t

Hence, the complexity of the whole algorithm is in O(G2)+O(Gn2).

5.2 Comparative Analysis

There is an improvement, concerning scalability, in terms of exchanged
messages in comparison with Chandra and Toueg algorithm, which is in
O(G2n2).

We can also find that our solution is better than the one proposed by [8],
where the complexity is in O(G2+n2+Gn2).

6. CONCLUSION

Fault-tolerant management in a multicast routing environment is a new
issue in inter domain multicast routing.

In this paper, we have studied the case of KBT protocol, which is a
generic adaptive inter domain multicast routing protocol. After this, we
presented the main concepts of the protocol, in terms of construction of the
distribution tree, and distributed management capabilities: we showed that
KBT protocol can integrate at the routing level a certain level of control and
management. This offers a reliable multimedia service associated to the
multicast group.

Fault Management in a Multicast Routing Environment 129

Then, we associated a failure model to the system, by presenting a
classification of failures associated to the system, and then proposing a new
class of failure detectors, adapted to the hierarchical structure of the
interconnection network. We finally showed why the problem can be
considered as a classical consensus problem.

We also showed how we can optimise that classical consensus problem,
through a hierarchical approach. We proposed the algorithm associated to
the hierarchical consensus problem, and proofed its correctness.

Performance evaluation of the solution included complexity analysis, and
comparison with the consensus protocol: we obtained good results.

The applications of our solution can be extended to protocols others than
KBT: "core" election mechanism in CBr and PIM-SM for example. Other
applications can be seen in any hierarchical inter domain distributed
environment that needs to maintain a global state, or to elect a common
value between components of the system.

REFERENCE

[1] A. Ballardie, "Core Based Trees (CBT ver. 2) Multicast Routing Architecture", Internet
RFC 2201, September 1997.

[2] T.D. Chandra; and S. Toueg, "Time and Message Efficient Reliable Broadcasts", In
Proceedings of 4th International Workshop on Distributed Algorithms (WDAG-4),
Springer Verlag, November 1996.

[3] T.D. Chandra; and S. Toueg, "Unreliable Failure Detectors for reliable distributed
systems", Journal of the ACM, vol 43, n02, pp-225-267, 1996.

[4] M.D. Ech-CherifEI Kettani, "KBT Protocol Architecture", Technical Report nO 02/98,
Ecole Mohammedia d'lngenieurs, Rabat, Morocco.

[5] M.D. Ech-CherifEI Kettani; and Y. Souissi, "An Adaptive Architecture for Inter Domain
QoS Multicast Routing", in French, in Calculateurs Paralleles: Routage dans les reseaux,
vol 11, n01l99, Hermes, pp-59-86.

[6] M.D. Ech-CherifEl Kettani; and Y. Souissi, "Performance Evaluation of
Multicast Routing Protocols: Comparative Study and Proposition of an Adaptive
Solution", CFIP'99 Proceedings, Nancy, France, 26-29 April 1999, Hermes, pp-317-332.

[7] C. Huitema, "Routing in the Internet", Prentice-Hall, Englewood Cliffs, N.J., 1995.
[8] F. Nguilla Kooh, "Hierarchical Approach for Solving Agreement Problems in Wide

Distributed Systems", In Proc. of Second lASTED International Conference on Parallel
and Distributed Computing and Networks, December 14-16 1998 Brisbane, Australia.

[9] R. Reishuck "A New Solution for the Byzantine General's Problem", RJ 3673, IBM
Research Lab., Nov. 1982.

[10] M. Raynal, "Synchronisation and Global State in Distributed Systems", in French,
Eyrolles Editions, 1992.

	Chapter 9 Fault Management in a Multicast RoutingEnvironment
	1. INTRODUCTION
	2. KBT PROTOCOL: STATE OF THE ART
	2.1 Overview
	2.2 Management Organisation of KBT Protocol

	3. MODELING FAILURES
	3.1 Classification of Failures
	3.2 Working Rules
	3.3 Failure Detector Model

	4. THE CONSENSUS PROTOCOL
	4.1 Related Work
	4.2 Overview and Example
	4.3 Principle of the Solution
	4.4 Description of the protocol
	4.5 Algorithm
	4.6 Proof of Correctness

	5. PERFORMANCE EVALUATION
	5.1 Complexity Analysis of the Solution
	5.2 Comparative Analysis

	6. CONCLUSION
	REFERENCE

