
OBJECT-ORIENTED MODELING OF 
PARALLEL PDE SOLVERS* 

Michael Thune, Krister Ahlandert , Malin Ljungberg, Markus Norden, 
Kurt Otto, Jarmo Rantakokko 
Uppsala University 

Uppsala, Sweden 

Abstract This is a status report of a long-term research effort focusing on object­
oriented modeling of parallel PDE solvers, based on finite difference 
methods on composite, structured grids. Two previous results of this 
effort are reviewed, the class libraries Cogito and Compose. Cogito is 
implemented in Fortran 90, with MPI for the message passing, and 
provides abstract data types for parallel composite-grid methods. Com­
pose is in C++ and allows for fully object-oriented construction of PDE 
solvers by composition of objects. The object model behind Compose 
is described, and some research issues related to the refinement of the 
model are outlined. Finally, some recent results are presented, which 
are initial steps in addressing these issues. 

Keywords: object-oriented, parallel, PDEs, Fortran, C++, framework 

1. INTRODUCTION 
The traditional programming style in scientific computing is procedu­

ral, plain Fortran. This leads to very efficient programs, but the process 
of constructing the programs is time-consuming and error-prone. The 
latter drawback has become increasingly accentuated as both the com­
puter architectures and the scientific applications have become more 
complex. In fact, the lack of adequate software tools has been regarded 
as a serious impediment to the realization of the strategic potential of 
high performance scientific computing [10]. Consequently, during the 
last decade there has been a large number of research projects focusing 
on software issues in this field. 

·The research was supported by the Swedish Research Council for Engineering Sciences, and 
by Uppsala University via a faculty grant. 
tCurrently at the Dept. of Informatics, University of Bergen, Norway 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2001
R. F. Boisvert et al. (eds.), �e Architecture of Scienti�c Software

10.1007/978-0-387-35407-1_22

http://dx.doi.org/10.1007/978-0-387-35407-1_22


160 ARCHITECTURE OF SCIENTIFIC SOFTWARE 

Figure 1 Simulation of airflow through an expansion pipe. 

Many of the most successful projects have used an object-oriented 
approach. By now, the advantages of object-oriented scientific program­
ming are widely recognized. The feasability of the approach was demon­
strated in early projects, which consisted in enriching the programming 
language with abstract data types (ADTs) suitable for scientific com­
puting, see, e.g., [16], [26]. The overall programming style was still 
procedural. In a second phase came projects aiming for a fully object­
oriented approach, where the main program essentially vanishes, see, 
e.g., [4, and the references therein], and [6]. The role of the main pro­
gram reduces to creating objects and eventually activating one object, 
which subsequently activates other objects. The actual algorithm con­
sists in interactions between objects. 

Our research group has been part of this development. We focus 
on the numerical solution of partial differential equations (PDEs). The 
major goals are: 

1 to construct complete PDE solvers via composition of objects; 

2 that this should not be restricted to predefined numerical opera­
tors, i.e., that new numerical methods could be implemented via 
composition of objects; 

3 that this way of constructing PDE solvers should be applicable to 
scientific and industrial problems on parallel computer platforms. 

Primarily we consider finite difference methods. In PDE solvers based 
on finite difference approximations, complicated geometries are handled 
via the insertion of composite, structured grids, for example multiblock 
grids. Such a grid is a collection of structured grids, the union of which 
covers the geometry at hand. To represent a grid function on the entire 
composite grid, the grid functions on the different element grids are tied 
together through interpolation at the grid boundaries. In a parallel com­
puting context, this interpolation can lead to communication between 
processors. 

Fig. 1 shows a simplified model problem to illustrate this. It is a 
simulation of airflow through an expansion pipe, and the geometry re-



Object-oriented Modeling of Parallel PDE Solvers 161 

quires a five-block grid. The simulation is based on the compressible 
Navier-Stokes equations. In the following, this application will be used 
for illustration. 

The present paper gives a status report of our work. We begin by 
reviewing the results of our previous software projects Cogito [25] and 
Compose [2]. Both of them are class libraries, to be used for constructing 
PDE solvers. Cogito represents the ADT approach, whereas Compose is 
fully object-oriented (in the sense discussed above). Our current research 
aims at elaborating the object model of Compose. We discuss some 
research issues in that context, and present some recent results. 

2. REVIEW OF PREVIOUS RESULTS 

2.1. COGITO: ABSTRACT DATA TYPES 
FOR COMPOSITE GRIDS 

For the problems we are considering, with complicated data struc­
tures, and the additional aspect of parallelization, the traditional way 
of constructing a PDE solver (from scratch, in Fortran) is inadequate. 
There is an apparent need for software tools that raise the level of ab­
straction considerably. 

To this end, we developed Cogito [25], a Fortran 90 library supporting 
implementation of parallel PDE solvers. Cogito has an object-oriented 
design. The core classes are Grid, Composite Grid, and Grid Function. 
Each individual instance of these classes is automatically distributed over 
several processors. The parallelism is of SPMD type, and uses message 
passing via MPI. The message passing takes place within the object and 
is invisible to the user. 

We note in passing that although Fortran 90 is not an object-oriented 
language, it allows for an object-oriented style of implementation, via its 
mechanisms for modularization, data abstraction, and dynamic memory 
allocation. This has been noted by several authors, and [8] gives an 
exposition of "object-oriented" Fortran 90 programming. 

The data partitioning in Cogito is handled by a data partitioning mod­
ule with an object-oriented design [22]. It is based on our own frame­
work for partitioning of composite grids [23]. Within this framework, 
it is possible to implement a wide range of specific partitioning algo­
rithms. Fig. 2 shows two examples of partitionings for the multiblock 
grid of the model problem discussed above. To the left is a straightfor­
ward approach, where each block is partitioned into rectangles, one per 
processor. Thus, each processor will get one part of each block. The 
alternative shown to the right in Fig. 2 is the result of a more sophis­
ticated approach, which combines structured and unstructured parti-



162 ARCHITECTURE OF SCIENTIFIC SOFTWARE 

Figure 2 Example of two ways of partitioning and mapping the multiblock grid for 
the model problem in Fig. 1. Both of these alternatives, as well as many others, can 
be expressed in the partitioning framework contained in Cogito. 

Initiation 
call Create_CG(cg,'pipe.dat','rectangle') 
call Create_GF(u,'u',4,cg) 

Runge-Kutta time marching 
do s = 1, nstages 

call spdisc(v, R) 
call Saxpy_GF(v, a(s), R, u) 
call Interpolate_GF(v, 'pre') 
call bound(v) 
call Interpolate_GF(v, 'post') 

end do 

Figure 3 Code example with calls to Cogito. For explanations, see the text. The 
overall style of programming is procedural. The program is parallel. The user specifies 
what strategy to use for partitioning and distributing the grid. Apart from this, all 
the parallelism is hidden to the user. 

tioning techniques, giving one connected subdomain to each processor, 
thus reducing the communication. Both of these partitionings, as well 
as many others, can be expressed in the partitioning framework which 
is contained in Cogito. 

The present classes in Cogito are essentially data stores with asso­
ciated operations. They do not initiate interaction with other objects. 
Thus, the overall style of programming is procedural. In a PDE solver 
based on Cogito, the numerical method is expressed as operations on grid 
function objects. Fig. 3 shows, as an example, the initiation of some ob­
jects, and a subsequent code sequence expressing the Runge-Kutta time 
marching scheme used in our 2D compressible Navier-Stokes solver. We 
use a naming convention, such that the Fortran routine implementing the 
operation B on class A gets the name B_A. (In order to avoid extremely 
long names, we use standardized abbreviations of the class names.) 



Object-oriented Modeling of Parallel PDE Solvers 163 

It is assumed that the grid has been generated by a separate grid 
generator, and is stored in a file. In Fig. 3, Create_CG initiates a com­
posite grid object, reading the grid data from the file pipe. dat. The 
grid is to be partitioned into rectangles (see Fig. 2, left-hand side) and 
these are distributed over the processors. Next, Create_GF creates a 
grid function u on the composite grid. This grid function will represent 
the numerical solution of the 2D compressible Navier-Stokes equations, 
and consequently it has four components per grid point. The grid func­
tion is automatically distributed in the same way as the corresponding 
grid. Subsequent operations on the grid function are carried out on the 
entire grid, and the message passing is hidden from the user. 

The second code sequence in Fig. 3 implements a Runge-Kutta time 
marching scheme, which computes a number of Runge-Kutta stages 
v(s) = un + a(s)R(v(S-l»). Here, R is the discretized right-hand side of 
the compressible Navier-Stokes equations. The discretized space deriva­
tives are computed inside the subroutine spdisc, which is supplied by 
the user. This subroutine, as well, is implemented via calls to oper­
ations on Grid Function objects. The Saxpy_GF operation computes 
u + a(s)*R, where u and R are grid functions, and the result is stored 
in the grid function v. 

2.2. COMPOSE: OBJECT-ORIENTED 
COMPOSITION OF PDE SOLVERS 

Writing a PDE solver based on Cogito relieves the programmer of a 
considerable amount of low level details, concerning the data structures 
and the parallelization. However, the numerical method still has to 
be hand coded, as a sequence of operations on grid function objects. 
Moreover, the coupling between the numerical method and the PDE 
problem remains, which leads to limited reusability of the code. In the 
code example above (Fig. 3), the Runge-Kutta code segment is reusable, 
but the user-supplied subroutine spdisc is specific for a certain discrete 
approximation of a certain PDE problem. Thus, if we wish to address 
the same equations with a different approximation, or apply the same 
approximation to another set of equations, the subroutine spdisc has 
to be rewritten from scratch. 

In order to increase the reusability of the code, we developed Compose 
[2]. The goal was to allow for "component-based" construction of PDE 
solvers. The approach remained object-oriented, so the "components" 
were to be objects. 

The object-oriented framework Compose is implemented in C++ and 
contains classes representing the mathematical equations, boundary con-



164 ARCHITECTURE OF SCIENTIFIC SOFTWARE 

1 1 
POE Solver POE Problem 

1 1: .. -
System Solvel 

{abstract} 

1 .. - 1: .. -
Equation 1 1 Eguation 

Oiscretizer 
{abstract} {abstract} 

Figure 4 The key classes of Compose. 

ditions, etc., as well as various aspects of the numerical methods. Such 
objects can be composed into a complete PDE solver, which thus be­
comes fully object-oriented in the sense discussed above. 

The Compose project emphasized the object-oriented analysis, and 
the resulting object model was a main result of the project. This model 
can be regarded as a general framework for the construction of PDE 
solvers. The key classes on the uppermost level of abstraction are shown 
in Fig. 4. On this level of abstraction, the model applies to a variety of 
PDE solvers, with different underlying numerical approaches. Our im­
plementation of the model, however, focusses on finite difference methods 
on composite, structured grids. 

The Compose object model distinguishes between the PDE Problem 
and the PDE Solver. There is an association between the two, reflect­
ing that a PDE solver is associated to the problem it is to solve. The 
PDE Problem is an aggregate of Equations, and the PDE Solver is an 
aggregate of System Solvers, each of which is an aggregate of Equation 
Discretizers. The Equation Discretizer is associated to an Equation. 

Fig. 4 does not show the lower level classes Grid, Grid Function, etc. 
However, such classes are present in Compose as well, and provides a 
supporting lower layer. In our implementation of the Compose object 
model, Overture [5] serves this purpose. Overture is a C++ library 
similar to Cogito. In Overture, the discrete grid function has differen­
tial operators. For example, u. x 0 represents the differentiation of u 
with respect to x. This notation is used to express the PDE problem. 
However, the actual computation of the differential operators is done via 
discrete approximations. Overture has a class that represents a pack­
age of discrete space operators. When the grid function is initiated, it 



Object-oriented Modeling of Parallel PDE Solvers 165 

gets associated to such a package, which then specifies which discrete 
approximations to use for the various derivatives. 

We now explain the dynamic behavior of the Compose object model 
for the case of an explicit time marching method, as in the example of 
our 2D compressible Navier-Stokes solver above. In Compose, the com­
pressible Navier-Stokes equations would be an inheritor of the Equation 
class. The PDE Solver would have an Explicit System Solver (an inheri­
tor of System Solver). The space operator package object is an argument 
to the System Solver constructor. Thus, the Explicit System Solver will 
be able to establish the connection between the solution (grid function) 
and the discrete space operators. When the Explicit System Solver is 
to advance the solution to the next time level, it tells the Runge--Kutta 
Discretizer to update the solution. This particular equation discretizer, 
an inheritor of the base class Equation Discretizer, knows what time 
marching algorithm to use, but it tells the equation object to compute 
the right-hand side (cf. R in Fig. 3). The equation object then applies 
the various differential operators (and other operators) occurring in its 
right-hand side. The solution (an instance of Grid Function), via its 
associated space operator package, knows what discrete approximations 
to use for these derivatives. 

In the case of an implicit time marching method, the dynamic be­
havior is similar, but more complicated. Then, the Equation Discretizer 
contributes to the construction of an algebraic system. The various 
contributions from different equation discretizers are assembled by the 
Implicit System Solver, which subsequently solves the system. 

It should be noted that each of the classes Equation, System Solver, 
and Equation Discretizer is the abstract base class of an inheritance 
hierarchy. As an example, the Equation hierarchy has a first level of 
inheritors representing various kinds of equations. The actual equations 
are on the second level of the inheritance tree. Not only the partial 
differential equations are represented as equation objects, but also the 
boundary and initial conditions. 

The Compose model has been demonstrated to work in practice, for 
example in the case of the 2D incompressible Navier-Stokes equations [1]. 
In the Compose-based implementation of a solver for these equations, the 
PDEs (a system of two convection-diffusion equations for the velocities, 
and an elliptic equation for the pressure) are represented as independent 
objects, as are the initial conditions and various boundary conditions 
needed. Moreover, the elliptic equation for the pressure could reuse an 
existing class for the Poisson equation, and the solver for that equation. 
However, since the solver objects are separate from the equation objects, 
we could as well reuse the equation only, and connect it to a new solver. 



166 ARCHITECTURE OF SCIENTIFIC SOFTWARE 

This distinguishes Compose from Diffpack [4, Chapter 11], which also 
has a fully object-oriented structure, but does not handle the equations 
as independent objects. Another software library with similar scope, 
ELEMD [4, Chapter 4], has separated the equations, and also includes a 
class Equation Discretizer. There are differences in details, mainly due 
to the fact that ELEMD emphasizes finite element methods, whereas 
Compose focusses on finite difference methods. 

Another related effort is POOMA [6]. There is no apparent coun­
terpart to Compose in the five-layer model of POOMA. The top layer, 
the application layer, differs between applications, and there is no gen­
eral model for composing applications, whereas this is precisely where 
Compose has its focus. 

Finally, Compose has a built-in support for code validation and mon­
itoring. The equation classes include operations that allow for testing 
the equations with known solutions (via the technique of forcing) [2]. 
This, in turn, is based on support in Overture for this kind of testing. 
Moreover, Compose includes the concept of Monitor classes, which can 
be used for computational steering [2]. None of these features seem to 
be available in the related work discussed above. 

3. FINE-GRAINED MODELING OF 
NUMERICAL OPERATORS 

3.1. OVERVIEW 
With respect to the goals stated in § 1, the prototype implementations 

of Compose and Cogito address the first and third goals. In our ongoing 
work we are exploring different directions for extending and improving 
the Compose model in view of the second goal. 'l'hat is, the aim is to 
make it possible to construct numerical operators incrementally, starting 
out with a set of basic objects. In this way, the user will be able to design 
new numerical algorithms within the object-oriented framwork, without 
having to fall back on "low level" programming in C++ or Fortran 90. 

Primarily, we are focusing on the following types of operators. 

• Stencils. We have recently equipped Cogito with a Stencil class, 
which allows for incremental construction of stencil operators. 

• Coordinate invariant operators. In the same spirit as a group at 
Bergen University [3], with which we are interacting, we aim at 
distinguishing between the mathematical formulation of the differ­
ential equations and the actual evaluation in a specific coordinate 
system. Since the equations occurring in applications can often 
be expressed in terms of coordinate invariant operators (gradient, 



Object-oriented Modeling of Parallel PDE Solvers 167 

divergence, curl, etc.), software support for such operators would 
increase the reusability of the software. As an example, a prob­
lem with a cylindrical geometry may then be simplified to a 2D 
problem without changing the equations. 

The support for coordinate invariant operators is also appealing 
in the context of curvilinear structured grids, where the actual 
computations take place on a rectangular grid. Then, there is by 
necessity a coordinate transformation involved, between the com­
putational grid and the physical grid. This calls for a reformu­
lation of the PDE, involving the metric tensor [7, p. 68] of the 
mapping. However, if the equations are expressed in terms of co­
ordinate invariant operators, and if such operators are available in 
the object-oriented software library, then the reformulation of the 
equations can be avoided. 

The expression for a coordinate invariant operator in a specific 
coordinate system includes derivatives of various quantities. For 
a user who wishes to fine-tune the algorithm, it is desirable to 
be able to decide precisely how these derivatives are going to be 
approximated in the discretized operator. Consequently, we want 
to allow for composition of coordinate invariant operators, using 
basic building blocks such as difference stencils. 

It can be noted that Overture [5], as well, addresses the issue of 
automatizing the mapping between the computational and phys­
ical coordinate systems in the case of curvilinear grids. However, 
they do not support coordinate invariant operators in the way dis­
cussed above. Neither do they allow for "component-based" design 
of operators, as envisaged here. 

• General difference operators. A natural extension of these ideas 
would be to allow for incremental construction of general differ­
ence operators. For example, the complete right-hand side of a 
difference method for a nonlinear PDE could be expressed as a 
single difference operator. 

• Preconditioners. The idea of fine-grained modeling also carries 
over to other types of operators. Preconditioners is an example. 
So far preconditioners have been regarded as atomic units in ob­
ject modeling. In a pilot study [18], we went beyond that limit, in 
that we presented a way of constructing a certain family of pre­
conditioners from "smaller" objects. We are currently generalizing 
these ideas. 



168 ARCHITECTURE OF SCIENTIFIC SOFTWARE 

Remark: The fine-grained decoupling of operators that we are aiming 
for is motivated by the needs of algorithm developers. Many users do not 
require this flexibility, but are satisfied with using a standard variant of 
an operator. For them, we envisage that a library of predefined operator 
objects will be available. 

In the following, we discuss in more detail two cases of fine-grained 
modeling of numerical operators: stencils and preconditioners. 

3.2. GENERALIZED STENCIL OPERATORS 
We have recently extended Cogito with stencil operators [19]. Objects 

of the class Stencil can be created as combinations of "smaller" objects 
of the same class. There is a library of basic objects, representing the 
identity operator, the shift operators in different space directions, and 
the standard difference approximations of the first derivative. By op­
erations such as composition of stencils, multiplication of stencils with 
coefficients (scalar or matrix), etc., complex stencils can be built. This 
makes it possible for the user to design new stencil operations within the 
framework, and to store them in the library for subsequent reuse. 

As an additional benefit, the ability to collect a large number of arith­
metic operations into a single stencil operation leads to improved cache 
utilization. In our experiments, on a Sun Wildfire parallel platform, we 
observed reductions of 50% in execution time when the new stencil class 
was introduced [19]. This is explained partly by the cache effects, partly 
by additional code restructuring that helped the Fortran 90 compiler do 
a better job. 

The stencils are "generalized" in the sense that a single stencil object 
can act on several components of a grid function, and can have different 
actions on different components. Moreover, the number of components 
in the result can be different from the number of components of the 
operand. Thus, in general, we allow for stencils where the coefficients 
are rectangular matrices. 

When a stencil is going to be used, it is connected to a grid function. 
Internally, in the grid function object, the stencil is then stored in a 
table, and persistent MPI objects for the communication are set up. 
The actual application of the stencil takes place via subsequent calls 
to Apply Stencil, which is an operation of the class Grid Function. By 
locating the application inside the grid function object, the internal data 
structures of that object can be accessed directly, which is important for 
efficient execution of the stencil operation. 

The idea of a stencil class is not new. The point of our particular 
design is the support for incremental construction of stencils. POOMA 



Object-oriented Modeling of Parallel PDE Solvers 169 

[13] has a stencil class that allows for efficient application of stencils, but 
the design of new stencils requires C++ coding. Karpovich et al. [14] 
have no separate stencil representation, but provide classes for applying 
a sequence of stencils to a matrix. 

3.3. PRECONDITIONERS BASED ON FAST 
TRANSFORMS 

As a second example of fine-grained modeling of numerical operators, 
we discuss preconditioners based on orthogonal transforms, also known 
as normal block preconditioners [11],[20]. This is linked to other research 
activities at our department, where the aim is to design new normal block 
preconditioners for discretizations of systems of PDEs. By modeling 
the preconditioners as described in the following, we will provide these 
colleagues with a laboratory in which they can conveniently compose 
new preconditioners and experiment with them. The savings, in terms 
of human efforts, will be huge, and with careful implementation the 
additional overhead in execution time will be negligible. 

The construction of a normal block preconditioner for the discrete 
system Bu = 9 goes as follows: 

• Select a set of discrete transforms, and decide which transform to 
apply in what space direction. 

• Form a normal block operator M with the same block structure 
as B, but where the blocks at one or more levels of M are di­
agonalizable by the transform matrices, and where M is the best 
approximation to B measured in the Frobenius norm [20]. 

The subsequent application of a normal block preconditioner can be effi­
ciently implemented in parallel, in terms of fast transforms and solution 
of narrow-banded systems [15]. 

Traditionally, the system Bu = 9 is interpreted as a linear algebraic 
system with coefficient matrix B, and with u and 9 as vectors. However, 
since u and 9 are actually grid functions with four indices each-one 
for the components and one for each space direct ion-B is a tensor [7] 
with four upper indices ("row" indices) and four lower indices ("col­
umn" indices). It is largely the underlying grid that determines the 
block structure of the tensor B. It would be obscured by a conversion 
to matrix form. Consequently, the construction and application of the 
normal block preconditioner is much more conveniently expressed if B 
is maintained in its original tensor form [20]. This is a motivation for 
introducing the tensor as a new basic data type in Cogito. 



170 ARCHITECTURE OF SCIENTIFIC SOFTWARE 

In our tentative object model for the construction of normal block 
preconditioners, the Normal Block Solver constructs the preconditioner, 
and knows how to carry out subsequent preconditioner solve operations. 
The construction of the normal block operator M is based on the Band 
Tensor B, and on a Poly transform, which is an ordered set of Trans­
form objects. The resulting preconditioner is also a band tensor, and 
is tightly connected to the normal block solver. Each transform is a 
discrete trigonometric transform, which is associated with the discrete 
Fourier transform, which is further associated to the radix-2 fast Fourier 
transform. 

We have recently made a serial pilot implementation of this model, 
in Fortran 90. It contains seven orthonormal and three nonorthonormal 
transforms. Moreover, it has operations such as applying a poly trans­
form to a grid function, computing the inner product between a band 
tensor and a grid function, and applying the normal block solver. The 
serial code will be used for validation (and possibly modification) of 
the model, before we go on to a parallel implementation. Note, that 
these implementations do not begin from scratch, but can build on our 
previous experiences [12, 21, 15]. 

4. MIXED C++/F90 IMPLEMENTATION OF 
FLOW SOLVERS 

The revised object model we aim for is to be implemented on the basis 
of our previous software Cogito (Fortran 90) and Compose (C++). The 
intention is to develop a flexible framework for construction of parallel 
POE solvers using the object-oriented capabilities of C++, which will 
execute with high parallel efficiency via the Fortran 90 components of 
Cogito. 

As a first step in this direction, we have made a C++ embedding of the 
"object-based" Fortran 90/MPI version of Cogito [17]. We have demon­
strated for a scalar advection problem in 20 that the C++ /Fortran 90 
version gives almost exactly the same execution time as the pure For­
tran 90 code. 

For further validation of the mixed-language approach, we reimple­
mented the 20 compressible Navier-Stokes code by calling the new, 
mixed language version of Cogito. In this case as well, there was a neg­
ligible difference in execution time between the pure Fortran 90 and the 
C++/Fortran 90 version of the Navier-Stokes solver. In addition, we 
measured scalability, in terms of sizeup [24] for the two versions of the 
Navier-Stokes code. The two codes show (almost) identical behavior. 



Object-oriented Modeling of Parallel PDE Solvers 171 

The maximum discrepancy is 4.5% and there is no trend of an increas­
ing discrepancy as the number of processors goes up [17]. 

Using calls to Fortran from within C++ classes is relatively straight­
forward. Our situation is more complicated, since we wrap C++ around 
an object-based Fortran 90 code. This problem was discussed in [9]. Our 
approach [17] is similar, but avoids one of the steps of wrapping. More­
over, we have demonstrated that our approach works in practice for a 
relatively large object-based Fortran 90 library, i.e., Cogito. 

5. CONCLUSIONS 

In previous work, we have explored the potential of object-oriented 
programming in the context of numerical solvers for partial differen­
tial equations. First, we demonstrated that an object-oriented style of 
implementation of parallel PDE solvers in Fortran 90 is feasible, and 
relieves the programmer of many low-level details. Next, we proposed 
the object-oriented framework Compose, which allows for fully object­
oriented construction of PDE solvers. In Compose, the PDEs are rep­
resented as separate objects, independent of the numerical approach to 
be used. A pilot implementation of Compose, in C++, shows that the 
model is applicable to realistic application problems, such as the incom­
pressible Navier-Stokes equations on composite, structured grids. 

We conclude that it is relevant to continue elaborating the Compose 
model. In particular, we have discussed the introduction of a more fine­
grained modeling of numerical operators, so that complicated operators 
can be constructed via composition of simpler ones. As a preliminary 
result in this direction, we described a generalized stencil class that has 
recently been implemented. Moreover, we discussed the object-oriented 
modeling of normal block preconditioners. Finally, we presented the 
ambition to base the next implementation of the C++ library Compose 
on our "pseudo object-oriented" Fortran 90 library Cogito, which exe­
cutes efficiently on parallel platforms. The new mixed C++ /Fortran 90 
version of Cogito promises to be a suitable basis for this development. 

References 

[1] K. AHLANDER, An extendable PDE solver with re­
usable components, in Computational Technologies for 
fluid/thermal/structural/chemical systems with industrial ap­
plications, V. V. Kudriavtsev and C. R. Kleijn, eds., vol. 397-1, 
New York, 1999, ASME, pp. 39-46. 

[2] K. AHLANDER, An object-oriented framework for PDE solvers, PhD 
thesis, Uppsala University, Information Technology, Dept. of Scien-



172 ARCHITECTURE OF SCIENTIFIC SOFTWARE 

tific Computing, Uppsala, Sweden, 1999. 

[3] K. AHLANDER, M. HAVERAAEN, AND H. MUNTHE-KAAS, On the 
role of mathematical abstractions for scientific computing. Proceed­
ings of the IFIP WG 2.5 Working Conference on Software Architec­
tures for Scientific Computing Applications, Kluwer, 2000. 

[4] E. ARGE, A. M. BRUASET, AND H. P. LANGTANGEN, eds., Modern 
Software Tools for Scientific Computing, Birkhauser, 1997. 

[5] D. L. BROWN ET AL., Overture: An object-oriented framework for 
solving partial differential equations on overlapping grids, in Ob­
ject Oriented Methods for Interoperable Scientific and Engineering 
Computing, M. E. Henderson, C. R. Anderson, and S. L. Lyons, 
eds., SIAM, Philadelphia, 1999, ch. 26. 

[6] J. C. CUMMINGS ET AL., Rapid application development and en­
hanced code interoperability using the POOMA framework, in Ob­
ject Oriented Methods for Interoperable Scientific and Engineering 
Computing, M. E. Henderson, C. R. Anderson, and S. L. Lyons, 
eds., SIAM, Philadelphia, 1999, ch. 29. 

[7] D. A. DANIELSON, Vectors and Tensors in Engineering and 
Physics, Addison-Wesley, Reading, MA, 2nd ed., 1997. 

[8] V. K. DECYK ET AL., How to express C++ concepts in Fortran 90, 
Scientific Programming, 6 (1997), pp. 363-390. 

[9] M. G. GRAY ET AL., Shadow-object interface between Fortran 95 
and C++, Computers in Science and Engineering, 1 (1999), pp. 63-
70. 

[10] A. H. HAYES, The changing face of high-performance computing 
in the United States, Wuhan Journal of Natural Sciences, 1 (1996), 
pp. 420-429. Keynote Lecture at the International Conference on 
Parallel Algorithms, Wuhan University, Wuhan, P. R. China, Octo­
ber 1995. 

[11] S. HOLMGREN AND K. OTTO, A framework for polynomial pre­
conditioners based on fast transforms I: Theory, BIT, 38 (1998), 
pp. 544-559. 

[12] --, A framework for polynomial preconditioners based on fast 
transforms II: PDE applications, BIT, 38 (1998), pp. 721-736. 

[13] S. KARMESIN ET AL., Array design and expression evaluation in 
POOMA II, in Proceedings of ISCOPE'98, Lecture Notes in Com­
puter Science, Vol. 1505, D. Caromel, R. Oldehoeft, and M. Thol­
burn, eds., Berlin, 1998, Springer-Verlag. 

[14] J. F. KARPOVICH ET AL., A parallel object-oriented framework for 
stencil algorithms, in Proceedings of the Second International Sym-



Object-oriented Modeling of Parallel PDE Solvers 173 

posium on High-Performance Distributed Computing, 1993, pp. 34-
41. 

[15] E. LARSSON AND S. HOLMGREN, A parallel domain decomposition 
method for the Helmholtz equation, Tech. Rep. 2000-006, Dept. of 
Information Technology, Uppsala Univ., Uppsala, Sweden, 2000. 

[16] M. LEMKE AND D. QUINLAN, P++, a parallel C++ array class 
library for architecture-independent development of structured grid 
applications, ACM SIGPLAN Notes, 28 (1993), pp. 21-23. 

[17] M. LJUNGBERG AND M. THUNE, Mixed C++/Fortran 90 imple­
mentation of parallel flow solvers. Accepted for publication in the 
proceedings of Parallel CFD 2000. 

[18] E. MOSSBERG, K. OTTO, AND M. THUNE, Object-oriented soft­
ware tools for the construction of preconditioners, Sci. Program­
ming, 6 (1997), pp. 285-295. 

[19] M. NORDEN, Stencils for parallel object-oriented PDE solvers, Mas­
ter's thesis, Uppsala University School of Engineering, 2000. Report 
No. UPTEC F 00 067. 

[20] K. OTTO, A tensor framework for preconditioners based on fast 
transforms. Manuscript. 

[21] K. OTTO AND E. LARSSON, Iterative solution of the Helmholtz 
equation by a second-order method, SIAM J. Matrix Anal. Appl., 
21 (1999), pp. 209-229. 

[22] J. RANTAKOKKO, Software tools for partitioning of block-structured 
applications, in Proceedings of ISCOPE'98, Lecture Notes in Com­
puter Science, Vol. 1505, D. Caromel, R. Oldehoeft, and M. Thol­
burn, eds., Berlin, 1998, Springer-Verlag. 

[23] --, Partitioning strategies for structured multi block grids, Parallel 
Computing, 26 (2000), pp. 1161-1680. 

[24] X. SUN AND J. L. GUSTAFSON, Towards a better parallel perfor­
mance metric, Parallel Computing, 17 (1991), pp. 1093-1109. 

[25] M. THUNE ET AL., Object-oriented construction of parallel PDE 
solvers, in Modern Software Tools for Scientific Computing, E. Arge, 
A. M. Bruaset, and H. P. Langtangen, eds., Birkhauser, Boston, 
MA, 1997, pp. 203-226. 

[26] R. D. WILLIAMS, DIME++: A language for parallel PDE solvers, 
Tech. Rep. CCSF-29-92, Caltech, Pasadena, CA, 1993. 



174 ARCHITECTURE OF SCIENTIFIC SOFTWARE 

DISCUSSION 

Speaker: M. Thune 

Fred Gustavson: Did you use parallel narrow band solvers in your 
implementation? 
M. Thune: The pilot implementation of the Normal Block Solver and 
related classes is serial, but of course we intend to carryon this work with 
a parallel implementation. As I mentioned, Cogito is parallel. Moreover 
my co-author Kurt Otto and his colleagues have had for many years 
a non-object-oriented implementation of parallel preconditioners of this 
type. 


	OBJECT-ORIENTED
 MODELING OF PARALLEL PDE SOLVERS*
	1. INTRODUCTION
	2. REVIEW OF PREVIOUS RESULTS
	2.1. COGITO: ABSTRACT DATA TYPESFOR COMPOSITE GRIDS
	2.2. COMPOSE: OBJECT-ORIENTEDCOMPOSITION OF PDE SOLVERS

	3. FINE-GRAINED MODELING OFNUMERICAL OPERATORS
	3.1. OVERVIEW
	3.2. GENERALIZED STENCIL OPERATORS
	3.3. PRECONDITIONERS BASED ON FASTTRANSFORMS

	4. MIXED C++/F90 IMPLEMENTATION OFFLOW SOLVERS
	5. CONCLUSIONS
	References
	DISCUSSION




