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Abstract: The conception of multicast routing protocols relies generally on the 
optimisation of Quality of Service parameters. Unfortunately, we rarely find 
propositions that consider fault tolerance as a criterion to enhance QoS 
associated to the group: We mean by "fault tolerance" the ability to manage 
failures of nodes and links of the distribution tree, in the network. A fault 
tolerant approach at the routing level will allow more reliability at the network 
and service levels. 
Currently, in a multicast routing environment, when a failure occurs, the 
solution consists in destroying the distribution tree, and starting from the 
beginning to construct again the whole distribution tree, which is a costly 
solution. 
We propose a solution avoiding that, by giving fault tolerant extensions to 
multicast routing protocols. Our proposition is based on the resolution of the 
consensus problem. Consensus problems were studied by Chandra and Toueg: 
We propose an inter domain version of the algorithm. We put the emphasis on 
scalability issues, due to the hierarchical structure of the network, such as the 
Internet. We study the case of KBT protocol, a QoS-sensitive protocol, 
adapted to inter domain multicast routing. 
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1. INTRODUCTION 

In this paper, we are interested in fault management in a multicast routing 
environment. The solution that we propose gives fault tolerant extensions to 
multicast routing protocols in general, and particularly to inter domain 
multicast routing protocols. We mean by "fault tolerance" the ability to 
manage failures associated to nodes and links that belong to the distribution 
tree, in the interconnection network. A fault tolerant approach at the routing 
level will allow more reliability associated to such network protocols. It will 
also associate to the multicast routing protocol a reliable multimedia service. 

Currently, in a multicast routing environment, when a failure occurs, the 
solution generally consists in destroying the distribution tree, and starting 
from the beginning to construct again the whole distribution tree, since every 
member will join the group again individually, which is a costly issue. This 
is the case of CBT protocol. Also, resource discovery relies on a mechanism 
that does not scale [I]. 

We look for a solution that avoids these problems, and takes advantage of 
the hierarchical structure of the interconnection network: it supposes that the 
interconnection network is organised into domains. When the failure of a 
node occurs, the distribution tree breaks out, but no pruning of the 
distribution tree happens. We propose a solution that "elects" a new node to 
replace the failing one, and makes the necessary work to connect all the 
components of the broken distribution tree to that new node. 

Indeed, we first partition the initial distribution tree into sub-trees (one 
sub-tree per domain). Then each sub-tree will have to decide the value 
associated to the new "elected node": But, that decided value must be the 
same among all the domains, which justifies the use of a consensus protocol. 

Our proposition is based on the resolution of consensus problem in an 
inter domain multicast routing environment. Consensus problems were 
studied by Chandra and Toueg [3]. We propose an inter domain version of 
this protocol, solving thus scalability issues, especially in terms of 
transmitted messages. We study the case of KBT protocol, a QoS-sensitive 
protocol, adapted to inter domain multicast routing. We also analyse the 
complexity of the solution, and show the advantages of such a policy. 

The rest of the paper is structured as follows: In section 2, we present the 
paradigms associated to KBT protocol, in order to illustrate further fault 
management in that case. In section 3, we describe the system model, 
including the failure detector model in an inter domain routing environment. 
In section 4, we present the consensus algorithm associated to KBT protocol. 
In section 5, we evaluate the performance of the protocol: We analyse the 
complexity of the algorithm and compare results with other algorithms. 
Section 6 corresponds to the conclusion and perspectives of the work. 
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2. KBT PROTOCOL: STATE OF THE ART 

2.1 Overview 

Kernel Based Tree protocol is an adaptive inter domain multicast routing 
protocol. Such a solution has already been presented as part of a hole project, 
the goal of which was to define an "Inter Domain QoS Multicast Routing 
Protocol". The first experimentation led to encouraging results [6]. The 
details of KBT protocol have already been presented in [4]. We present in 
this paragraph the main characteristics ofKBT, in order to treat fault tolerant 
extensions in next sections. 

KBT protocol combines both of the strategies associated to the 
construction of distribution trees: "Source Based Tree" strategy (noted SBT), 
and "Shared Tree" strategy (noted ST). These strategies are adapted to two 
extreme situations of group members configurations referring to the density 
of group members in the Internet, called "dense" and "sparse" [7]. 
Combining SBT and ST leads to adaptation properties of the group. 

Our strategy consists in grouping initially group members through a core 
based tree (noted CBTo, figure l.a) -according to CBT protocol [1]-, and 
then defining "interception points" on that tree. The position of 
"interception points" may change, according to the evolution of group 
membership and network characteristics [4]. These points represent the 
"kernel" of the future distribution tree associated to the group. A message 
sent from a source will transit through 2 trees: the first is a source based tree 
(SBT) linking that source to "interception points", and the second is the 
branch of CBTo, starting at the "interception point". We call the obtained 
distribution tree "Kernel Based Tree" (KBT). Since KBT is an inter domain 
multicast routing protocol, we suppose that we place one "interception 
point" per domain involved in the construction of KBT tree. Figure 1.b 
corresponds to the situation where the (KBT) has 4 "interception points": a 
source based tree (SBT) links Sl source to the "interception points". 

Figure l.a. the initial CBTo Figure l.b. the resulting KBT 
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2.2 Management Organisation of KBT Protocol 

From a network management viewpoint, and in association to the 
distribution tree, we can say that KBT architecture is composed of (figure 2): 
- The group manager (or group co-ordinator) 

The group initiator (the first node asking for group creation) 
The "core" of CBTo 
The "Interception Point" (noted SIP for Source Interception Point and 
RIP for Receiver Interception Point) 
The "Receiver Interception Point" Candidate 
The rou member (Receiver or Source) 

Notation: Manager 

Core 

Figure 2. Nodes' dependency 

Figure 2 illustrates the dependency graph between KBT nodes. The 
group manager and the "core" are the main components of the group. The 
failure of one of them will provoke the failure of the whole group. 

3. MODELING FAILURES 

3.1 Classification of Failures 

We can divide failures into two categories: local and global. 
A local failure will not stop the multicast service toward the totality of 

group members. Its impact on the coherence of the group will be limited. 
The failure of an "Interception Point" in KBT [5] is an illustration. 

A global failure is a failure that will stop the multicast service to the 
whole group members. Its influence on system coherence will be serious, 
otherwise disastrous. For example, the failure of the "core" of the multicast 
tree in CBT or KBT is considered as global. Also, the failure of the "group 
manager" in KBT will be global. 

The purpose of this paper is to deal with global failures only. 
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3.2 Working Rules 

The global system works according to 2 main principles: 
1. Communications between nodes: 

The nodes of the multicast tree associated to a group will be partitioned 
into domains. Communications inside a domain will be supported by the 
local multicast tree associated to the group in that domain, whereas we'll 
have point to point communications at the inter domain level: since a failure 
is global, intra domain communications are not affected by this failure. 
2. Detection of a failure: 

We associate a failure detector model to our inter domain working 
environment. Indeed, we suppose that each node of the multicast tree has a 
failure detector, which is a module that must be able to test the failure of any 
other node, no matter where the other node is localised (whether inside the 
same domain, or not). Failure detector model is presented in the next section. 

3.3 Failure Detector Model 

A failure detector is defined as a module associated to each node of the 
distribution tree. It outputs the set of nodes of the distribution tree that it 
currently suspects to have crashed [3]. From a consensus problem viewpoint, 
two different nodes n1 and n2 may not necessarily suspect the same set of 
failing nodes, because the network is an asynchronous system [10]. So, a 
failure detector is defined by 2 sets of properties [3]: 

Completeness 
- Strong Completeness: eventually every node that crashes is permanently 

suspected by every correct node. 
- Weak Completeness: eventually every node that crashes is permanently 

suspected by some correct node. 
Accuracy 

- Strong Accuracy: no node is suspected before it crashes. 
- Weak Accuracy: some correct node is never suspected. 
- Eventual Strong Accuracy: there is a time after which correct nodes are 

not suspected by any correct process. 
- Eventual Weak Accuracy: there is a time after which some correct 

process is never suspected by any correct process. 
Chandra and Toueg deduce 8 classes of failure detectors: 

Strong Weak Eventual Strong Eventual Weak 

Strong p S OP OS 

Weak 0 W 00 OW 
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They also show that in an interconnection network environment (like the 
Internet), the behaviour of a failure detector associated to a node is 
characterised by "Strong Completeness" and "Eventual Weak Accuracy" 
properties: such a failure detector belongs to OS class. 

However, due to the structure of the interconnection network (organised 
into domains), we can extend the failure detector model proposed by 
Chandra and Toueg, based on the class OS [3]. 

Hence, we define a new class of failure detectors, noted by OS, giving 
hierarchical extension to the failure detector model: This class will act as if 
each node maintains two failure detectors, the first dedicated to internal 
(intra domain) communications, and the second for inter domain 
communications. 

This class OS will be characterised by two properties, noted by: 
- "hierarchical strong completeness": intra domain completeness and inter 

domain completeness 
- "hierarchical weak accuracy": intra domain weak accuracy and inter 

domain weak accuracy 
It is important to make this hierarchical distinction, since the 

interconnection network may be confronted to important heterogeneity 
characteristics, such as delay, or bandwidth, between intra and inter domain 
communications. 

4. THE CONSENSUS PROTOCOL 

4.1 Related Work 

Chandra and Toueg proposed solutions to the consensus problem, 
specific to the different basic classes of failure detectors [3]. 

We can describe informally a consensus protocol as follows, given a set 
of correct nodes. At the beginning of the protocol, each correct node is given 
an input value, and at the end, the non-crashed nodes must have decided on a 
common output value, belonging to the set of input values. 

The following properties define the consensus problem [3]: 
- Termination: every correct node eventually decides some value. 
- Integrity: a node decides at most once. 
- Agreement: no two correct nodes decide different values. 
- Validity: if a node proposes some value, then this value must have been 

proposed by some node. 
Chandra and Toueg show that the consensus problem can be solved using 

OS class, with at least a majority of correct nodes: no blocking happens. 
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4.2 Overview and Example 

We propose an inter domain version of the consensus protocol, solving 
thus scalability issues. Failure detectors belong to OS class. 

For example, suppose that we have a group working under KBT protocol 
(figure 3). We consider that "core" failure is a global failure. If the failure of 
the node C happens (C is the "core" of the group), we'll first partition the 
initial multicast tree CBTo into sub-trees, according to domains (figure 3). 

At the end of this first step, each sub-tree proposes one potential new 
"core" candidate to the group. The choice of this new "core" candidate is 
operated thanks to QoS considerations, locally to each domain. 

However, the final value of the new "core" must be the same 
among all the sub-trees: a consensus protocol, at the inter domain level, will 
let all the sub-trees decide on a common final value. 

Figure 3. KBT multicast tree (4 domains, 1 source, 7 receivers) 

Notation: 

Link in the interconnexion network 

- Link ofKBT tree (CBTo) 

- Link of KBT tree (SPT) 

o Node ofKBT tree: 

- C : core of the multicast tree 

- S : member of the group (source) 

- R : member of the group (receiver) '-------' 

Domain 2 

4.3 Principle of the Solution 

The consensus problem -based on OS class- can be solved with the 
hypothesis that the maximum number of failing nodes is less than half of 
implied nodes. Chandra and Toueg show at any time, all the nodes may 
be erroneously added to the list of suspects. However, there is a correct node 
and a time after which that node is not suspected to have crashed [3]. In the 
case of OS class, we make the same suppositions, since: 

- A node of OS class has at the same time two failure detectors. 
- The properties of each failure detector are taken from OS class. 
So, the proposed consensus protocol can be solved with the hypothesis: 
- Each implied correct domain proposes a local value. So, it is supposed 

not to be a failing domain. In a failing domain, the maximum number of 
failing nodes is less than half of the nodes of the group in that domain. 

- A majority of implied domains in the consensus process are not failing: 
they are correct. 
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4.4 Description of the protocol 

The proposed protocol uses the rotating co-ordinator paradigm [2] [9], at 
the intra and inter domain levels. Our solution is summarised in 3 main steps 
(figure 4). Details are presented in section 4.5. 

Step 1: 
We start with a local consensus in each domain Di of the interconnection 

network. That's why each domain Di will have a local co-ordinator. The 
rotation of local co-ordinators will act in an asynchronous way in terms of 
rounds. Each round is characterised by the four classical steps of consensus 
protocol [3]. At the end of this first step, each domain Di proposes a common 
value -noted to all the nodes of that domain among the proposed values 

The local co-ordinator of domain Di is noted P1ocal(i). 
Step 2: 
We apply the consensus algorithm at the inter domain level, on the set of 

local co-ordinators Plocal(i) of domains Di. Hence, each domain Di proposes 
an initial value This second step needs a global co-ordinator, which will 
meet one of the local co-ordinators P1ocal(i), defined in step 1. 

At the end of this step, each local co-ordinator has received the common 
final value decided by the global co-ordinator. 

Step 3: 
In this last step, each local co-ordinator P1ocal(i) in domain Di broadcasts 

the decided value to each node of his domain. 
The following figure summarises the main steps of the proposed 

protocol. In this example, we suppose that we have three domains D], D2, 

and D3• We also suppose that P1ocal(l) is the global co-ordinator. 

Figure 4. Illustration of inter domain consensus protocol (Steps and Phases) 

StYe 1 St;p 2 SX:p 3 
r..------ '\ ( '\ ( " 

in Di among Deciding among --+ __ Deciding 

_ __ 
(Plocal( 1 )-P global. 

I 

I 
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(Plocal(3). 

, ___ , ,_------------1 , __ , __ ._-' 
Phase 0 Phase 1 

------, .,,-- ,-------, , 
,,' 

Phase 3 5 
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4.5 Algorithm 

Each local co-ordinator node Plocal(i) executes the following algorithm. It 
will either execute that algorithm totally or partially, depending on the role 
of that node in the consensus protocol, which will be one of the following: 

Local co-ordinating node, noted Plocal(i), belonging to a domain Di 
Global inter-domain co-ordinating node, noted P global. 
Notation: 
Local_consensusO: consensus algorithm of Chandra and Toueg, executed 

in the domain mentioned as a parameter. It returns the estimated value 
F_Broadcast_locaIO: function that broadcasts the estimated value 

from a local co-ordinator to each node of its domain. 
F_BroadcastJ;lobalO: function that broadcasts the estimated value 

from the global co-ordinator to local co-ordinator of each domain. 
FJcv_msg_bcastO: reliable function launched by each domain's local 

co-ordinator, waiting for the estimated value from the global co-ordinator. 
It broadcasts reliably (locally to each domain) the decided value. 

DecideO: function that makes the final decision. 
Estimateglobal,Plocal(i): the estimate of the global expected value in Plocal(i) 

node of domain Di. 
Figure 4 summarises the main phases of the algorithm. The algorithm of 

the "inter-'propose" procedure of the inter domain consensus protocol is: 

Procedure inter -'propose(Plocal(i), 

Phase 0 (executed bv each local co-ordinator) 
EstimategIObal,Plocal(i) = Local_ Consensus(Di) = Statei = 0; R = 0; TSi = 0; 
while (Statei = 0) do 

{R= R+l; Pglobal = (R mod G)+I;} 

Phase 1 
Send (Plocal(i), R, Estimateglobal,Plocal(i), TSi) to P global; 

Phase 2 
if (Plocal(i)= P global) then 

wait until [fOlf (G+ 1)/21 nodesPlocalU), withj:;t:i : 
receive (PlocalU), R, Estimateglobal,Plocal(j), TSj)]; 

msgsi[Ri] = {(Plocal(i), R, Estimateglobal,Plocal(j), TSj) / 
Plocal(i) received (Plocal(i), R, Estimateglobal,PlocalGh TSj)}; 

t = max {TSj}; 
Estimateglobal,Plocal(i) = Estimateglobal,Plocal(j) / {t=TSj and 

(Plocal(i), R, Estimateglobal,Plocal(j), TSj) E msgsi[Ri]}; 
send (Plocal(i), R, Estimateglobal,Plocal(i» to all Plocal(i), with j:;t:i; 
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Phase 3 
wait until ({received(P global. R, Estimateglobal,c» or suspect failure of (P global)}; 
if (received(P global. R, Estimateglobal,c)=true) then 

Estimateglobal,Plocal(i)=Estimateglobal,Pglobal;TSi=r;send(Plocal(i),R,ack) to P global; 
else 

send(Plocal(i), R, nack) to P global; 

Phase 4 
if (Plocal(i)= P global) then 

wait until (for r (G+ 1 )/21 nodes Plocal(i), with j:;t:i : 
received(Plocal(j), R, ack) or received(Plocal(i), R, nack»; 

if (for r(G+l)/21 nodes Plocal(i), with j:;t:i: received(Plocal(j),R,ack)=true) 
then 

F _ Broadcast_global(Plocal(i), R, Estimateglobal,Plocal(i),decide); 

Phase 5 (executed bv each local co-ordinator) 
when (F JCV _ msg_ bcast (Plocal(i), R, Estimateglobal,Plocal(j),decide» 

if (Statei = 0) then 
11 = Estimateglobal,Plocal(j); 
Decide(I1); Statei = 1; F _BroadcastJocal(Plocal(i), R, l1,decide); 

4.6 Proof of Correctness 

We proof that the proposed algorithm verifies the four properties that 
characterise the consensus problem (Section 4.1). The adopted approach to 
proof these properties is similar to the one chosen by Chandra and Toueg. 
For more information, a detailed description exists in [3]. A failure detector 
of class OS, is characterised by intra and inter domain strong completeness, 
and intra and inter domain eventual weak accuracy 

4.6.1 Property 1 

Termination: every correct node eventually decides some value. 
Proof: It means that no node is blocked on a wait statement. 
Let us suppose that a node blocks on a wait statement, and let us take the 

earliest round and point on that round where this blocking occurs. 
Ifit is local consensus, it can't be blocking, by consensus [3]. 
If it is a waiting statement in phase 2, 3, or 4 of the algorithm, the 

"hierarchical strong completeness" property will ensure that the waiting will 
stop. In the case of a waiting statement of the global co-ordinator, then the 
hypothesis of a majority of correct domains (see section 4.1) guarantees the 
reception of at least a majority of messages. So, no blocking occurs. 
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4.6.2 Property 2 

Integrity: a node decides at most once. 
Proof: 

127 

The algorithm satisfies the integrity property, because each node decides 
at most once (Phase 5): the decide function is called once. 

4.6.3 Property 3 

Agreement: no two correct nodes decide different values. 
Proof: 
If no process decides, the property is trivially true. 
If any process decides, let us take the time at which the first decision has 

been taken. The global inter domain co-ordinating node has eventually 
received a majority of acknowledgements. This implies that r (0+1 )/2l of 
local co-ordinating nodes detain this estimate. We proof that this estimate 
holds indefinitely. We apply the demonstration in [3], considering in that 
case each domain as a process. The proof is by induction on the round 
number. More details can be found in lemma 19 of [3]. 

In phase 5, since each correct local co-ordinating node has previously 
executed the F rev msg beast function, it will broadcast this value to all the 
nodes of the domain. The decided value must have been previously decided 
by the global co-ordinator. 

4.6.4 Property 4 

Validity: if a node proposes some value, then this value must have been 
proposed by some node. 

Proof: 
From the algorithm, the decided values are taken from estimates at two 

levels: 
Intra domain level: all the estimates received by any local co­

ordinator in phase 0 are proposed values from the nodes of the same domain. 
The result is a proposed value at the intra domain level. 

Inter domain level: all the estimates that a global co-ordinator receives in 
phase 2 are proposed values from local co-ordinators. So, the value decided 
by a global co-ordinator must be the value proposed by some node. 

As a consequence, the algorithm proposed in section 4.5 solves 
Consensus using OS class. 
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5. PERFORMANCE EVALUATION 

5.1 Complexity Analysis of the Solution 

Suppose that we have G domains, and 'n' nodes in each domain. The 
complexity of the algorithm proposed in section 4.5 in terms of exchanged 
messages is in O(G2)+O(Gn2): 

Indeed, the local consensus operation (phase 0) consumes 4(n-l )+(n_l)2 
messages per domain: 4(n-l) is the number of exchanged messages between 
the nodes and the local co-ordinator, in order to take the local consensus 
value. (n_l)2 is the number of exchanged messages due to the final local 
broadcast function [3]. This broadcast function is supposed to be reliable. 
So, the global number of messages is equal to G*[4(n-l)+(n-I)2]. 

The global inter domain consensus operation (phases I, 2, 3, and 4) 
consumes 4(G-I)+(G-lt The reasons are the same that in local consensus 
problem, considering in that case a domain instead of a node. 

The final broadcast function in phase 5 consumes (n-l i messages per 
domain: the broadcast function is a reliable broadcast function. So, the total 
number of messages is G*(n-l t 

Hence, the complexity of the whole algorithm is in O(G2)+O(Gn2). 

5.2 Comparative Analysis 

There is an improvement, concerning scalability, in terms of exchanged 
messages in comparison with Chandra and Toueg algorithm, which is in 
O(G2n2). 

We can also find that our solution is better than the one proposed by [8], 
where the complexity is in O(G2+n2+Gn2). 

6. CONCLUSION 

Fault-tolerant management in a multicast routing environment is a new 
issue in inter domain multicast routing. 

In this paper, we have studied the case of KBT protocol, which is a 
generic adaptive inter domain multicast routing protocol. After this, we 
presented the main concepts of the protocol, in terms of construction of the 
distribution tree, and distributed management capabilities: we showed that 
KBT protocol can integrate at the routing level a certain level of control and 
management. This offers a reliable multimedia service associated to the 
multicast group. 
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Then, we associated a failure model to the system, by presenting a 
classification of failures associated to the system, and then proposing a new 
class of failure detectors, adapted to the hierarchical structure of the 
interconnection network. We finally showed why the problem can be 
considered as a classical consensus problem. 

We also showed how we can optimise that classical consensus problem, 
through a hierarchical approach. We proposed the algorithm associated to 
the hierarchical consensus problem, and proofed its correctness. 

Performance evaluation of the solution included complexity analysis, and 
comparison with the consensus protocol: we obtained good results. 

The applications of our solution can be extended to protocols others than 
KBT: "core" election mechanism in CBr and PIM-SM for example. Other 
applications can be seen in any hierarchical inter domain distributed 
environment that needs to maintain a global state, or to elect a common 
value between components of the system. 
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