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Abstract

If-conversion is a compiler technique that reduces
the misprediction penalties caused by hard-to-predict
branches, transforming control dependencies into data de-
pendencies. Although it is globally beneficial, it has a
negative side-effect because the removal of branches elimi-
nates useful correlation information necessary for conven-
tional branch predictors. The remaining branches may be-
come harder to predict. However; in predicated ISAs with
a compare-branch model, the correlation information not
only resides in branches, but also in compare instructions
that compute their guarding predicates. When a branch is
removed, its correlation information is still available in its
compare instruction.

We propose a branch prediction scheme based on pred-
icate prediction. It has three advantages: First, since the
prediction is not done on a branch basis but on a predi-
cate define basis, branch removal after if-conversion does
not lose any correlation information, so accuracy is not de-
graded. Second, the mechanism we propose permits using
the computed value of the branch predicate when available,
instead of the predicted value, thus effectively achieving
100% accuracy on such early-resolved branches. Third, as
shown in previous work, the selective predicate prediction is
a very effective technique to implement if-conversion on out-
of-order processors, since it avoids the problem of multiple
register definitions and reduces the unnecessary resource
consumption ofnullified instructions. Hence, our approach
enables a very efficient implementation of if-conversion for
an out-of-order processor; with almost no additional hard-

ware cost, because the same hardware is used to predict
the predicates of if-converted code and to predict branches
without accuracy degradation.

1 Introduction

Branches are recognized as a major impediment to ex-
ploit instruction-level parallelism (ILP). The use of branch
prediction in conjunction with speculative execution is typ-
ically used to remove control dependencies and expose
ILP. However branch mispredictions result in severe perfor-
mance penalties that tend to grow with larger window sizes
and deeper pipelines.

If-conversion [2] is a compiler technique that helps to
eliminate hard-to-predict branches, by converting a con-
trol dependence into a data dependence and potentially im-
proving performance. Hence, if-conversion may alleviate
the severe performance penalties caused by hard-to-predict
branch mispredictions, by collapsing multiple control flow
paths and scheduling them based only on data dependen-
cies.

If-conversion takes full advantage of predicate execu-
tion. Predication is an architectural feature that allows an in-
struction to be guarded with a boolean operand whose value
decides whether the instruction is executed or converted into
a no-operation. Although our study focuses on the effects
of if-conversion, predication has a number of other possible
uses.

Many studies have shown the benefits of if-
conversion [4] [13]. However, the removal of some
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branches by if-conversion may adversely affect the pre-
dictability of other remaining branches [3], because it may
reduce the amount of correlation information available
on branch predictors. As a consequence, the remaining
branches may become harder to predict, since they may
have little or no correlation among themselves.

In ISAs that implement a compare-and-branch model
such as the one considered in this paper [7], the branch
outcome depends on the value of its guarding predicate,
that is produced by a previous compare instruction. On
such a model there are two identified opportunities to al-
leviate the above mentioned accuracy loss. First, although
a branch is removed by if-conversion, its correlation infor-
mation is still present within the predicates that guard the
if-converted code and are produced by previous compare
instructions. Some studies have proposed strategies to in-
corporate part of such predicate information to improve the
accuracy of branch predictors [17] [3]. Second, the branch
prediction may become unnecessary if the compare instruc-
tion is scheduled enough in advance so the predicate is al-
ready computed when the branch is fetched. Such early-
resolved branches may be exploited to increase branch pre-
diction accuracy [3] [17].

In this paper, we propose a new branch prediction
scheme that is not negatively affected by if-conversion. Our
approach predicts the guarding predicates of conditional
branches at the time they are produced by compare instruc-
tions, so this predictor uses the compare PC instead of the
branch PC. In other words, we propose to replace the branch
predictor by a predicate predictor. Our predictor is able to
keep all correlation information among branches, even for
those removed by if-conversion, since such information is
primarily associated with compare instructions. Unlike pre-
vious proposals, our scheme is able to fully correlate branch
global history. In addition, it takes full advantage of the
knowledge of early-resolved branches to further improve
branch accuracy, since it is able to use the computed predi-
cate value when it is available, instead of the prediction.

Moreover, our proposal has another important advan-
tage. Some studies have shown that predicated execution
provides an opportunity to significantly improve hard-to-
predict branch handling for out-of-order processors [4] [13].
However, predicate execution in out-of-order processors has
to deal with two problems: 1) multiple register definitions
at the rename stage, 2) the consumption of unnecessary re-
sources by predicated instructions whose guard is evaluated
to false. Predicting predicates is an effective technique that
addresses both problems [5] [16]. Instructions with a pred-
icate predicted to false are speculatively cancelled at the
rename stage and removed from the pipeline, thus avoid-
ing multiple register definitions and avoiding also the re-
source pressure caused by cancelled instructions. However,
the main drawback of this approach is the huge hardware

cost of the predicate predictor. Since our proposal uses the
same predictor to predict branches and the predicates of if-
converted code, it gets all the reported performance benefits
of the selective predicate predictor [16] with minimal extra
hardware cost.

In summary, our proposal has three main advan-
tages: First, it improves branch prediction accuracy on if-
converted codes by integrating all branch correlation in-
formation into the prediction of branches. Second, it ex-
ploits early resolved branches to further improve branch
prediction. Third, it is an effective technique to enable if-
conversion on an out-of-order processor, as well as a low-
cost solution that does not require extra hardware, because
the same is used for branch prediction and for predicate pre-
diction.

The rest of this paper is organized as follows. Section 2
discusses the state of the art on branch prediction incorpo-
rating predicate information. Section 3 describes our pro-
posed technique. Section 4 presents the experimental re-
sults obtained. Finally, the conclusions are presented in sec-
tion 5.

2 Related Work

Predication was proposed by Allen et al. [2]. In this sec-
tion we will shortly review studies that focus on the impact
of predication on branch predictability.

Chang. et.al. [4] studied the performance benefit of us-
ing speculative execution and predication to handle branch
execution penalties in an out-of-order processor. They se-
lectively applied if-conversion to hard-to-predict branches
by using profile information to identify them; the rest of
branches were handled using speculative execution. They
found a significant reduction of branch misprediction penal-
ties. Mahlke et al. [13], studied the benefits of partial and
full predication code in an out-of-order execution model to
achieve speedups in large control-intensive programs. They
showed that, in comparison to a processor without pred-
ication support, partial predication improves performance
by 33%, whereas full predication improves performance by
63%.

Mahlke et.al. [14] proposed several compiler synthe-
sized techniques with hardware support to improve dynamic
branch prediction. They proposed new compile techniques
that define a prediction function for each branch by using
profile feedback. The result of this function, that is com-
puted by extra instructions per branch inserted into the com-
piled code, is kept in a predicate register.

August et.al [3] exposed that the removal of some
branches by if-conversion may adversely affect the pre-
dictability of other remaining branches, since it reduces the
amount of available branch correlation information. More-
over, in some cases if-conversion may merge the charac-
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teristics of many branches into a single branch, making it
harder to predict. They proposed the Predicate Enhanced
Prediction (PEP-PA), that improves a local history based
branch predictor by correlating with the previous defini-
tion of the branch guarding predicate. Depending on the
pipeline depth and the scheduling advance of the predicate
define, the predicate register value may not be available at
the time the branch is fetched. Instead, the predicate reg-
ister file contains the previous computed definition of that
register. Assuming that its previous definition may be cor-
related with the current branch, whose predicate definition
is not yet computed, the PEP-PA predictor uses this prior
value to choose between one of two different local histo-
ries, both for using and for updating it. For branches whose
predicate is available, the pattern history table (PHT) coun-
ters quickly saturate, and then prediction becomes equal to
the computed predicate. Our approach aims at exploiting
similar opportunities, but is able to use a wider range of cor-
related information from previous branches and predicates,
not only a single value.

Simon et.al [17] incorporate predicate information into
branch predictors to aid the prediction of region-based
branches. The first presented optimization, called Squash
False Path, stores the branch guarding predicate register
number into its branch predictor entry, so future instances
can be early-resolved if the predicated value has been com-
puted. The second presented optimization, called Predicate
Global Update Branch Predictor, incorporates predicate in-
formation into the global history register (GHR) to improve
the performance of region branches that benefit from cor-
relation. Since the GHR is updated twice for every branch
condition, once at the predicate define writeback, and an-
other at the branch fetch, it stores redundant information.
However, the main problem is that these updates are done
at different places in the pipeline, so their scheme must
include a complex Deterministic Predicate Update Table
mechanism to guarantee that the GHR stores the conditions
in program order. To overcome the existing delay between
the branch prediction and the updating of the GHR by pred-
icate computations, a new scheduling technique is also pro-
posed. Their study was developed and evaluated for an in-
order EPIC processor [6]. In contrast, our approach updates
the GHR only once, for every compare instruction fetched,
so it does not store redundant bits neither it requires a com-
plex ordering mechanism.

Kim et.al. [11] have recently proposed a mechanism in
which the compiler generates code including special wish
branch instructions that can be executed either as predicated
or non-predicated code based on a run-time confidence esti-
mator. Since if-converted branches are not removed but they
are transformed into wish branches, this technique does not
suffer from the loss of correlation information, but it can not
exploit early-resolved branches.

3 The Predicate Prediction Scheme

This section describes our predicate predictor scheme for
an out-of-order processor. This scheme assumes an ISA
with full predicate support, such as IA64 [8].

Many studies have shown that if-conversion transforma-
tions help to eliminate hard-to-predict branches [4] [13].
However, it may also have some negative effects in the pre-
dictability of the remaining branches [3]. First, the removal
of branches may reduce the amount of correlation informa-
tion in the predictor. This reduction may degrade prediction
accuracy, since conventional branch predictors base their
prediction on different levels of branch history to establish
correlations between them. Second, if-conversion creates
code regions where all instructions are guarded with a pred-
icate. This includes unconditional branches that are thereby
transformed to conditional branches, and need to be pre-
dicted during fetch. Moreover, these region-branches are
fetched more frequently than in their original form.

Figure 1 illustrates the above problems with an example.
In Figure 1 a, the instruction br ret executes only if condition
condl evaluates to false and cond2 evaluates to true. In Fig-
ure lb the same code has been if-converted, so the uncon-
ditional branch becomes conditional and the two previous
conditional branches are removed, so their correlation in-
formation is not yet available to a conventional branch pre-
dictor.

However, the correlation information associated to the
removed branches has not been completely eliminated,
since it is still present in the predicate registers that hold
the conditions, and it might be associated to the compare
instructions that define these predicates, as it will be shown
in the following subsections. In our example, a branch pre-
dictor could incorporate these predicates to correlate with
the prediction of the last branch. This branch will be taken
ifp1 and p3 are true, and p2 is false.

Of course, the use of full correlation information does
not guarantee the easy predictability of a branch. The poor
predictability of the removed branches may migrate to the
remaining branches, thus making it useless the recovery of
the lost correlation information. In Figure 1 the poor pre-
dictability of conditions condl and cond2 may migrate to
branch brret.

In the following subsection it is described in detail the
mechanism proposed to avoid losing any correlation infor-
mation of if-converted branches, as well as to exploit early-
resolved branches, both resulting in branch prediction accu-
racy improvements. In the subsection after that, it is shown
how the same scheme, with only minor hardware exten-
sions, is used to enable executing efficiently predicated code
on an out-of-order processor.
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(a) Original code (b) If-converted code

cmp.unc pl,pO = condl
(pl) br.cond

T ' \ F cmp.unc pl,p2 = condl;
T FK (pl) mov r32 = 0;

(p2) mov r32 = 1;
mov r32 = O mov r32 = 1 (p2) cmp.unc p3,pO = cond2;

\ cmp.unc p3,pO cond2 (p3) mov r35 = 1;
(p3) br.cond (p3) br.ret

<F \+T mov r33 = r32;

mov r33 = r32 movr35 1
br.ret

Figure 1. (a) Original code with multiple control
flow paths. (b) Multiple control flow paths have
been collapsed in a single path. The unconditional
branch br.ret has been transformed to a condi-
tional branch and it now needs to be predicted. It
is correlated with conditions condl and cond2

3.1 A Predicate Predictor for Conditional
Branches

Previous presented studies incorporate predicate infor-
mation into branch predictors in several ways [17] [3]. Au-
gust et.al [3] proposed to improve a local history branch
predictor by correlating with the previous definition of the
branch guarding predicate. However, correlation informa-
tion is not fully recovered, since only the last predicate
value definition is used to select and update one of two
local histories. Simon et.al [17] proposed to introduce re-
cent computed predicates into the GHR. Although a higher
amount of correlation information is recovered, the effec-
tiveness of the predictor may be reduced due to storing du-
plicate information, and it requires a complex mechanism
to keep the program order of the GHR.

Here, we propose to replace the conventional branch pre-
dictor by a predicate predictor. In a compare-to-branch
model, the value of the branch guarding predicate deter-
mines the direction of the branch. In such model, con-
ventional branch predictors use the branch PC to predict
the value of its guarding predicate, and the result feeds
the history registers. In contrast, in our predicate predic-
tor scheme, branches do not take part at all in the genera-
tion of predictions. The predicate predictor uses the PC of
the compare instruction that produces the branch guarding
predicate. So, instead of predicting the branch input, we
actually predict the compare output.

The predicate prediction is initiated at the fetch of the
compare instruction and stored for latter use by a consumer
branch. As mentioned before, our scheme assumes an out-
of-order processor, so all registers, including predicates,
are renamed to physical locations in the Predicate Phys-
ical Register File (PPRF). In our scheme, each produced

predicate prediction is stored in the predicate physical reg-
ister allocated to it at rename. Later on, the consumer con-
ditional branch will get its predicate prediction from that
physical register, but it must be renamed first to find the
corresponding location. That is, the physical register name
is the unique identifier that binds a predicate producer with
it(s) consumer(s).

Since the prediction starts at the fetch stage with the
compare PC, and is not stored until the destination predicate
is renamed, a multicycle prediction can be performed, i.e.,
it may be designed as a pipelined large and highly accurate
predictor. In addition, since the predictions are not accessed
by branches until they reach the rename stage, our predi-
cate predictor becomes the perfect candidate to be imple-
mented in a two-level branch prediction scheme such as the
one in the Alpha [10] or the PowerPC [19] processors. Such
schemes have two different branch predictors that make two
predictions for each branch: the first, fast though less accu-
rate predictor, takes a single cycle and allows the processor
to continuously fetch instructions without stalling; the sec-
ond, slower but highly accurate, takes several cycles and
overrides the first prediction. If the two predictions are dif-
ferent, the front-end is flushed and the fetch redirected ac-
cording to the second prediction.

In our scheme, since the predicted and the computed val-
ues of the predicate are written to the same physical register,
should the compare instruction be scheduled enough in ad-
vance of the branch (an early-resolved branch), the branch
will use the computed value as a prediction, thus effectively
being 100% accurate.

Figure 2 illustrates the prediction mechanism for produc-
ers. Predicate predictions are generated for instructions that
produce predicates, such as compare instructions. The pre-
dictions are generated in early stages of the pipeline, start-
ing with the PC of the compare instruction. Since these
instructions have two predicate outputs in the IA64 ISA,
the predictor generates two predictions for every compare
instruction. When the compare instruction is renamed, the
two predictions are speculatively written to the PPRF. Later
on, when the compare instruction executes, the PPRF is up-
dated with the two computed values. In the example above,
p1 andp2 are renamed topphl andpph2 respectively. When
a conditional branch reaches the rename stage, it renames
its guarding predicate and obtains its input value from the
PPRF. The obtained value overrides the first branch predic-
tion performed at fetch stage. In the example above, the
branch obtains its prediction from the predicate physical
register pphl.

The IA64 ISA defines a rich set of instructions to pro-
duce predicate values. For some compare types, the two
predicate results depend on the outcome of the condition.
However, for some other types, these results also depend on
state information that is not available in the front-end [8].
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Fetch Stage

PC cmp.unc p1p2 condl

Rename Stage
Predicate Physical

Register File

Fetch Stage

ccmpunc p1 p2 condl

Rename Stage

Predicate Physical
Register File

P2
p2 Rorder Buffer

Predicate Value

PC p1(El mov r33 = r32 CneIssue Que:ue:]

Figure 2. Operation of the Predicate Predictor to

predict branches: two predictions are generated
by a compare instruction and one is consumed by
a branch.

Thus, it is not possible to infer the two predicate values
based only on the condition and the comparison type, so

two independent predictions must be generated. The pre-

dictor implementation is described in detail in section 3.3.

3.2 A Predicate Predictor for If-converted In-
structions

Predicated execution on out-of-order processors origi-
nates two problems. First, if-conversion collapses multiple
control paths and may produce multiple definitions of the
same register. If these assignments are guarded with differ-
ent predicates, each register must be renamed to a different
physical register. Since predicates are resolved at the ex-

ecution stage of the pipeline, it may occur that the name

of the register is still ambiguous when renaming the source

of an instruction that uses it. Second, instructions whose
predicates are evaluated to false are cancelled. Since this
is usually done late in the pipeline, these instructions need-
lessly consume resources such as physical registers, issue
queue entries, etc.

Chuang et al. [5] proposed to predict predicates and a

selective replay mechanism to recover the machine from
predicate mispredictions without flushing the pipeline. Al-
though this scheme avoids the multiple definitions prob-
lem, instructions whose predicates are predicted to false
are still kept in the issue queue needlessly consuming re-

sources. More recently [16], we proposed a more effective
predicate prediction scheme that addresses both problems:
instructions with a predicate predicted to false are specu-

latively cancelled at the rename stage and removed from
the pipeline, thus avoiding multiple register definitions and
avoiding also the resource pressure caused by cancelled in-

Figure 3. Operation of the Selective Predicate Pre-
dictor on if-converted code: two predictions are

generated by a compare instruction and one is con-
sumed by a predicated instruction.

structions. Therefore, the predicate prediction scheme pro-

posed here appears to fit perfectly in that context: predicate
predictions are generated when renaming compare instruc-
tions, and can be consumed indistinctly either by condi-
tional branches or by predicated instructions generated after
if-conversion.

In the latter case, after predicting the predicates, the pro-

cessor speculates on one of the control paths, so it actu-
ally reverses the if-conversion transformation. Since if-
conversion appears to be more effective than branch predic-
tion for hard-to-predict branches [4], blindly applying pre-

diction to all predicates misses the opportunities brought by
if-conversion. The use of a confidence predictor to select
which predicates are worthy to be predicted and which are

not, permits not to lose if-conversion benefits [16]. This
confidence predictor requires adding some extra hardware
to our predicate predictor, which is described below.

Figure 3 shows the extra hardware needed to implement
a selective predicate predictor for if-converted instructions.
Each entry of the PPRF is extended with three fields: con-

fidence and speculative bits and a ROB pointer. The confi-
dence bit is used to determine if the prediction has enough
confidence to be used. The speculative bit is set to true
when a prediction is generated, and set to false once the
predicate value has been computed. When the specula-
tive bit is set to true, the ROB pointer field points to the
first speculative instruction that has used the prediction.
Thereby, if the prediction fails, the pointed instruction and
all younger instructions are flushed from the pipeline. In
order to implement the confidence predictor, each predicate
predictor entry is extended with a saturated counter, that is
incremented with every correct prediction and zeroed if a

misprediction occurs. The prediction is considered confi-
dent if its associated counter is saturated.
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3.3 The Predicate Predictor

Local History
Table

This section gives some justification to the choice of a
perceptron predictor, and describes how it is adapted to pre-
dict predicates instead of branches.

The Perceptron branch predictor, which is based on neu-
ral methods, obtains a very high accuracy for dynamic
branch predictions [9]. However, the slow computation
time of the prediction function may suppose an important
drawback to use perceptrons as a single cycle branch pre-
dictor. As explained before, our scheme supports multicy-
cle predicate predictions, so it makes the perceptron a good
candidate.

The original perceptron predictor [9] has been slightly
modified to predict predicates more efficiently. As ex-
plained before, since compare instructions produce two re-
sults, the predicate predictor needs to perform two predic-
tions for each compare instruction. The obvious solution
might be to split the perceptron vector table (PVT) to per-
form the two predictions. However, not all compare instruc-
tions produce two useful predicates. In fact, one of the des-
tination predicate registers is often the read-only predicate
register pO. In this case, only the non-zero predicate regis-
ter is updated and only one prediction is needed. Having a
split PVT table may result in a suboptimal utilization of the
available space, producing an increase of aliasing conflicts.
Instead, we use an unique PVT table that is accessed with
two different hash functions, one for each predicate, so the
prediction vectors are better given out.

The accuracy of a predicate predictor is also affected
negatively by global history corruption. On a conventional
branch predictor, processor state recovery is done by the
same instruction that speculatively updates it [18]. Instead,
on a predicate prediction based scheme, the global history is
speculatively updated by a compare instruction while pro-
cessor state recovery is done by its predicate consumer. In
this case, a pipeline flush is triggered starting from the pred-
icate consumer instruction. Although the correct global his-
tory bit may be corrected during the corresponding recovery
actions, compare instructions that may come after the pred-
icate producer and before the predicate consumer have al-
ready made their predicate predictions based on a corrupted
global history.

Figure 4 shows a high level scheme of the predicate per-
ceptron predictor. The PVT is indexed twice using two dif-
ferent hash functions,fl andf2. The first hash function, that
is used when one prediction is needed, indexes the whole
PVT using the corresponding PC bits. The second hash
function, that is used when two predictions are needed, sim-
ply inverts the most significant bit of the first hash function.

Figure 4. Perceptron Predicate Predictor block di-
agram.

4 Evaluation

This section evaluates the effectiveness of our Predicate
Predictor based branch prediction scheme in terms of accu-

racy.

4.1 Experimental Setup

All the experiments presented in this paper use a cycle-
accurate, execution-driven simulator that runs IA64 ISA bi-
naries. It has been built from scratch using the Liberty Sim-
ulation Environment (LSE) [20]. LSE is a simulator con-

struction system, based on module definitions and module
communications, that also provides a complete IA64 func-
tional emulator that maintains the correct machine state.
We have simulated twenty-two benchmark programs

from Spec2000 [1] (eleven integer and eleven floating-
point) using the MinneSpec [12] input set. We have gen-

erated two set of binaries. The first set is compiled with-
out enabling predication techniques (if-conversion and soft-
ware pipelining), and the second set is compiled with only
if-conversion transformations enabled. In both cases, all
benchmarks have been compiled with IA64 Intel's com-

piler (Electron v.8.1) using maximum optimization levels
and profile information. For all benchmarks, 100 million
committed instructions are simulated. To obtain representa-
tive portions of code to simulate, we have used the Pinpoint
tool [15].

The simulator models in detail an eight-stage out-of-
order processor. It pays special attention to the implemen-
tation of the rename stage and models many IA64 peculiar-
ities that are involved in the renaming, such as the register
stack engine, the register rotation and the application regis-
ters. All instructions that produce predicates are taken into
account. Load-store queues, as well as the data and control
speculation mechanisms defined in IA64, are also modeled
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Table 1. Main architectural parameters used.

and integrated in the memory disambiguation subsystem.
The main architectural parameters are shown in Table 1.

The simulator also models in detail a 144 KB sized PEP-
PA branch predictor with 14-bit local history, as described
in [21]. This predictor was proposed for an in-order proces-

sor and it correlates consecutive predicate definitions with
the same logical register name. Since we assume an out-of-
order processor, in order to correctly model this predictor,
the simulator maintains the state of a logical predicate reg-

ister file. We assume that the local histories are updated
speculatively and correctly recovered on a branch mispre-
diction.

4.2 Branch Prediction Accuracy on Non-If-
Converted Code

This section analyses the impact on branch prediction ac-

curacy of three features that differ between our scheme and
a conventional branch predictor. On the positive side, our

scheme eliminates some branch mispredictions by exploit-
ing early-resolved branches. On the negative side, predi-

148KB Conventional 148KB Predicate Predictor
Branch Predictor

16

14- ' , V

Figure 5. Branch misprediction rates of a conven-

tional branch predictor and our predicate predic-
tor scheme, for non if-converted code.

cate prediction introduces two factors that affect negatively
to prediction accuracy, as discussed in section 3.3. First,
it may introduce additional alias conflicts in the predic-
tion tables, because some compare instructions produce two
predicates. Second, compare instructions that come after a

wrong predicate prediction but before the first use of that
predicate make predicate predictions based on a corrupted
global-history.

In order to isolate these effects from those produced by
the correlation improvement of our scheme, this experiment
uses the binaries compiled without if-conversion. Figure 5
compares the branch misprediction rate when using a con-

ventional branch predictor and our predicate predictor. Both
predictors have the same size and latency and analogous
configurations. With only three exceptions, the results show
that the predicate predictor scheme achieves better accuracy

than the conventional branch predictor. On average, it ob-
tains an accuracy increase of 1.86%. This is a significant
improvement, since we are using an already highly accurate
predictor as a baseline.

The results show that the positive effect of early-resolved
branches dominates over the negative effect of increased
alias conflicts and global-history corruption, except for
three benchmarks, where the net effect is the opposite.
In order to evaluate the individual effect of early-resolved
branches, isolated from the other two negative effects, we

have also simulated idealized branch predictor and predi-
cate predictor schemes, without alias conflicts and with per-

fect global-history update (results not shown in the graph).
We have found that the predicate predictor scheme consis-
tently achieves better accuracy for all benchmarks, and on

average it increases branch accuracy by 2.24%. Overall,
we conclude that the accuracy improvement contributed by
early-resolved branches offsets the small negative effects
(less than 0.40% on average) of predicate prediction for
most benchmarks.
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Architectural Parameters
Fetch Width Up to 2 bundles (6 instructions)

Issue Queues Integer Issue Queue: 80 entries

Floating-point Issue Queue: 80 entries

Branch Issue Queue: 32 entries

Load - Store Queue: 2 separate queues

of 64 entries each

Reorder Buffer 256 entries

LID 64KB, 4way, 64B block, 2 cycle latency

Non-blocking, 12 primary misses,

4 secondary misses

16 write-buffer entries

LlI 32KB, 4 way, 64B block, 1 cycle latency

L2 unified 1MB, 16 way, 128B block, 8 cycle latency

Non-blocking, 12 primary misses

8 write-buffer entries

DTLB 512 entries. 10 cycles miss penalty

ITLB 512 entries. 10 cycles miss penalty

Main Memory 120 cycles of latency

Multilevel Branch Predictor First level: Gshare 14-bit GHR.

Total size: 4 KB. 1-cycle access.

Second level: Perceptron. 30-bit GHR. 10-bit LHR.

Total size :148 KB. 3-cycle access.

10 cycles for misprediction recovery

Predicate Predictor Perceptron. 30-bit GHR. 10-bit LHR.

Total size :148 KB. 3-cycle access.

10 cycles for misprediction recovery

F.
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4.3 Branch Prediction Accuracy on If-Converted
Code

This section evaluates the branch prediction accuracy of
our scheme, compared to a conventional branch predictor.
Since part of the improvement is due to the ability to fully
correlate branch global history, it is also compared to the
PEP-PA branch predictor [3], which addresses a similar
goal by incorporating some predicate information. Next,
this section also analyses quantitatively the individual con-
tributions to accuracy due to early-resolved branches and
correlation improvement. Obviously, this experiment uses
the binaries compiled with if-conversion enabled. Hence,
of course, its results can not be directly compared to those
in the previous section.

Figure 6a shows branch misprediction rates for three dif-
ferent branch prediction schemes. The first one is a 144 KB
PEP-PA branch predictor. The second and the third schemes
are a conventional branch predictor and our proposed pred-
icate predictor respectively, both having a 148 KB size and
analogous configurations. With only one exception (twolf),
the results show that our predicate predictor scheme con-
sistently has the lowest misprediction rate. On average, it
obtains an accuracy increase of 1.5% with respect to the
best scheme. Surprisingly, the PEP-PA scheme performs
worse than the conventional predictor, but it may be pro-
duced by the out-of-order writing of the predicate registers,
which causes it to choose the local history with a wrong
predicate. Note that this scheme was conceived to work on
an in-order processor.

Figure 6b breaks down the individual contributions of
early resolved branches and correlation improvement to the
accuracy difference observed between our scheme and the
conventional branch predictor. In order to quantify the con-
tribution of early-resolved branches, we have counted the
number of times that the predicate was ready and the con-
ventional branch predictor did a wrong prediction. The
remaining accuracy difference is attributed to the correla-
tion improvement. On average, the correlation factor has a
higher contribution than early-resolved branches. The ac-
curacy increases are 1% and 0.5% respectively.

However, note that the impact of the correlation im-
provement is actually underestimated in this graph because
this bar includes also the negative effects of the predicate
predictor (see section 3.3), which is not measured sepa-
rately. This explains why this contribution is negative for
one benchmark (twolf). To evaluate separately the positive
effects of our scheme over conventional branch prediction,
we have repeated the experiment with idealized schemes
assuming no alias conflicts and perfect global-history up-
dates. The results (not depicted in the graph) show a con-
sistent accuracy improvement across all benchmarks and an
average improvement of almost 2%. Overall, we conclude

1 144 KB PEP-PA Branch * 148 KB Conventional * 148 KB Predicate
Predictor Branch Predictor Predictor

18

16

(b)

I Early-Resolved
Improvement

Correlation Improvement

Figure 6. (a) Comparison of branch mispredic-
tion rates for if-converted code. (b) Breakdown
of the branch prediction accuracy differences be-
tween our predicate predictor scheme and a con-
ventional branch predictor.

that the accuracy increases contributed by early-resolved
branches and correlation improvement more than offset the
small negative effect (less than 0.5% on average) of predi-
cate prediction on all benchmarks but one.

5 Summary and Conclusions

If-conversion is a powerful compilation technique that
may help to eliminate hard-to-predict branches. Reducing
branch mispredictions is important for modern processors
because of their wide and deep pipelines. However, previ-
ous works have shown that if-conversion may have also a
negative side-effect on branch prediction accuracy. Indeed,
the removal of some branches also removes their correlation
information from the predictor and may make other remain-
ing branches harder to predict.

There have been some proposals - focused on a predi-
cated ISA with a compare-branch model - to recover the
correlation information, either by incorporating the previ-
ous value of the branch guarding predicate into the predic-
tion scheme, or by adding all the predicate defines to the
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global history. In the first case, only a single predicate is
correlated; in the second case the global history is fed with
redundant results, since all predicates are inserted twice:
once when they are produced by a compare instruction, and
then when they are consumed by a branch.

In this paper we have proposed a different approach,
which predicts the outcome of branches by predicting their
guarding predicates. The predictions are made for every
predicate definition, and stored until the predicate is used
by some branch. Unlike previous approaches, it is not the
branch itself but the compare instruction that is involved in
the generation of the prediction. We have shown that this
approach has a number of advantages.

First, branch prediction accuracy is not affected nega-
tively by if-conversion because compare instructions keep
all the correlation information in the predictor. Unlike the
PEP-PA scheme, our approach may use the full global his-
tory instead of a single bit, and the mechanism adapts easily
to powerful branch predictors that exploit global and local
correlation. On average, the branch correlation contributed
by the predicate predictor adds at least 1% accuracy over a
conventional branch predictor with the same configuration.

Second, branch accuracy is further improved by ex-
ploiting early-resolved branches. Each compare instruc-
tion stores the predicate predictions in the same physical
registers where the corresponding computed values will be
later written. Hence, if the compare instruction is sched-
uled enough in advance, the prediction read by the branch
is actually the computed value and is always correct. We
have shown that, on average, exploiting such early-resolved
branches adds an extra 0.5% to the branch prediction accu-
racy of our scheme.

Third, our predicate predictor may be extended with
minimal hardware cost to implement a selective predicate
predictor that enables efficient predicated execution on out-
of-order processors. This technique solves the problem of
multiple register definitions and the unnecessary resource
consumption of instructions with a false predicate, and it
has been reported to outperform previous techniques by
11% IPC. Since our proposal uses the same hardware for
branch prediction and for predicated execution, this perfor-
mance improvement is achieved with almost no additional
cost.

In summary, we have proposed a scheme that improves
branch prediction accuracy of if-converted codes by 1.5%
on average for the Spec2000 benchmark suite and enables
an efficient implementation of predicate execution on out-
of-order processors without adding any significant extra
hardware.
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