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ABSTRACT 24 

We propose "trans-omic" analysis for reconstructing global biochemical networks 25 

across multiple omic layers by use of both multi-omic measurements and computational 26 

data integration. We introduce technologies for connecting multi-omic data based on 27 

prior knowledge of biochemical interactions and characterize a biochemical trans-omic 28 

network by concepts of a static and dynamic nature. We introduce case studies of 29 
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metabolism-centric trans-omic studies to show how to reconstruct a biochemical 1 

trans-omic network by connecting multi-omic data and how to analyze it in terms of the 2 

static and dynamic nature. We propose a trans-ome–wide association study 3 

(trans-OWAS) connecting phenotypes with trans-omic networks that reflect both genetic 4 

and environmental factors, which can characterize several complex lifestyle diseases as 5 

breakdowns in the trans-omic system. 6 

 7 

Trans-omic network across multiple omic layers 8 

Specific "omic" layers can be defined and categorized according to the different basic 9 

building blocks of the cell, e.g. DNA, RNA, protein, or metabolite [1, 2] (Figure 1). 10 

Many cellular functions are orchestrated by global networks that cut across multiple 11 

omic layers, and we define the collection of these networks here as the "trans-omic" 12 

network (Figure 1). Most biological studies have been conducted by focusing on a few 13 

specific molecules, and the trans-omic network has been built by accumulating literature 14 

based on such small-scale analyses. This is a powerful strategy, but the 15 

comprehensiveness of each layer is limited. Comprehensive measurement technologies 16 

for each omic layer are now becoming available, such as polynucleotide sequencing by 17 

next-generation sequencers (genome sequencing [3], RNA sequencing [4, 5], chromatin 18 
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immunoprecipitation sequencing [ChIP-seq] [6-8], etc.), mass spectrometry–based 1 

phosphoproteomics [9-16], expression proteomics [17, 18] and metabolomics (gas 2 

chromatography–mass spectrometry [GC-MS] [19], liquid chromatography–mass 3 

spectrometry [LC-MS] [20, 21], capillary electrophoresis–mass spectrometry [CE-MS] 4 

[22-24], supercritical fluid chromatography–mass spectrometry [SFC-MS] [25], and 5 

nuclear magnetic resonance [NMR] [26, 27]). However, a single omic layer analysis 6 

alone does not directly elucidate interaction across multiple omic layers. To overcome 7 

the lack of comprehensiveness and the information gap regarding interaction across 8 

multiple omic layers, an approach for reconstructing molecular networks by connecting 9 

multiple omic data has been proposed [28-42] (Figure 1). Here, we call such an 10 

approach "trans-omics." Trans-omics connects multiple omic data. There are two major 11 

approaches in reconstructing a trans-omic network: one using prior knowledge of a 12 

molecular network and another based only on the data-driven approach without use of 13 

prior knowledge [43-46]. The former approach is reconstruction of biochemical 14 

networks by connecting multiple omic layers with the support of prior knowledge of 15 

molecular networks such as publicly available databases. A reconstructed biochemical 16 

trans-omic network inherently provides causality and an input–output relationship at a 17 

molecular level, allowing interpretation of the biochemical networks. The biochemical 18 
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interactions in a trans-omic network enable us to develop a kinetic model directly from 1 

a reconstructed biochemical trans-omic network and to analyze the static and dynamic 2 

nature of a trans-omic network defined as static and dynamic signal flow. The latter 3 

approach is a data-driven approach that statistically infers associations and correlations 4 

between molecules based on multi-omic data. This approach does not require prior 5 

knowledge of biochemical interactions and can be applied to a wide range of biological 6 

processes. However, a statistically reconstructed trans-omic network does not directly 7 

reflect biochemical networks. Therefore, such a network does not provide causality and 8 

a biochemical input–output relationship at the molecular level, and it cannot be directly 9 

used for analysis of static and dynamic signal flow in a trans-omic network. 10 

In this review, we present an overview of the recent emergence of trans-omic studies 11 

using the former approach: reconstruction of a biochemical trans-omic network by using 12 

prior knowledge of biochemical interactions. We first summarize five technologies for 13 

connecting multi-omic data based on prior knowledge and propose three concepts of the 14 

static and dynamic nature of biochemical trans-omic networks. Then, we introduce case 15 

studies of biochemical trans-omic networks around metabolic enzymes and metabolites 16 

based on prior knowledge of metabolic pathways [31, 34, 37], because prior knowledge 17 

in this field is some of the most reliable currently available. Furthermore, we propose a 18 
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trans-ome–wide association study (trans-OWAS) that covers both genetic and 1 

environmental factor. Because many lifestyle diseases, such as type 2 diabetes mellitus 2 

(T2DM), can be regarded as complex multifactorial diseases caused by breakdowns in a 3 

trans-omic network, a trans-OWAS can potentially be one approach used in future 4 

personalized and systems medicine efforts. 5 

 6 

Five technologies for connecting multiple omic data 7 

We first summarize the technologies that connect multiple omic data at a molecular 8 

level in a biochemical trans-omic network. Currently available methods that connect 9 

omic layers are classified into five categories: (i) metabolic regulation; (ii) 10 

transcriptional regulation; (iii) kinase–substrate relationship (KSR); (iv) protein–protein 11 

interaction (PPI); and (v) allosteric regulation of enzymes by small compounds (Figure 12 

2A). 13 

Metabolic Regulation 14 

The metabolic regulation class of methods has been used in trans-omic studies that 15 

connect the metabolome and other omic layers related to the flow of genetic or 16 

environmental information. There are many studies regarding connecting the 17 

metabolome layer and other omic layers, such as the transcriptome, proteome, 18 
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phosphoproteome, and fluxome. Pioneering works were performed to reveal 1 

interactions between the transcriptome and metabolome in Nicotiana tabacum [28] and 2 

Arabidopsis thaliana [29]. In microbiological studies, trans-omic analyses including 3 

transcriptome, proteome, metabolome, and metabolic flux in Escherichia coli [31] and 4 

Bacillus subtilis [34] were demonstrated. The signal flow of 5 

insulin-signaling–dependent control of metabolites in rat hepatoma FAO cells was 6 

reconstructed by connecting phosphoproteome and metabolome [37]. The regulation of 7 

transcription in response to perturbations in the nitrogen source was inferred by 8 

connecting transcriptome, proteome, and metabolome of Saccharomyces cerevisiae [42]. 9 

With respect to the connection of protein phosphorylation and metabolism, a link 10 

between phosphorylation of metabolic enzymes and metabolic fluxes of S. cerevisiae 11 

was demonstrated by connecting phosphoproteome, metabolome, and fluxome [35, 41]. 12 

Associations of phosphorylated metabolic enzymes and changes in their neighboring 13 

metabolites were exhibited by integrating phosphoproteome and metabolome [47]. 14 

These authors connected metabolome and other omic layers by projecting them together 15 

on metabolic pathway maps. Practical details of omic connection studies with the 16 

support of the metabolic pathway map are introduced in the following section ("Three 17 

case studies on metabolism-centric trans-omics"). One of the technical bottlenecks of 18 
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connecting a metabolome with other omic layers through metabolic enzymes and 1 

allosteric regulation is correlating the identities of the same objects in different layers, 2 

known as ID conversion. We extensively used the KEGG PATHWAY database for 3 

comprehensive ID conversion to connect metabolites (metabolome) and metabolic 4 

enzymes (phosphoproteome) in a whole metabolism scale (Figure 2B) [37]. The 5 

metabolome and the phosphoproteome data are annotated with the KEGG Compound 6 

ID and International Protein Index (IPI) ID [48], respectively. The KEGG entries for 7 

metabolites, enzymes, and genes are annotated with KEGG Compound ID, EC number 8 

[49], and NCBI geneID, respectively (Figure 2B). KEGG provides cross-reference 9 

tables that associate metabolic enzymes and metabolites, in which each EC number of a 10 

metabolic enzyme is associated with the KEGG Compound ID of substrate and product 11 

metabolites. Likewise, metabolic enzymes and their genes are associated in another 12 

cross-reference table provided by KEGG in which the EC number is associated with the 13 

NCBI geneID. Therefore, the metabolites were easily associated with the metabolic 14 

enzymes using the cross-reference table. Then, we converted the IPI ID that is assigned 15 

to phosphorylated metabolic enzymes to the EC number so that we could project the 16 

phosphoproteome data on the metabolic pathway map. The IPI ID was initially 17 

converted to the NCBI geneID, and then to the EC number. Cross-reference tables 18 
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between the IPI ID and the NCBI geneID and between the NCBI geneID and the EC 1 

number are provided by EMBL-EBI and KEGG, respectively. Generally, ID conversion 2 

within the same omic layer, particularly the transcriptome and the proteome, is easily 3 

realized by use of cross-reference tables provided by databases or web services such as 4 

BioMart [50], DAVID [51, 52], and bioDBnet [53].  5 

Transcriptional Regulation 6 

The transcriptional regulation class of methods includes those that connect the 7 

phosphoproteome or proteome of transcription factors (TFs) and the transcriptome of 8 

their target genes. Phosphorylated TFs and their target genes in 9 

lipopolysaccharide-stimulated macrophages were connected based on 10 

phosphoproteomic data of TFs and microarray data of their target genes [54]. In another 11 

work, the binding sites of 119 TFs were determined, and the human transcriptional 12 

regulatory network was reconstructed based on ChIP-seq measurements in the 13 

ENCODE project [55]. A transcriptional regulatory network within mouse dendritic 14 

cells that consists of 1728 activations and 594 repressions by 125 TFs was identified on 15 

the basis of transcriptomic data obtained after comprehensive inhibition of the 125 TFs 16 

by use of a short hairpin RNA library [56]. The transcriptional regulatory network of 17 

human myeloid leukemia cells was reconstructed based on transcriptomic 18 
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measurements in combination with promoter analysis [57]. Moreover, for reconstruction 1 

of the transcriptional regulatory network, computational methods such as network 2 

component analysis (NCA) [58, 59] and limitless arity multiple-testing procedure 3 

(LAMP) [60] have been proposed. This class of trans-omic studies also includes many 4 

other attempts to relate cis and trans factors, mainly by using transcriptomic data [61, 5 

62]. It is also likely in the near future to incorporate the metabolome as another key 6 

factor in transcriptional regulation, for example, as a donor of chemical groups used for 7 

chromatin modification [63, 64].  8 

Kinase–Substrate Relationship 9 

The kinase–substrate relationship (KSR) class of methods has its basis in establishing 10 

connections (e.g between a phosphorylated metabolic enzyme and the kinase 11 

responsible for its phosphorylation) that are inferred from phosphoproteomic data alone. 12 

Although these methods do not directly connect distinct omic layers, they represent an 13 

essential step for connecting the phosphoproteome with other omic layers: 14 

phosphorylation changes the state of proteins, some of which are functionally associated 15 

with other omic layers. KSR inference software includes packages such as Scansite [65], 16 

NetPhosK [66], GPS [67], NetPhorest [68, 69], PHOSIDA [70], iGPS [71], NetworKIN 17 

[69, 72], and RegPhos [73, 74]. Essentially, these softwares infer KSRs based on 18 
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experimentally confirmed consensus amino acid sequence motifs recognized by 1 

particular kinases that are provided in public databases such as Phospho.ELM [75], 2 

PhosphoSitePlus [76], and PhosphoNetworks [77]. In the case of NetPhorest, the 3 

software outputs the probability that a kinase phosphorylates a certain amino acid 4 

residue of an input amino acid sequence. The probability is estimated by sigmoid 5 

functions whose independent variable is a sequence similarity score between the input 6 

sequence and a consensus motif of a particular kinase, and whose dependent variable is 7 

the probability calculated in reference to experimentally confirmed KSR data. Recent 8 

improvements of KSR inference methods (e.g., PHOSIDA [70], iGPS [71], NetworKIN 9 

[69, 72], and RegPhos [73, 74]) emphasize incorporating additional information such as 10 

protein localization, kinase accessibility to the phosphorylation sites, and 11 

protein–protein interaction (PPI) together with a consensus motif analysis. In particular, 12 

incorporating PPI information has been shown to decrease sensitivity moderately but to 13 

increase specificity greatly in comparison to the decrease in sensitivity [71]. Thus, using 14 

KSR estimation methods that include PPI information is recommended if decreasing 15 

false positives is more important than decreasing false negatives. 16 

Protein–Protein Interaction 17 

The protein-protein interaction (PPI) class of methods itself also does not directly 18 
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connect distinct omic layers. However, it is an essential step for connecting proteome 1 

data to other omic layers. For example, if the interacting proteins are a protein kinase, a 2 

TF, and a metabolic enzyme, then the PPI class helps to connect signal transduction 3 

(phosphoproteome), transcription (transcriptome), and metabolism (metabolome) [63, 4 

78], respectively. Experimental PPI data accumulated in public databases such as 5 

STRING [79] are incorporated in NetworKIN to filter out inferred pairs of kinases and 6 

substrates that do not interact with each other. Other reviews provide more detailed 7 

overviews of PPI detection technologies and software resources [80-85]. 8 

Allosteric Regulation 9 

The allosteric regulation class connects the proteome of metabolic enzymes and 10 

metabolites that work as activators or inhibitors of the metabolic enzymes. A sample 11 

database for this purpose is BRENDA [86, 87], which provides information on 12 

enzymatic assays in vitro, including activators and inhibitors of particular enzymes. 13 

Recently, another database, ASD [88, 89], has also become available. Other than 14 

databases, systematic measurement methods to identify allosteric regulation have been 15 

developed by various groups [36, 90-92]. 16 

 17 

Three distinct concepts in the trans-omic network 18 

A network structure of a biochemical trans-omic network directly involves causality and 19 



12 
 

the input–output relationship at a molecular level. These features enable us to analyze 1 

the static and dynamic nature of a biochemical trans-omic network. A trans-omic 2 

network inherently includes three specific concepts related to a network: a map; static 3 

signal flow; and dynamic signal flow (Figure 3). We explain three concepts in 4 

comparison with a road network as follows. A map of a road network contains all 5 

possible routes that one can take. Similarly, a map of a trans-omic network describes all 6 

possible interactions between intracellular molecules. A map of a trans-omic network 7 

can be composed as a patchwork of individual studies on molecular interactions under 8 

the different conditions, such as different tissue and cell types. Since all the molecules 9 

are not necessarily co-expressed in a certain tissue and cell type, only part of a map of a 10 

trans-omic network exists in a certain biological phenomenon of interest. This part of a 11 

map is regarded as a route. For example, a route of a road network is a subset of a map, 12 

which is a path leading from a departure point to a destination. Similarly, static signal 13 

flow of a trans-omic network corresponds to a route in the map of a road network: it 14 

indicates the interactions of only co-expressed molecules in a certain biological 15 

phenomenon of interest. Static signal flow can be reconstructed by connecting 16 

simultaneously measured multi-omic data. Thus, static signal flow is a qualitative 17 

expression and does not involve an amount of flow. A subset of a map that includes an 18 
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amount of flow can be defined as dynamic signal flow, which is a static signal flow with 1 

quantitative amounts of molecules. Dynamic signal flow corresponds to the traffic in a 2 

road network. The traffic of a road network is the quantitative expression of a route, in 3 

other words, a subset of a map with an amount of flow. Dynamic signal flow should also 4 

be reconstructed by the simultaneously measured multi-omic data under the same 5 

conditions. Thus, static signal flow indicates a qualitative molecular interaction, and 6 

dynamic signal flow indicates a quantitative molecular interaction. Measurements of 7 

time series data using multiple doses of stimulation are useful for precise determination 8 

of the dynamic signal flow. The term "network" is likely to be used for a map, static 9 

signal flow and dynamic signal flow in different contexts. For example, protein–protein 10 

interaction networks obtained by yeast two-hybrid systems [93-96] correspond to maps. 11 

Signaling and gene networks underlying specific biological phenomena illustrated with 12 

directional arrows correspond to static signal flow. Metabolic flux with quantitatively 13 

weighted pathways and molecular activities described by kinetic modeling correspond 14 

to dynamic signal flow. Metabolic flux can be regarded as dynamic signal flows because, 15 

even at steady state, metabolic flux involves a quantitative amount of flux, although the 16 

amount of metabolites remained constant. Pioneering trans-omic works have presented 17 

reconstruction of static signal flow by projecting transcriptome, proteome, and 18 
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metabolome data on pathway maps of the central carbon metabolism, and they also 1 

exhibited dynamic signal flow by measuring or predicting metabolic fluxes, respectively 2 

[31] and [34]. Moreover, static and dynamic signal flow related to transcriptional 3 

regulation were exhibited by a transcriptional regulatory network and temporal profile 4 

of promoter activities that are inferred based on ChIP-chip measurements and NCA [34]. 5 

In a third study, static signal flow of insulin action was reconstructed by coordinating 6 

metabolome and phosphoproteome data with the support of public databases and web 7 

services and dynamic signal flow is also explored using a kinetic model of a local 8 

network around liver-type phosphofructokinase 1 (PFKL) [37]. Thus, the concepts of a 9 

map and static and dynamic signal flow provide a systematic view of characteristics 10 

underlying a trans-omic network. 11 

 12 

Three case studies on biochemical trans-omic networks: 13 

metabolism-centric trans-omics 14 

Because metabolic pathway maps have been supported by accumulated biochemical 15 

studies to date, the omic integration on metabolic pathway maps provides trans-omic 16 

networks with more credibility than other molecular networks such as signaling and 17 

gene expression alone. Therefore, we introduce three previous studies of 18 
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metabolism-centric trans-omic networks as case studies [31, 34, 37] in terms of the five 1 

technologies for connecting multi-omic data and the three concepts for the static and 2 

dynamic nature of a trans-omic network. In addition, it should be noted that multi-omic 3 

measurements of biological samples in these studies were obtained under identical 4 

conditions. This is important for reconstructing static and dynamic signal flow. 5 

Multi-omic measurements under non-identical conditions might lead to false positives 6 

of inferred interactions. 7 

 8 

Case study 1: global responses of E. coli against genetic and environmental 9 

perturbations 10 

In the first studyeffects of genetic and environmental perturbations on multiple omic 11 

layers in E. coli were assessed by using 24 single gene disruptants and a wild strain 12 

grown at five different growth rates [31]. In this study, the metabolome, expression 13 

proteome, transcriptome, and metabolic flux data based on “metabolic regulation” were 14 

connected (Figure 2A). The data of metabolome, expression proteome, and 15 

transcriptome were projected on the “map” of the central carbon metabolism in E. coli 16 

that provided “static signal flow” from genetic/environmental perturbations to each 17 

omic layer associated with the central carbon metabolism (Figure 4A). They also 18 
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exhibited “dynamic signal flow” by projecting the metabolic flux data on the pentose 1 

phosphate pathway that constitutes a part of the central carbon metabolism. By these 2 

trans-omic reconstruction processes, they found that the E. coli cells maintain 3 

metabolite levels by two distinct modes of global regulation, flux rerouting and gene 4 

expression, in response to single gene disruptions and changes in growth conditions, 5 

respectively. Connecting the multiple omic data on the metabolic pathway map enabled 6 

identification of the static and dynamic signal flow and revealed these modes of global 7 

regulation. Thus, E. coli chooses two distinct strategies, flux rerouting and gene 8 

expression, to realize robust metabolite level control against genetic and environmental 9 

perturbations, respectively.  10 

 11 

Case study 2: global dynamic adaptations of B. subtilis in response to carbon 12 

diauxic shift 13 

In another study, the global response of Bacillus subtilis against the shift of the major 14 

carbon source from glucose to malate, and from malate to glucose was characterized 15 

[34]. The global responses of B. subtilis were assessed from five viewpoints: 16 

transcriptome; expression proteome; metabolome; ChIP-chip analysis; and metabolic 17 

flux (Figure 4B). The multiple omic data were connected altogether by projection on 18 
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maps of central carbon metabolism, thereby identifying static signal flow of the carbon 1 

diauxic shifts based on the methods presented in metabolic regulation and 2 

transcriptional regulation (Figure 2A). Moreover, they projected computationally 3 

estimated metabolic flux and promoter activity on the pathway map to identify dynamic 4 

signal flow. The dynamic signal flow described in this study covers the whole of central 5 

carbon metabolism [34]. They used metabolic regulation and transcriptional regulation 6 

to connect the multiple omic layers and examined time scales of cellular responses 7 

based on time-series measurements. They revealed that B. subtilis responds to the 8 

carbon diauxic shift through two distinct modes of adaptation: faster adaptation by 9 

posttranscriptional regulation and slower adaptation by changes in gene expression. 10 

When the major carbon source is shifted from glucose to malate, the metabolic fluxes of 11 

B. subtilis are altered mainly by faster regulation (posttranscriptional regulation), 12 

whereas they are changed mainly by slower regulation (gene expression) when the 13 

carbon source is shifted from malate to glucose. By connecting multiple omic layers, 14 

these two distinct modes of global regulation were found, as was interplay between 15 

omic layers in those modes of global regulation. Furthermore, identification of the 16 

dynamic signal flow facilitates characterization of time scales of the two distinct modes 17 

of global regulation. 18 
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 1 

Case study 3: reconstruction of the trans-omic network of insulin action in rat 2 

hepatoma FAO cells 3 

Regulatory networks surrounding metabolic networks were reconstructed [31] and [34]; 4 

however, the network directly from extracellular environments to metabolism has not 5 

been reconstructed. We reconstructed a trans-omic network directly from extracellular 6 

stimulation (insulin) to metabolism in rat hepatoma FAO cells by connecting 7 

metabolome and phosphoproteome layers (Figure 4C) [37]. The phosphoproteome layer 8 

was separated into two groups: protein kinases that constitute the insulin-signaling 9 

pathway and metabolic enzymes that are substrates of the protein kinases. We used a 10 

map of all metabolism including the central carbon metabolism, and the 11 

insulin-signaling pathway of the KEGG PATHWAY database to project multiple omic 12 

data. We identified static signal flow of insulin according to metabolic regulation, KSR, 13 

and allosteric regulation (Figure 2A). According to metabolic regulation, 14 

insulin-responsive metabolites were associated with phosphorylated metabolic enzymes 15 

whose responsible protein kinases were inferred by use of NetPhorest, a KSR software, 16 

and assigned to the insulin-signaling pathway. Overall, the combination of metabolic 17 

regulation and KSR allowed us to retrace the signal flow from quantitatively changed 18 
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metabolites to the insulin receptor. Subsequently, allosteric regulation of the 1 

quantitatively changed metabolites on the metabolic enzymes was incorporated in 2 

reference to BRENDA, a database of allosteric regulation. We identified dynamic signal 3 

flow around PFKL by using kinetic models. Using the model analysis, functionally 4 

non-essential allosteric regulations were trimmed from the original trans-omic network. 5 

Our reconstruction study provides a biochemical trans-omic network that includes all 6 

reaction steps from input (insulin stimulus) to outputs (the metabolites). In this 7 

trans-omic network, we found that 48 phosphorylations of metabolic enzymes out of 71 8 

are novel regulatory pathways. Connecting multiple omic layers allowed identification 9 

of insulin signal–dependent regulatory pathways of global metabolism. 10 

 11 

Systems medicine and trans-OWAS  12 

It may be possible for trans-omic analysis to be applied to medicine. Advances in 13 

measurement technologies and mathematical/computational methods have been 14 

promoting systems medicine, which tackles complex diseases [97, 98]. Systems 15 

medicine aims to correct the behavior of a group of molecules by using pathway 16 

information [99, 100] and is expected to change current reactive medicine, which is 17 

enacted after people contract disease, to predictive and personalized medicine based on 18 
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genomic data [101-103]. 1 

Single Omics-Wide Association Study 2 

Genome-wide linkage analysis between genetic traits and phenotype, also called a 3 

genome-wide association study (GWAS), is a promising approach for revealing linkages 4 

between an individual’s genetic background and potential susceptibility to particular 5 

diseases [104]. This approach associates genetic variations with infectious diseases 6 

[105] and Mendelian disorders, such as Huntington disease and cystic fibrosis [106]. In 7 

addition to GWAS, a single omic layer other than genome (e.g., epigenome [40, 107], 8 

transcriptome [108], proteome [108], metabolome [109, 110], and others [15, 111]) and 9 

environmental factors (e.g., diet [39, 112] and exposure to chemicals [113]) have also 10 

been used for association studies with phenotypes. A phenome-wide association study 11 

(PheWAS) assesses whether a genomic region affects multiple phenotypes based on 12 

human clinical data and SNP data [114]. Quantitative trait locus (QTL) analysis, an 13 

alternative method for disease-related gene discovery, enables us to identify the 14 

genomic regions that affect quantitative phenotypes, such as the amount of transcripts, 15 

proteins, and metabolites [115-120]. However, QTL has several limitations, such as low 16 

mapping resolution and genotypic variation [121]. To resolve these limitations, 17 

molecule-based GWAS, in which genomic information is connected with molecules 18 
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such as metabolites, has been recently proposed. Metabolite-based GWAS of maize, 1 

which can be used against a genetic complex population, identifies associations between 2 

genomic region and metabolites at a higher resolution [122, 123]. A pathway-wide 3 

association study (PWAS), in which pathway information is used to identify gene sets 4 

that are enriched for variants associated with diseases, has also been proposed [124]. 5 

Trans-ome–Wide Association Study 6 

Lifestyle diseases, such as hypercholesterolemia and type 2 diabetes mellitus (T2DM), 7 

are largely elicited by multiple factors belonging to multiple omic layers that are 8 

influenced not only by genetic factors but also by environmental factors linked to 9 

lifestyle. GWAS can associate phenotypes only with genetic factors, not with 10 

environmental factors. Therefore, only a small proportion of heritability for 11 

multifactorial diseases can be explained by GWAS. In T2DM, less than 10% of 12 

heritability is explained by genomic variants identified by GWAS, despite the efforts of 13 

several GWAS trials [113, 125]. GWAS identifies only phenomenological connections 14 

between genotype and phenotype but does not indicate direct biochemical interactions. 15 

Therefore, a GWAS approach alone does not provide any substantial information to 16 

select an appropriate personalized treatment strategy that may rely on molecular 17 

mechanisms [126]. Thus, more globally integrated association studies that reflect both 18 
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genomic and environmental information, including RNA, proteins, and metabolites, and 1 

that indicate molecular networks are expected for analyzing multifactorial diseases 2 

linked with lifestyle and for identifying the molecular pathological mechanisms 3 

underlying such diseases.  4 

Here, we propose a trans-OWAS that includes the genome, epigenome, metabolome, 5 

proteome, transcriptome, and phenome to identify the global molecular mechanism of 6 

multifactorial diseases. In trans-OWAS, the individual network is reconstructed from 7 

the multiple omic data, as shown in the case studies. Phenotypes are characterized by 8 

using these reconstructed networks. Trans-OWAS has two advantages compared to 9 

GWAS: trans-OWAS can associate phenotypes not only with genetic factors but also 10 

with environmental factors, and it can elucidate direct molecular networks in trans-omic 11 

layers instead of phenomenological relationships (Figure 5A). 12 

Disease states are understood as disorders in a trans-omic network. For example, 13 

T2DM, a typical multifactorial disease, can be regarded as a systems breakdown caused 14 

by genetic and environmental factors in a trans-omic network. Trans-OWAS can be one 15 

of the ideal approaches for T2DM (Figure 5B). Homeostatic feedback between insulin 16 

sensitivity and insulin secretion from β cells is a central core for blood glucose 17 

regulation, and impairment of the feedback system leads to T2DM. Trans-OWAS can 18 
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characterize pathogenesis of T2DM as multiple breakdowns in insulin sensitivity and 1 

secretion pathways in a trans-omic network. Consequently, trans-OWAS will reveal the 2 

molecular mechanism of pathogenesis of T2DM for each individual patient, because 3 

trans-OWAS directly implements both genetic and environmental factor as particular 4 

states of a trans-omic network. Thus, trans-OWAS will be an essential tool for 5 

personalized diagnosis, prediction of prognosis, and treatment, and may become one of 6 

the major approaches in personalized systems medicine. 7 

An integrative network-based association study (INAS), in which single omic data 8 

such as transcriptome or interactome are integrated with genomic information to 9 

identify the gene regulatory network that elicited the phenotypes, is one example of a 10 

trans-OWAS [127, 128]. One of the bottlenecks when performing trans-OWAS is 11 

acquisition of a large amount of multi-omic data. Recently, an attempt [38] was 12 

presented in which they measure genome, transcriptome, and proteome data from BXD 13 

recombinant inbred mice [129] fed a normal diet or a high-fat diet; the data were ideal 14 

for trans-OWAS analysis. Furthermore, multi-omic data were also obtained from 15 

humans [130]. These studies demonstrate that trans-OWAS will be available in the near 16 

future. Trans-OWAS enables us to characterize the pathogenesis of complex 17 

multifactorial diseases with both genomic and environmental factors, and to elucidate 18 
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their molecular mechanisms in a trans-omic network. 1 

 2 

Concluding remarks 3 

We have introduced five technologies, three concepts, and three case studies for 4 

biochemical trans-omic networks. However, there still are technological and analytical 5 

improvements needed for reconstructing a reliable biochemical trans-omic network. 6 

Throughput and comprehensiveness in omic measurements should be improved 7 

(Outstanding Questions Box). For data analysis, reliability of pathway information and 8 

technologies for connecting different omic layers should be improved and developed 9 

(Outstanding Questions Box). A validation method for a reconstructed trans-omic 10 

network should be further developed (Outstanding Questions Box). Such improvements 11 

will make trans-omic analysis essential and standard in molecular biological studies and 12 

medicine in the future. 13 
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Figure legends 1 

Figure 1. Trans-omic network across multiple omic layers (from left to right). 2 
Conventionally, a network has been identified by accumulating literature on specific 3 
molecules. Measurement of a single omic layer has now become available. Trans-omics 4 
is becoming available by connecting multi-omic measurements. A group of molecules 5 
with similar chemical properties such as genome, transcriptome, proteome, and 6 
metabolome is called an "omic" layer, which can be measured by next-generation 7 
sequencers (NGS), microarray, mass spectrometry, and NMR. (This figure partly 8 
includes "Process of transcription" by NHS National Genetics and Genomics Education 9 
Centre licensed under CC BY 2.0 / modified from original  10 
https://www.flickr.com/photos/119980645@N06/13080846733/in/photostream/.) 11 
 12 
Figure 2. Technologies that connect multi-omic layers. (A) The classes of the trans-omic 13 
network (i) – (v) are indicated. Horizontal lines represent the indicated omic layers. The 14 
arrows indicate directions of regulation. (B) Connecting IDs across multiple omic layers. 15 
Circles represent IDs. Lines drawn between circles indicate conversion between IDs. 16 
The KEGG database plays a pivotal role in connecting multiple omic data by ID 17 
manipulation because it provides IDs for each omic layer, cross-reference tables that 18 
allow conversion among the IDs, and pathway maps tied with the IDs. Black lines 19 
indicate that an ID association or conversion can be performed by use of cross-reference 20 
tables provided by KEGG or elsewhere. Red lines are drawn between IDs that require 21 
manual conversion. 22 
 23 
Figure 3. Three different concepts involved in a trans-omic network in comparison to a 24 
road network. A map, a route, and traffic of a road network (left) correspond to a map, a 25 
static signal flow, and a dynamic signal flow of a trans-omic network (right), 26 
respectively. A route and static signal flow are drawn in blue. Traffic and a dynamic 27 
signal flow are drawn in green, orange, and red. The warmer color represents more 28 
traffic. 29 
 30 
Figure 4. Examples of metabolism-centric trans-omics. Blue and red arrows represent 31 
signal flow from genetic and environmental perturbations, respectively. Solid and 32 
dashed arrows represent direct and indirect association of molecules, respectively. (A) 33 
Global trans-omic responses of E. coli including metabolites, transcriptome, expression 34 
proteome, and metabolic fluxes against genetic (24 single gene disruptants) and 35 
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environmental (five different growth rates) perturbations [31]. (B) Adaptation of B. 1 
subtilis in a trans-omic network including metabolome, transcriptome, expression 2 
proteome, metabolic fluxes, and promoter activities in response to the shift between two 3 
major carbon sources, glucose and malate [34]. (C) A global landscape of the trans-omic 4 
network including metabolome and phosphoproteome of acute insulin action in rat 5 
hepatoma FAO cells [37]. See also a video of this trans-omic network for details 6 
(http://www.cell.com/cms/attachment/2020935146/2041143667/mmc7.mp4; Yugi et al. 7 
(2014) Cell Rep., CC BY 3.0).  8 
 9 
 10 
Figure 5. From GWAS to trans-OWAS. (A, left) GWAS is a linkage analysis that 11 
includes the phenotypic relation to a single omic layer (genome). GWAS reflects only 12 
genetic factors and the phenomenological relationship between genome and phenome. 13 
(A, right) Trans-OWAS is a linkage analysis that includes the phenotypic relation to 14 
multiple omic layers. Trans-OWAS reflects both genetic and environmental factors and 15 
indicates the molecular relationship of pathogenesis in a trans-omic network. (B) 16 
Multifactorial diseases, such as T2DM, appear as breakdowns of the insulin sensitivity 17 
pathway (blue) and insulin secretion pathway (red) in a trans-omic network that reflects 18 
both genetic and environmental factors. (This figure partly includes ‘Process of 19 
transcription’ by NHS National Genetics and Genomics Education Centre licensed 20 
under CC BY 2.0/modified from original 21 
https://www.flickr.com/photos/119980645@N06/13080846733/in/photostream/, and 22 
Figure 1 of "The chromatin signature of pluripotent cells" by Ky Sha and Laurie Boyer, 23 
licensed under CC BY 3.0/modified from original http://www.stembook.org/node/585.) 24 
 25 
 26 
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