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REMARKS ON FINITE ELEMENT METHODS FOR

CORNER SINGULARITIES USING SIF

Seokchan Kim∗ and Soo Ryun Kong

Abstract. In [15] they introduced a new finite element method for
accurate numerical solutions of Poisson equations with corner singu-
larities, which is useful for the problem with known stress intensity
factor.

They consider the Poisson equations with homogeneous Dirich-
let boundary condition, compute the finite element solution using
standard FEM and use the extraction formula to compute the stress
intensity factor, then they pose a PDE with a regular solution by
imposing the nonhomogeneous boundary condition using the com-
puted stress intensity factor, which converges with optimal speed.
From the solution we could get accurate solution just by adding the
singular part. This approach works for the case when we have the
accurate stress intensity factor.

In this paper we consider Poisson equations with mixed bound-
ary conditions and show the method depends the accrucy of the
stress intensity factor by considering two algorithms.

1. Introduction

Let Ω be an open, bounded polygonal domain in R2 and let ΓD

and ΓN be a partition of the boundary of Ω such that ∂Ω = ΓD ∪ ΓN

and ΓD ∩ ΓN = ∅. For simplicity, assume that ΓD is not empty (i.e.,
meas(ΓD) 6= 0). Let ν denote the outward unit vector normal to the
boundary.

Received August 3, 2016. Accepted September 5, 2016.
2010 Mathematics Subject Classification. 65F10, 65N30.
Key words and phrases. finite element, singular function, stress intensity factor.
This research is financially supported by Changwon National University in 2015-

2016.
*Corresponding author



662 Seokchan Kim and Soo Ryun Kong

For a given function f ∈ L2(Ω), as a model problem, we consider the
following Poisson equation with Mixed boundary conditions:

(1)





−∆u = f in Ω,
u = 0 on ΓD,

∂u
∂ν = 0 on ΓN ,

where ∆ stands for the Laplacian operator.
If ΓN = ∅ ( i.e. Dirichlet boundary condition) and the domain is

convex or smooth, the solution belongs to H2(Ω) and we expect to have
an optimal convergence rate with the standard finite element method.
But this is not true for Poisson problems defined on non-convex do-
mains or with mixed boundary condition. In these cases, the solutions
of Poisson problems have singular behavior at that concave corner or the
point changing boundary conditions and such singular behavior affects
the accuracy of numerical solution throughout the whole domain.

Roughly speaking, there were two groups of people who use two differ-
ent approaches for overcoming this difficulty. One is based on local mesh
refinement (see, e.g., [1, 18, 19, 20, 21]). Another is done by augmenting
the space of trial/test functions in which one looks for the approximate
solution (see, e.g., [16, 13, 4, 5, 9, 17, 7]).

Basically the approaches of [7, 15] and this paper belong to the second
one. In [15] they consider Poisson problems with Dirichlet boundary
condition defined on a polygonal domain Ω with one reentrant corner
(i.e. ΓN = ∅.)

We consider the case ΓN 6= ∅. The solution of (1) has singular behav-
ior at the boundary point where the boundary condition changes as well
as its concave corner (even when f is very smooth). For simplicity, we
assume there is only one singular point where the boundary conditions
changes with the inner angle w : π

2 < ω ≤ 3π
2 . Without the loss of

generality, we assume that the singular corner is at the origin. As in [8]
we may consider the two cases D/N and N/D, where D/N means the
boundary condition change from Dirichlet to Neumann countclockwise
in the domain, for example, as in Figure 1 with ω = π.

For simplicity again we assume that we have D/N so the singular
function s and its dual singular function s− can be expressed by

(2) s = s(r, θ) = r
π
2ω sin

πθ

2ω
, s− = s−(r, θ) = r−

π
2ω sin

πθ

2ω

for the model problem (1) and the unique solution u ∈ H1
D(Ω) has the

representation (see [13, 8])

(3) u = w + ληs,



Finite Element Methods for Corner Singularities 663

where w ∈ H2(Ω) ∩ H1
D(Ω), and η is a smooth cut-off function which

equals one identically in a neighborhood of the origin and the support
of η is small enough so that the function ηs vanishes identically on ΓD.
(Here, (r, θ) is polar coordinate.)

The coefficient, λ, is called ’stress intensity factor’ and can be com-
puted by the following extraction formula (see [8]):

(4) λ =
2

π

∫

Ω
fηs−dx+

2

π

∫

Ω
u∆(ηs−)dx.

Note that both s and s− are harmonic functions in Ω.
As observed in [15], some numerical approaches (e.g. [2, 4, 7]) use

this extraction formula for λ and seek the regular part w ∈ H2(Ω) from
new partial differential equation, for example,

(5) −∆w = f + λ∆(ηs) in Ω.

Unfortunately, the results were not good enough because the input func-
tion f was replaced by f+λ∆(ηs), etc., whose L2− norms are quite large
compared to that of f (see Lemma 2.2 in [15] ).

In [15] they introduced new partial differential equation, whose so-
lution is in H2(Ω) with the same input function by simple changing of
the boundary condition. Using this partial differential equation, they
suggested an efficient algorithm to compute the numerical solution for
Poisson equation with singular domain.

In this paper we consider a PDE with the mixed boundary condition,
which has stronger singularity than one with the Dirichlet condition.
We consider two algorithms: the first one that is similar to suggested in
[15] and the second one which use the stress intensity factor obtained by
the method introduced by Cai and Kim([7]). Note both procedure can
be stated as the following solution procedure;

Step 1) Find the stress intensity factor λ using a suitable method
for the partial differential equation (1).

Step 2) Pose new partial differential equation which has zero stress
intensity factor and find the solution w

(6)





−∆w = f in Ω,
w = −λs|ΓD

on ΓD,
∂w
∂ν = 0 on ΓN ,

Step 3) Set u = w + λs.

Remark : As S. Brenner’s comments in the paper [4], the stress
intensity factor computed from the extraction formula depends on the
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regularity of the solution u. So, the convergence of the solution depend
on the accuracy of the stress intensity factors we use in the algorithm.

In Section 2, we suggest two algorithms by choosing two methods to
determine the stress intensity factors. A couple of examples will be given
in Section 4 with computational results using FreeFEM++ code.([14])

We will use the standard notation and definitions for the Sobolev
spaces Ht(Ω) for t ≥ 0; the standard associated inner products are de-
noted by (·, ·)t,Ω, and their respective norms and seminorms are denoted
by ‖ · ‖t,Ω and | · |t,Ω. The space L2(Ω) is interpreted as H0(Ω), in which
case the inner product and norm will be denoted by (·, ·)Ω and ‖ · ‖Ω,
respectively, although we will omit Ω if there is no chance of misunder-
standing. H1

D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD}.

2. Two methods for SIF and corresponding algorithms

We need a cut-off function to derive the singular behavior of the
problem. We set

B(r1; r2) = {(r, θ) : r1 < r < r2 and 0 < θ < ω} ∩ Ω

and

B(r1) = B(0; r1),

and define a smooth enough cut-off function of r as follows:

(7) ηρ(r) =





1 in B(12ρ),

1
16{8− 15p(r) + 10p(r)3 − 3p(r)5} in B(12ρ; ρ),

0 in Ω\B(ρ),

with p(r) = 4r/ρ− 3. Here, ρ is a parameter which will be determined
so that the singular part ηρs has the same boundary condition as the
solution u of the Model problem, where s is the singular function which
is given in (2). Note ηρ(r) is C

2.

2.1. Singularity and extraction formula

The solution of the Poisson equation on the polygonal domain is well
known as in [2, 4, 13]. Given f ∈ L2(Ω), if we assume there is only one
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reentrant corner with inner angle π < ω < 2π, then there exists a unique
solution u and in addition there exists a unique number λ such that

(8) u− λs ∈ H2(Ω).

By using the cut-off function η = ηρ we may write

(9) u = w + ληs,

with w ∈ H2(Ω) ∩H1
0 (Ω).

The constant λ is referred as stress intensity factor and computed by
the following formula ([8]);

Lemma 2.1. The stress intensity factor λ can be expressed in terms
of u and f by the following extraction formula

(10) λ =
2

π

∫

Ω
fηs−dx+

2

π

∫

Ω
u∆(ηs−)dx.

Assume that (1) has a solution u as in (9) and the stress intensity
factor λ is known, then we introduce the following boundary value prob-
lem:.

(11)





−∆w = f in Ω,
w = −λs on ΓD,

∂w
∂ν = 0 on ΓN ,

Note the input function f is the same as in (1) and s = s|ΓD
is the

restriction of the singular function s to the boundary ΓD.

2.2. Regularity of new Partial Differential Equation

The following theorems show (11) has a regular solution.

Theorem 2.2. If (1) has a solution u as in (9) with the stress inten-
sity factor λ, then (11) has a unique solution w in H2(Ω).

Proof. First, we note (1) has a unique solution and its stress inten-
sity factor is λ. The uniqueness of the solution of Poisson problem also
implies the following equation has a unique solution with the stress in-
tensity factor −λ :

(12)





−∆p = 0 in Ω,
p = −λs on ΓD,

∂p
∂ν = 0 on ΓN .
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( Note p = −λs is the unique solution and the coefficient of the sin-
gular function s is the stress intensity factor.) By adding two equations,
(1) and (12), we have the following equation

(13)





−∆w = f in Ω,
w = −λs on ΓD,

∂w
∂ν = 0 on ΓN ,

whose solution w = u+ p belongs to H2(Ω).

Theorem 2.3. If λ is the stress intensity factor given by (10) with
the solution u in (1) and w is the solution of (11), then u = w + λs is
the unique solution of (1).

Proof. We only need to show u = w + λs is the solution to (1) when
w is the solution of (11). Since ∆s = 0, we have

−∆u = −∆w − λ∆s = ∆w = f.

Moreover, we have

u|ΓD
= w|ΓD

+ λs|ΓD
= −λs+ λs = 0,

and
∂u

∂ν
|ΓN

=
∂w

∂ν
|ΓN

+ λ
∂s

∂ν
|ΓN

= 0 + λ · 0 = 0.

2.3. Proposed two algorithms

Now we suggest two algorithms in variational form for the solution u
of the model problem (1), which use two different methods to compute
approximated stress intensity factor, respectively.

For the first algorithm we use the approximated stress intensity factor
λBD form the formula in (10) with the approximated solution obtained
by standard finite element method. For the second algorithm use the
stress intensity factor λCK computed by the method introduced by Cai
and Kim([7]).

So the followings are two algorithm;

The first algorithm (V1)

V1-1: To find u ∈ H1
D(Ω) such that

(14) (∇u,∇v) = (f, v), ∀ v ∈ H1
D(Ω).

V1-2: Then compute λ = λBD by (10) with u.
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V1-3: To find w such that w + λBDs ∈ H1
D(Ω) and

(15) (∇w,∇v) = (f, v), ∀ v ∈ H1
D(Ω).

V1-4: Finally set u = w + λBDs.

The existence and uniqueness of the solution u and w in V1 and V2 is
clear. By Theorem 2.2 and Theorem 2.3 we have the solution w ∈ H2(Ω)
and u is the solution of (1).

Now we state the second algorithm:

The second algorithm (V2)

V2-1: First compute λ = λCK by the method introduced by Cai
and Kim([7]).

V2-2: Then find w such that w + λCKs ∈ H1
D(Ω) and

(16) (∇w,∇v) = (f, v), ∀ v ∈ H1
D(Ω).

V2-3: Finally set u = w + λCKs.

3. Finite Element Approximation

In this section we present standard finite element approximation for u
obtained in the algorithm in the L2 and H1 norms. Let Th be a partition
of the domain Ω into triangular finite elements; i.e., Ω = ∪K∈Th

K with
h = max{diamK : K ∈ Th}. Let Vh be continuous piecewise linear finite
element space; i.e.,

Vh = {φh ∈ C0(Ω) : φh|K ∈ P1(K) ∀K ∈ Th, φh = 0 on ΓD} ⊂ H1
D(Ω),

where P1(K) is the space of linear functions on K.
Now the error analysis of the method in the standard norms, ‖·‖ and

| · |1, is carried out with a regular triangulation and continuous piecewise
linear finite element space Vh. ( See [15])

Note we can find approximated solution uh using the following Algo-
rithm:
Algorithm 1 (A1) :

A1-1: To find uh ∈ Vh such that

(17) (∇uh,∇v) = (f, v) ∀ v ∈ Vh.

A1-2: Then compute λBD,h by

(18) λBD,h =
2

π

∫

Ω
fηs−dx+

2

π

∫

Ω
uh∆(ηs−)dx.
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A1-3: To find wh such that wh + λBD,hs ∈ Vh and

(19) (∇wh,∇v) = (f, v) ∀ v ∈ Vh.

A1-4: Then uh = wh + λBD,hs.

The second one using λ = λCK,h from [7] is the following.

Algorithm 2 (A2) :

A2-1: Compute λCK,h using the method by Cai and Kim([7]).
A2-2: Find wh such that wh + λCK,hs ∈ Vh and

(20) (∇wh,∇v) = (f, v) ∀ v ∈ Vh.

A2-3: Then uh = wh + λCK,hs.

4. Numerical results and conclusions

In this section we consider two examples with mixed boundary con-
dition, with inner angles ω = π and ω = 3π

2 . We note that the later one
is more singular than the first.

Example 1. Consider the Poisson equation in (1) with mixed bound-
ary conditions on the rectangular domain Ω1 = {(x, y) ∈ R2 : −1 <
x < 1, 0 < y < 1} with ΓN = {(x, 0) ∈ R2 : −1 < x < 0} and
ΓD = ∂Ω \ ΓN (see Figure 1). This problem has a singularity at the
origin (0, 0), where the boundary conditions change from Dirichlet to
Neumann with an internal angle ω = π. More specifically, the corre-
sponding singular function has the form

s = r
1
2 sin(

θ

2
).

Let ηex = η3/4 be the cut-off function in (7) with ρ = 3/4 and choose
the right-hand side function in (1) to be

f = −∆(ηexs).

Then the exact solution of the underlying problem is

u = ηexs.

The exact stress intensity factor is 1 and the errors of the computed
stress intensity factors, λBD and λCK , are given in Table 1, The errors
and rates of approximated solutions by two algorithms, (A1) and (A2),
are presented in Table 2 and 3, respectively.
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Figure 1. Rectangular domain with Mixed boundary
condition and its regular mesh

Mesh Size Error of λBD Rate Error of λCK Rate

h = 1
4 1.1329e-01 1.5081e-01

h = 1
8 4.4056e-03 4.6845 5.5008e-03 4.7769

h = 1
16 3.8815e-03 0.1827 8.6641e-03 -0.6554

h = 1
32 3.9057e-03 -0.0089 7.9650e-04 3.4433

h = 1
64 2.1765e-03 0.8435 4.6521e-04 0.7757

h = 1
128 1.1943e-03 0.8658 6.4045e-05 2.8607

h = 1
256 6.1818e-04 0.9501 1.9587e-05 1.7092

Table 1. Errors of the λBD and λCK and convergence rates
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Mesh Size L2-norm Rate H1-norm Rate

h = 1
4 6.1711e-02 8.0260e-01

h = 1
8 1.7006e-02 1.8594 4.2647e-01 0.9122

h = 1
16 4.5586e-03 1.8993 2.1866e-01 0.9637

h = 1
32 1.1557e-03 1.9798 1.1024e-01 0.9880

h = 1
64 2.9189e-04 1.9852 5.5529e-02 0.9893

h = 1
128 7.3039e-05 1.9987 2.7738e-02 1.0013

h = 1
256 1.8216e-05 2.0034 1.3872e-02 0.9996

Table 2. Errors and convergence rates with A1 when ω = π

Mesh Size L2-norm Rate H1-norm Rate

h = 1
4 5.7964e-02 7.9108e-01

h = 1
8 1.6219e-02 1.2219 4.1912e-01 0.9165

h = 1
16 4.5317e-03 1.8849 2.1810e-01 0.9424

h = 1
32 1.1528e-03 1.8943 1.1005e-01 0.9868

h = 1
64 2.9215e-04 1.9858 5.5557e-02 0.9861

h = 1
128 7.3149e-05 1.9843 2.7764e-02 1.0007

h = 1
256 1.8258e-05 2.0011 1.3892e-02 0.9990

Table 3. Errors and convergence rates with A2 when ω = π

(−1, −1)

(0, 0)

(1, 1)

u = 0

Ω2

∂u
∂ν = 0

Figure 2. L-shape domain with mixed boundary conditions

Example 2. Consider the Poisson equation in (1) with mixed bound-
ary conditions on a Γ-shaped domain Ω2 = (−1, 1) × (−1, 1) \ ([0, 1] ×
[−1, 0]) with ΓN = {(0, y) ∈ R2 : −1 < y < 0} and ΓD = ∂Ω \ ΓN

(see Figure 2). This problem also has a singularity at the origin (0, 0),
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where the boundary conditions change from Dirichlet to Neumann with
an internal angle ω = 3π

2 . More specifically, the corresponding singular
function has the form

s = r
1
3 sin(

θ

3
).

Let ηex = η3/4 be the cut-off function in (7) with ρ = 3/4 and choose
the right-hand side function in (1) to be

f = −∆(ηexs).

Then the exact solution of the underlying problem is

u = ηexs.

The exact stress intensity factor is 1 and the errors of the computed
stress intensity factors, λBD and λCK , are given in Table 4, The errors
and rates of approximated solutions by two algorithms, (A1) and (A2),
are presented in Table 5 and 6, respectively.

Mesh Size Error of λBD Rate Error of λCK Rate

h = 1
4 1.3385e-01 1.6043e-01

h = 1
8 3.1545e-02 1.51099 3.0878e-02 1.7169

h = 1
16 3.5361e-02 0.08521 1.8853e-02 1.2371

h = 1
32 2.8238e-02 0.35194 3.5436e-03 2.4239

h = 1
64 1.8457e-02 0.57058 8.5586e-04 1.7402

h = 1
128 1.2015e-02 0.61930 2.4227e-04 1.8208

h = 1
256 7.7300e-03 0.63665 5.9000e-05 2.0387

Table 4. Errors of the λBD and λCK and convergence rates

Mesh Size L2-norm Rate H1-norm Rate

h = 1
4 8.8499e-02 1.1591e-00

h = 1
8 2.4090e-02 1.8772 6.1202e-01 0.9213

h = 1
16 5.6925e-03 2.0813 2.9541e-01 1.0508

h = 1
32 1.6361e-03 1.7988 1.5648e-01 0.9167

h = 1
64 4.4645e-04 1.8736 7.8155e-02 1.0015

h = 1
128 1.2626e-04 1.8220 3.7692e-02 1.0521

h = 1
256 3.9579e-05 1.6736 1.7390e-02 1.1602

Table 5. Errors and convergence rates with A1 when ω = 3π/2
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Mesh Size L2-norm Rate H1-norm Rate

h = 1
4 8.9167e-02 1.1614e-00

h = 1
8 2.4493e-02 1.8641 6.1904e-01 0.9078

h = 1
16 5.9124e-03 2.0506 3.0321e-01 1.0297

h = 1
32 1.6595e-03 1.8329 1.6170e-01 0.9070

h = 1
64 4.2585e-04 1.9624 8.2044e-02 0.9789

h = 1
128 1.0572e-04 2.0101 4.0842e-02 1.0064

h = 1
256 2.5382e-05 2.0583 2.0030e-02 1.0279

Table 6. Errors and convergence rates with A2 when ω = 3π/2

Now we have the following conclusions from the theorems together
with the examples;

Conclusion 1 : We may use the method given in [15] for the
Poisson problem with mixed boundary condition.

Conclusion 2 : As we see in Table 2-3, the algorithm A1 may
give almost the same results as the algorithms and A2, when ω = π.

Conclusion 3 : In the case with stronger singularity as in example
2, the method given in [7] gives better stress intensity factor, so the
algorithm 2 gives better results than the algorithm 1 as we see in Table
5-6.
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