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Abstract

A kinetic theory for quantum Langmuir waves interacting nonlinearly with quantum ion-acoustic

waves is derived. The formulation allows for a statistical analysis of the quantum correction to the

Zakharov system. The influence of a background random phase on the modulational instability

is given. In the coherent case, the effect of the quantum correction is to reduce the growth rate.

Moreover, in the classical limit, a bifurcation develops in the dispersion curves due to the presence

of partial coherence. However, the combined effect of partial coherence and a quantum correction

may give rise to an increased modulational instability growth rate, as compared to the classical

case. The results may be of significance in dense astrophysical plasmas and laboratory laser–plasma

systems.

PACS numbers: 52.35.–g, 03.65.–w, 05.30.–d, 05.60.Gg
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I. INTRODUCTION

The effects from the quantum domain have intriguing consequences for the way we view

the world and the way we interpret physical models, and these effects can be seen in single

particle phenomena. Plasma physics, on the other hand, deals with the collective interaction

of charged particles, and processes related to such. However, there are physical parameter

domains where quantum mechanics and plasma physics need to be taken into account simul-

taneously, e.g. dense and/or hot astrophysical plasmas. Indeed, the creation of pair plasmas

surrounding neutron stars can be viewed as a collective quantum plasma effect. Thus, there

is interest and application for a model taking both collective charged particle effects and

quantum phenomena into account (see, e.g. Refs. 1 and 2).

One of the most prominent models in plasma physics is described by the Zakharov

equations3, in which high frequency Langmuir waves are coupled nonlinearly to low fre-

quency ion-acoustic waves. The statistical properties of this system has been analyzed in

Ref. 4, where a Landau-like damping was found. Recently, a generalization of the Zakharov

system was derived, taking quantum effects into account5. The effect of the quantum cor-

rection was to introduce higher order dispersion into the system of equations, thus altering

the behavior of wave evolution. It was argued in Ref. 5 that these contributions could be

important in astrophysical plasmas, as the plasma densities may become significant.

In this paper, we will introduce a kinetic description of the quantum Zakharov equation,

by applying the Wigner transform to the Langmuir propagation equation. The resulting

system of equations may be useful for understanding the properties of partially coherent

Langmuir waves interacting with quantum ion-acoustic waves. We derive the general dis-

persion relation, and analyze the stability of the system. A comparison between monoener-

getic Langmuir waves and random-phase Langmuir waves is given, and it is found that the

interplay between quantum corrections and spectral broadening may alter the instability

properties in novel ways. In particular, it is found that the growth rate for a short wave-

length partially coherent quantum Langmuir wave is larger than the corresponding growth

rate for the classical Langmuir wave. Thus, the interplay between incoherence and quan-

tum effects gives rise to modified modulational instability growth rates, a result that may

be relevant to astrophysical and intense laboratory laser-plasmas, for which the quantum

parameter may take on significant values.
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II. BASIC EQUATIONS

The dynamics of the nonlinearly coupled quantum Langmuir and ion-acoustic waves is

given by the Zakharov-like equations5

i∂tE(t, x) + ∂2
xE(t, x) − H2∂4

xE(t, x) = n(t, x)E(t, x), (1a)

and

(∂2
t − ∂2

x)n(t, x) + H2∂4
xn(t, x) = ∂2

x|E(t, x)|2, (1b)

where H ≡ h̄ωpi/kbTe is the quantum parameter due to a quantum pressure emanating

from the underlying hydrodynamic model5. Here h̄ is Planck’s constant divided by 2π,

ωpi = (n0e
2/miǫ0)

1/2 is the ion plasma frequency, kB is Boltzmann’s constant, Te is the

electron temperature, n0 is the constant background density, and mi is the ion rest mass.

The electric field E has been normalized according to E → (ǫ0mi/16men0kBTe)
1/2E, while

the density n is normalized by n → (mi/4men0)n, where me is the electron mass. The

coordinates have been rescaled using t → (2me/mi)ωpet and x → 2(me/mi)
1/2x/λe, where

ωpe = (n0e
2/meǫ0)

1/2 is the electron plasma frequency and λe is the electron Debye length. As

H → 0, we regain the classical Zakharov equations from (1). However, in some astrophysical

plasmas, the quantum parameter H may approach unity, since in such environments, high

densities are not uncommon (see, e.g. Ref. 6). We see that the effect of the quantum

parameter is to introduce higher order dispersion.

III. QUANTUM KINETICS

The Fourier transform of the two-point correlation function, as given for the electric field

by

ρ(t, x, p) =
1

2π

∫

dξ eipξ〈E∗(t, x + ξ/2)E(t, x− ξ/2)〉 (2)

was introduced by Wigner7 in quantum statistical mechanics. Here the angular brackets

denotes the ensemble average, and the asterisk denotes the complex conjugation operation.

The Wigner function ρ is a generalized distribution function, which satisfies

〈|E(t, x)|2〉 =

∫

dp ρ(t, x, p). (3)
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Applying the transformation (2) to Eq. (1a) gives the kinetic equation8

∂tρ(t, x, p) +
(

2p∂x + 4H2p3∂x − H2p∂3
x

)

ρ(t, x, p) − 2n(t, x) sin
(

1
2

←
∂x

→
∂p

)

ρ(t, x, p) = 0, (4)

which is coupled to the ion-acoustic equation (1b) via Eq. (3). Here the sin-operator is

defined by its Taylor expansion, and arrows denote direction of operation. Keeping the

lowest order derivative in this Taylor expansion, corresponding to the long wavelength limit,

gives a modified Vlasov equation

∂tρ(t, x, p) + pDxρ(t, x, p) − (∂xn(t, x))(∂pρ(t, x, p)) = 0, (5)

for the quantum Langmuir wave, driven by the ion-acoustic ponderomotive force. Here

Dx ≡ (2 + 4H2p2 − H2∂2
x)∂x. Thus, in the classical limit H → 0, Dx → 2∂x, and we obtain

a Vlasov-like equation for the long wavelength Langmuir waves.

IV. THE MODULATIONAL INSTABILITY

In order to analyze Eqs. (1b), (3), and (4), we perform a perturbative expansion. Letting

ρ(t, x, p) = ρ0(p)+ρ1 exp(ikx−iωt), where |ρ1| ≪ ρ0, and n(t, x) = n0+n1 exp(ikx−iωt), we

linearize with respect to the perturbation variables. We then obtain the dispersion relation

− ω2 + (1 + H2k2)k2 = k2

∫

dp
ρ0(p + k/2) − ρ0(p − k/2)

ω − kp(2 + 4H2p2 + H2k2)
. (6)

The dispersion relation (6) generalizes the results in Refs. 4 and 5, and is valid for partially

coherent quantum Langmuir waves interacting nonlinearly with quantum ion-acoustic waves.

A. Monoenergetic Langmuir waves

In the case of a monoenergetic Langmuir wave, we have ρ0(p) = I0δ(p),, where I0 = |E0|2

is the background intensity. Then the dispersion relation (6) becomes

[

ω2 − (1 + H2k2)k2
] [

ω2 − (1 + H2k2)2k4
]

= 2I0(1 + H2k2)k4, (7)

such that

ω2 = 1
2

[

H̄2k2 + H̄4k4 ± H̄k2
√

H̄2 + 8I0 − 2H̄4k2 + H̄6k4
]

, (8)
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where H̄ ≡ 1 + H2k2. Letting ω = iγ, the instability growth rate is given by5

γ = 1√
2

[

H̄k2
√

H̄2 + 8I0 − 2H̄4k2 + H̄6k4 − H̄2k2 − H̄4k4
]1/2

. (9)

Starting from H = 0, successively higher values of H tend to suppress the instability, giving

lower growth rates with a cut-off at a lower wavenumber, see Fig. 1.

B. Partial coherence

The coherent monoenergetic background distribution gives important information on

wave instabilities. However, in many applications the background field is not fully coherent,

but rather displays partial decoherence due to, e.g. noise. The noise, either classical or quan-

tum, may stem from different sources, such as thermal effects, weak turbulence, or quantum

fluctuations. Such sources of noise may lead to a background field E0 with a random phase

ϕ(x) such that

〈e−i[ϕ(x+ξ/2)−ϕ(x−ξ/2)]〉 = e−pW |ξ|, (10)

with the corresponding distribution function ρ0 is given by the Lorentzian9,10

ρ0(p) =
I0

π

pW

p2 + p2
W

, (11)

where pW is the width of the distribution. The integrand of (6) has three poles, one real

and two complex, where the real pole is given by

p0 = − 1

A1/3(ω, k)
+

A1/3(ω, k)

3b(k)
. (12)

Here A(ω, k) = 3[9ab2 +
√

3(4b3 + 27a2b4)1/2]/2, a(ω, k) = ω/k(2 + H2k2), and b(k) =

4H2/(2 + H2k2). As the quantum parameter H approaches zero, the complex poles ap-

proaches complex infinity. Thus, in the integration of Eq. (6) we will neglect these poles,

only taking the real pole p0 into account, since the modes corresponding to the complex

poles are quickly damped. Thus, we have

−ω2 + (1 + H2k2)k2 = 2I0k
4

{

g(k) − h(k)

[ω + 2ipW h(k)k]2 − k4[g(k) − h(k)]2

+
ipW p0

k2(2 + H2k2)[(p0 + k/2)2 + p2
W ][(p0 − k/2)2 + p2

W ]

}

(13)
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where we have defined the real and positive functions g(k) = H2(k2 + 8p2
W ) and h(k) =

1 + 2H2(k2 + p2
W ). The dispersion relation (13) describes the effects of partial coherence for

the quantum Zakharov system (1). The damping character due to the finite width of the

background distribution can clearly be seen, as well as the Landau damping due to the real

pole. We note that as pW → 0, we regain the monoenergetic dispersion relation (7).

C. The classical limit

If H → 0, we obtain the classical limit of the dispersion relation (13), when we use a

kinetic photon description for the Langmuir waves. The effects of statistical broadening

on the Zakharov system was also analyzed in Ref. 4. We note that the two complex poles

approaches infinity, and only the real pole remains with the value p0 = ω/2k, as it should.

The dispersion relation then reads4

(ω2−k2)
[

ω4 + k8 + 8p2
W k6 + 8p2

W k2ω2 + 2k4(8p4
W − ω2)

]

= 2I0k
4(ω2−k4−8ipW kω−4p2

Wk2),

(14)

and although the quantum effects have been neglected, the behavior of the function ω(k; pW )

is still rather complicated. The dispersion relation (6) with H = 0 was analyzed analytically

in the long wavelength limit, i.e. ω/k ≫ 1, in Ref. 4, and the growth rate was found for a

Gaussian background spectrum. Here we will solve the equation (14) for all wave lengths.

Letting ω = Reω+iγ, we may solve Eq. (13) numerically for the growth rate γ, using different

values of the widths pW . In the Figs. 2 and 3 we have plotted the solutions for H = 0 and a

number of values of pW . The results show on a more complicated dispersion structure than

in the coherent case. The asymptotic behavior of the growth rate for short wavelengths has

been depicted in Fig. 4, using a number of different values on the decoherence width pW .

For large k, the growth rate has a linear dependence on the wavenumber, the slope being

determined by the values of the width pW .

D. Quantum effects on the instability growth rate

When H is nonzero, the combined effects of quantum correction and decoherence make

themselves apparent in the dispersion relation (13) through new and novel wave modes. In

Fig. (5) we display the growth rate γ as a function of the wave number k. As compared to

6



the classical case, the combined effect of partial coherence and quantum effects, i.e. finite

pW and H respectively, is to make the modulational instability growth rate smaller for long

wavelength perturbations. However, the interesting effect is for short wavelengths, where

the modes introduced due the finite spectral width is amplified by the quantum corrections.

Thus, we may expect much stronger growth rates for short wavelength perturbations, making

these dominant in quantum plasmas. In Fig. 5 the dispersion curves for a value H = 0.25

of the quantum parameter has been plotted. The strong growth rate for short wavelengths

can clearly be seen.

V. CONCLUSIONS

The effects of partial coherence in quantum plasmas, such as in the form of a ran-

dom phase, is of interest in certain plasmas, such as astrophysical plasmas5,6, and the

next generation laser plasma systems11,12. Moreover, in such system, the density may

even reach values of5,6 1023 − 1031 m−3 for temperatures of the order 105 − 107 K, giving

H = h̄ωpi/kBTe ∼ 10−7 − 1. Thus, the quantum parameter H may attain appreciable val-

ues, such that the higher order dispersive terms in Eqs. (1) become important. Even in

the cases of small a quantum correction, this effect combined with Langmuir wave decoher-

ence will yield a strongly growing mode for short wavelengths, and could lead to significant

changes in extreme astrophysical and laboratory plasmas. Thus, the combination of inco-

herence and quantum effects may yield rich and interesting dynamics of Langmuir wave

propagation in such plasmas. However, a detailed analysis of possible applications is left for

future research.

Here we have analyzed the statistical properties of the quantum Zakharov system, giving

the dynamics of high frequency Langmuir waves in terms of a kinetic equation. This enabled

the investigation into the effects of partial coherence of the quantum Langmuir wave, in

particular the implications due to a random phase, and it was found that such a system

exhibits an interesting dispersion structure. In particular, the combined effect of decoherence

and quantum corrections gives rise to new dispersion curves as well as increased modulational

instability growth rates, as compared to the case of a classical coherent and partial coherent

Langmuir wave.
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Fig. 1: The growth rate γ as given by Eq. (9) plotted as a function of the wavenumber k.

Seen from the right, the values H = 0, 0.5 and 1 have been used together with the intensity

I0 = 0.5. The effect of the quantum parameter is thus to suppress the instability.

Fig. 2: The classical limit of the dispersion relation (13) for different values of the

background distribution width pW . We see that the upper curve in panel (a) closely

resembles the uppermost curve in Fig. 1, but is slightly damped. The effects of the spectral

width can clearly be seen through the damping of the mode present in the coherent case,

as well as the presence of a completely new mode. In the different panels, we have the

following widths: (a) pW = 0.025, (b) pW = 0.05, (c) pW = 0.0667, (d) pW = 0.0909, and

(e) pW = 0.267. The intensity in all the panels is I0 = 0.50.

Fig. 3: The classical limit of the dispersion relation (13) for a select set of values of the

background distribution width pW , taken to larger wavenumbers. In the different panels,

we have the following widths: (a) pW = 0.0714, (b) pW = 0.111, and (c) pW = 0.333. The

intensity in all the panels is I0 = 0.50.

Fig. 4: The inverse of the classical growth rate, i.e. H = 0, plotted as a function of the

wavelength λ = 2π/k, giving the asymptotic behavior of γ for short wavelengths. Starting

from the top of the panel, we have used the values pW = 0.025, pW = 0.05, and pW = 0.091

on the respective curve. We note the generic linear behavior for short wavelengths.

Fig. 5 (Color online): The combined effects of a quantum correction and partial coherence

on the growth rate (black curve), obtained from Eq. (13) using H = 0.25, as compared to

the classical case for the same spectral width (red curve). In the different panels, we have

the following widths: (a) pW = 0.05, (b) pW = 0.111, and (c) pW = 0.2. We note the mode

due to the quantum corrections combined with the partial coherence gives rise to a larger

growth rate for short wavelengths, while the long wavelength modes are damped by the

quantum corrections (see Fig. 1).
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