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Introduction

Systemic hypertension is a multifactorial clinical condition 
and an independent risk factor for mortality in patients with 
cardiovascular diseases1. Increase in blood pressure is linked to 
neural mechanisms, e.g., autonomic dysfunction, sympathetic 
hyperactivity and disarray in arterial baroreceptors and chemo-
receptors  2,3,4. The arterial baroreceptor in hypertensive subjects 
adapts to high levels of blood pressure, via receptors depolar-
ization reduction, diminishing thus its functional capacity5,6.

The role of physical exercise in blood pressure reduction has 
been well documented in animal models7 and humans8,9, and 
this phenomenon occurs due to adjustments in the neurohumoral 
mechanisms. Post-exercise hypotension [PEH] is a prolonged 
decrease in arterial blood pressure after a single bout of exercise7.

The autonomic mechanisms attributed to PEH are well-
documented, such as reduced peripheral sympathetic activity10,11, 
modifications in the cardiac autonomic activity12,13 and adjust-
ments in the baroreflex sensitivity14,15. On the other hand, the 
central neural mechanisms have only recently been discovered 
and investigated. This review emphasizes on evidence of synaptic 
mechanisms in the central baroreflex pathway that contribute 
to development of PEH. Therefore, we will summarize studies 
that define important areas of central nervous system (CNS) 
involved in physical activities and blood pressure regulation.

Central baroreflex arc, blood pressure, and sympathetic 
activity

Regulation of the cardiovascular system by the baroreflex in-
volves multiple components of the baroreflex arc, such as sensors 
(baroceptors), afferents pathway (depressor nerve aortic), central 
circuit (nucleus tractus solitarii (NTS) and others brain areas), and 
efferent pathway (heart, vessels). The afferent fibers baroreceptor, 
which carries blood pressure information, makes an excitatory 

synaptic contact with second-order neurons in the NTS. The NTS 
integrates and receives information from arterials baroceptors and 
through connections with caudal ventral lateral medulla (CVLM), 
rostral ventral lateral medulla (RVLM), and dorsal nucleus of 
the vagus nerve promotes the control of hemodynamics to adjust 
blood pressure16. Within the NTS, glutamate, a primary excit-
atory neurotransmitter, acts on ionotropic glutamate receptors 
to mediate fast synaptic transmission17. The afferent fibers from 
skeletal muscle also project the NTS through a poly-synapse 
pathway. These ascending fibers, which carry information from 
the muscles, make an excitatory synapse releasing the substance 
P closer to the GABAergic interneurons in the NTS18. The NTS 
output neurons convey signals from the baroreceptors and muscles 
afferent to neurons in the CVLM via excitatory glutamatergic 
synapses. The neuronal output of the CVLM provides inhibitory 
(GABAergic) inputs to the cardiovascular sympathetic neurons 
in the RVLM, projecting to the sympathetic pre-ganglionic 
neurons in the intermediolateral cell column in the spinal cord. 
Therefore, increase in blood pressure activate the baroreceptors, 
which increases NTS neuronal activity, increasing GABAergic 
neuronal activity in the CVLM, which decreases neurons activity 
of the RVLM and reduces the sympathetic nerve activity that 
returns blood pressure to the control level.

Blood pressure is determined by product of vascular pe-
ripheral resistance with cardiac output, and efferent pathways 
of sympathetic vasomotor outflow control both determinants 
factors. This sympathetic outflow presents tonic activity and 
has source in intermediolateral cell column in preganglionic 
neurons located in the spinal cord. Moreover, this sympathetic 
tone activity controls the cardiovascular function through va-
soconstrictors and cardioaccelerator adjustments19.

Direct projections of the intermediolateral column origi-
nates predominantly from at least five areas of the brain: a) 
rostral ventrolateral medulla (RVLM); b) rostral ventromedial 
medulla; c) caudal raphe nuclei; d) A5 cell group in the pons; 
and e) paraventricular nucleus of the hypothalamus (PVN). The 
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RVLM has a great relevance in sympathetic regulation to the 
cardiovascular system and PVN may provide a tonic excitatory 
drive to the RVLM neurons. PVN neurons send direct projections 
to sympathetic preganglionic neurons of the intermediolateral 
column20, therefore, PNV neurons can affect the sympathetic 
tonus through its direct and indirect connections. Consequently, 
both RVLM and PVN could adjust sympathetic vasomotor tone 
and regulates blood pressure21,22,23.

Post-exercise hypotension

Post-exercise hypotension (PEH) has been observed in 
normotensive and hypertensive humans8,9, likewise, in ani-
mal models of hypertension7, being greater in hypertensive 
than normotensive subjects24,25,26. In humans, PEH has been 
documented following various types of dynamic exercise 
(walking, running, cycling, and swimming), as well as in 
resistance  exercise7,25,26,27,28.

The duration of PEH occurs from ten minutes and persists 
until 24 hours after a bout of exercise29,30. Different methods 
have been used to assess it, such as the auscultatory method31,32, 
intra-arterial measurement method33,34, and ambulatory blood 
pressure monitoring (24h assessment)29,30,31,35. In the recent 
meta-analysis, Cassonatto et al.8 showed that a single bout of 
resistance exercise elicited small-to-moderate reductions in 
systolic blood pressure at 60 and 90 minutes after exercise, and 
in 24-hour ambulatory blood pressure compared to control ses-
sion. They concluded that a single bout of resistance exercise 
could have a blood pressure-lowering effect that lasts up to 24 
hours. Marques-Silvestre et al.9 found in their systematic review, 
relevant reductions of systolic/diastolic blood pressure after a 
session of dynamic aerobic exercise and it was maintained for 

several hours. Therefore, these post-exercise blood pressure 
reductions could have an impact on cardiovascular health, since 
a 5 mm Hg reduction is clinically significant and is associated 
with risk reduction for stroke and heart disease of 15%–20%36. 
Also, it is interesting to note that the time and magnitude of 
PEH depends on the subject’s characteristics37, physical activ-
ity type34,38, muscle mass involved39, duration, volume and/or 
intensity of physical activity performed25,40,41,42.

The use of physical exercise to reduce blood pressure in 
hypertensive subjects is already well emphasized in clinical 
trials and systematic reviews8,43,44,45. In addition, several clinical 
trials identified the effectiveness of physical training to reduce 
blood pressure levels46,47,48, as well as in meta-analysis7,49,50,51. 
Meta-analysis of Halbert et al.51 published for two decades, 
showed reductions of – 4.7mmHg and – 3.1mmHg in systolic 
and diastolic blood pressure, respectively. Fagard49 identified 
reductions of – 3.3 mmHg in systolic blood pressure and – 3.5 
mmHg in diastolic blood pressure. Similarly, Whelton et al.50 
observed a significant reduction in systolic and diastolic blood 
pressure of – 3.84 mmHg and – 2.58 mmHg, respectively.

It is known that neural mechanisms are associated with PEH, 
such as reduction of sympathetic nervous activity, increase of 
vagal modulation, and improved baroreflex sensitivity10,11,26,46. 
In table 1 are presented post-exercise autonomic responses as-
sessed by different methods. Overall, there were reductions of 
muscle sympathetic nerve activity after aerobic exercise10,11,52, 
reduction of cardiac autonomic balance14,53, and increase of 
baroreflex sensitivity and heart rate variability54. Contrarily, 
other studies reported increased cardiac and vasomotor sym-
pathetic modulation, decreased parasympathetic modulation 
and/or attenuation of baroreflex sensitivity12,13,15,55 however, 
those studies used resistance exercise13,15,55 or maximal aero-
bic exercise12.

Table 1. The effect of physical exercise on autonomic and hemodynamic parameters.

Author Subjects/Protocol
Responses

Hemodynamic Autonomic

Aprile et al.52

9 patients with stages 2-3 chronic kidney disease (50 ± 8 
years) and 12 healthy volunteers (50 ± 5 years)

Randomized sessions: (1) exercise (45 min, cycle ergom-
eter, 50% of VO2peak) and (2) rest (seated, 45 min).

Both groups
↓SBP, ↓DAP,

↓FVR.

Both groups 
↓MSNA

Trevizani et al.53

9 hypertensive men (HT: 58.0 ± 7.7 years) and 11 normo-
tensive men (NT: 57.1 ± 6.0 years)

(1) resistance exercise session (two sets of 15–20 repeti-
tions, 50% of 1RM, 120 s intervals between sets/exercise)

-
In HT and NT

↓SM, ↓PM, ↓SDNN, ↓pNN50, 
↓RMSSD, ↓AB

Liu et al.14
17 prehypertensive, (45 – 60 years).

(1) aerobic exercise session and (2) aerobic training 8-week 
(four times per week, 30 min per session, 65% VO2max).

Acute exercise
↓BP

After 8-wk
↓BP

After 8-week 
↓AB

Queiroz et al.55
12 hypertensives (HT) and.14 normotensives (NT)

 (1) resistance exercise sessions (seven exercises, three sets, 
50% – 1RM) and control session (rest)

In HT and NT
↓SBP, ↓DAP,

↓SV, ↑HR,
↔CO, ↔SVR

In HT and NT
↑AB
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Neural mechanisms and PEH

The hemodynamic changes induced by physical exercise depends 
on cardiovascular autonomic activity and CNS. Regarding the 
areas of CNS, studies have shown that the RVLM56,57, NTS58,59, 
and PVN58,60,61 are involved with this cardiovascular control.

Evidence has shown that there are important mechanisms 
working in the nervous system to adjust the PEH. Table 2 shows 
studies that investigated the contribution of this nervous system 
to the occurrence of PEH. Boone and Jr. Corry62 demonstrated 
that the expression of the gene preproenkephalin (PPK) increases 
in the CNS after treadmill exercise in SHRs, suggesting that 
increase in PPK synthesis and release in the NTS, CVLM, and 
RVLM may be involved in regulating PEH. Previous studies on 
both humans and SHRs indicate that endorphin systems (opioid 
receptor antagonist, naloxone) attenuate PEH, and they trigger the 
transient depression of blood pressure immediately after running 
period in the SHR63. In addition, injections of vasopressin V1 
receptor antagonist into the lateral cerebral ventricle impedes 
the manifestation of PEH64. This result supports the participa-
tion of central mechanisms in the development of PEH, even 

though the exact role of each receptor system and the specific 
site of interaction are still indeterminate.

On the other hand, there is evidence suggesting crucial role 
of the central baroreflex pathway in PEH. Disturbance of inputs 
from the cardiopulmonary and arterial baroreflex to the CNS 
prior to exercise attenuates the development of PEH. Blocking 
the cardiac afferents and efferent fibers with intrapericardial 
procainamide prevents PEH65. Correspondingly, Chandler and 
DiCarlo66 observed that sinoaortic denervation, which eliminates 
arterial baroreflex afferents, participates in development of PEH 
in SHRs. These authors postulated that probably an enhanced 
inhibitory influence of cardiopulmonary afferents might alter the 
arterial baroreflex by modulating the response of barosensitive 
neurons in the NTS to arterial baroreceptor input. These altera-
tions, through resetting of the arterial baroreflex with a reduction 
in gain, would account for the hypotension, sympathoinhibition, 
and absence of reflex tachycardia that occurs after a single bout 
of dynamic exercise in hypertensive rats. Therefore, this data 
has demonstrated the importance of a functioning baroreflex for 
occurrence of PEH. Previous investigations have shown reduc-
tion of sympathetic nerve activity after exercise67, as might be 

Author Subjects/Protocol
Responses

Hemodynamic Autonomic

Niemela et al.15

12 healthy male subjects. (31 ± 3 years)
Randomized sessions: (1) aerobic exercise session on a 
bicycle, (2) light resistance exercise session, (3) heavy 
resistance exercise session, and (4) control intervention 

with no exercise.

-

After 30 and 60 min (aerobic and 
light resistance exercise) 

↓BRSLF
After heavy exercise

↓PM, ↑SM-SBP

Resk et al.13
17 normotensives Experimental sessions: (1) control (C-40 
min of rest), (2) low – (E40% – 1RM), and (3) high-inten-

sity (E80% – 1 RM) resistance exercises.

After E40%
↓SBP, ↓DBP, ↔SVR, 

↓SV, ↑HR, ↓CO
After E80%

↔DBP, ↓SV, ↑SVR, 
↑HR, ↓CO

After E40% and E80%
↑SM, ↓PM,

Bisquolo et al.10
21 healthy young men Randomized sessions:

(1) aerobic exercise session on a bicycle (50% VO2peak) 
and (2) control session.

Between sessions
↔BP, ↔HR

Exercise session
↑FBF

Exercise session
↓MSNA

Raczak et al.54
18 healthy males (20 – 24 years)

(1) aerobic exercise session on a treadmill for 30 min at 
65% – maximal HR.

↓SBP ↑BS, ↑SDNN, ↔HRV

Halliwill, Taylor 
and Eckberg11

9 healthy subjects (22 – 27 years)
(1) aerobic exercise session on a bicycle, 60 min at 60% 

VO2peak or (2) control session (60 min seated rest).

↓SBP, ↓MBP,
↓TPR, ↑CO. ↓MSNA

Piepoli et al.12
10 normal subjects Randomized sessions: (1) aerobic exer-
cise (maximal upright bicycle) and (2) control session (no 

exercise day, 30 min of upright rest)

After 60min
↓DBP, ↑CO,
↔SV, ↓SVR

After 60min
↑SM, ↓PM,
After 10min

↓BS

Abbreviations: SBP, systolic arterial pressure; DBP, diastolic arterial pressure; MBP, mean arterial pressure; MSNA, muscle sympathetic nerve activity; TPR, 
total peripheral resistance; CO, cardiac output; VO2peak, peak oxygen uptake; VO2max, maximum oxygen consumption; FVR, forearm vascular resistance; 
FBF, forearm blood flow; SV, stroke volume; SVR, systemic vascular resistance; BS, baroreflex sensitivity; SM, sympathetic modulation; PM, parasympathetic 
modulation; AB, autonomic balance; RM, repetition maximum; BRSLF, baroreflex sensitivity of low frequency band; SM-SAP, sympathetic modulation of 
systolic arterial pressure; SDNN, standard deviation of normal-to-normal RR intervals; HRV, heart rate variability; pNN50, duration higher than 50 ms in relation 
to the total number of normal-to-normal RR intervals; RMSSD, square root of the mean square differences of successive normal-to-normal RR intervals; ↓ 
decrease; ↔ no change; ↑ increase.
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expected during the lower blood pressure and the baroreflex-
mediated regulation of the sympathetic nerve activity must be 
reset to a lower operating point during PEH.

In the same way, the fundamental role of the RVLM neurons 
in controlling sympathetic vasomotor tone and blood pressure, 
the regulatory role of GABA in controlling baseline activity 
of those neurons and reduced baroreflex function during PEH. 
Thus, Kajekar et al.68 brilliantly suggested evaluating the role of 
RVLM cardiovascular sympathetic neuronal activity with PEH, 
as well as the relationship between RVLM sympathetic output 
with RVLM GABAA-receptor mechanisms, and with baroreflex 
sympathetic nerve activity. They concluded that upregulation of 
GABA signaling at sympathetic cardiovascular RVLM neurons 
lead to a decreased neuronal output that may contribute to the 
decrease in sympathetic outflow and hence PEH. Several evi-
dences suggest that muscle afferent fibers release the substance 
P to activate NK1-R on GABA neurons in the NTS to modify 
baroreflex function during exercise21,69,70. The data raised the 
possibility that the unique interaction between the substance 
P and GABAergic signal transmission systems may contribute 
to PEH. Based on this information, Chen et al.71 in an elegant 

study confirmed that microinjection of a substance P–NK1-R 
antagonist in the NTS immediately before exercise attenuates 
the development of PEH in spontaneously hypertensive rats 
(SHRs). Since that activation of the NK1-R has been shown 
to result in the receptor internalization72, exercise-induced 
substance P NK1-R internalization on GABA neurons may pro-
vide the unique interaction between the two neurotransmission 
systems to trigger PEH. Later, Chen et al.73 proposed testing the 
hypothesis of how a single bout of dynamic exercise decreases 
the GABA inhibitory synaptic inputs in the NTS baroreceptor 
second-order neurons via substance P NK1-R internalization on 
GABA neurons in SHRs, and evidence that a decrease in blood 
pressure induced by a single bout of exercise in hypertension 
is mediated in part by downregulation of NK1-R on GABA 
neurons synapsing on NTS second-order baroreceptor neurons. 
They concluded that a single bout of dynamic exercise decreases 
the GABA inhibitory synaptic inputs in the NTS baroreceptor 
second-order neurons via substance P NK1-R internalization 
on GABA neurons, and suggest that exercise-induced NK1-R 
downregulation could provide a potential target for lowering 
blood pressure in hypertensive subjects.

Table 2. Experimental studies and neural mechanisms associated with PEH.

Authors Group Methods
(Exercise protocol) Results Conclusion

Boone and Jr. 
Corry62

Exercise 
group*

Sham-exer-
cise group*

*SHR

SHR were randomized to exercise (1) 
and Sham-exercise (2) groups.
Exercise protocol: (1) 40 min of tread-
mill running at 30 m/min, 10% grade;
(2) 40 min of rest on the treadmill.

At 30 min post-exercise preproenkeph-
alin mRNA levels in the NTS, CVLM 
and RVLM were increased (P < 0.01).

Increases in preproenkepha-
lin synthesis and release in 
the NTS, CVLM, and RVLM 
may be involved in regulat-
ing PEH.

Collins, 
Rodenbaugh 
and DiCarlo64

SHR group

Exercise protocol: All animals were 
submitted to treadmill exercise (40 
min) and sham exercise (40 min 
sitting on the treadmill). AP was 
recorded before and after a single 
bout of dynamic exercise with the 
central administration of vehicle or the 
selective AVP V1-receptor antagonist 
d(CH3)5Tyr(Me)- AVP  (AVP-X).

AP decreased below preexercise val-
ues (PV) with central administration 
of vehicle (P  <  0.05). After exercise 
with central administration of AVP-X, 
AP not significantly different from PV 
(P > 0.05). AVP-X at rest did not alter 
AP (P > 0.05).

AVP acting in the central 
nervous system mediates 
PEH.

Collins and 
DiCarlo65

Exercise 
group*
*SHR

Exercise protocol: a single bout of 
dynamic treadmill exercise (9-12.0 m/
min, 10-18% grade for 30-40 min). 
There were three experimental condi-
tions: control, cardiac efferent block-
ade*, and combined cardiac efferent 
and afferent blockade*. *procainamide

MAP significantly decreased in the 
control and cardiac efferent block-
ade conditions after exercise. After 
blocked of cardiac afferents the PEH 
to mild dynamic exercise was signifi-
cantly attenuated.

Blockade of cardiac afferents 
eliminated P
EH in the SHR, while block-
ing the cardiac efferent alone 
has no effect.

Chandler and 
DiCarlo66

Intact group*
SAD group

*SHR

Exercise protocol: a single bout of 
dynamic treadmill at 12 m/min, 10% 
grade for 40 min. Twenty minutes after 
exercise: cardiac autonomic blockade* 
and evaluation of PEH.
*b1-Adrenergic and muscarinic-cholin-
ergic receptor blocking agents.

After exercise MAP significantly de-
creased in the intact SHR. But wasn’t 
reduced in the SAD.

SAD prevented the post-
exercise reduction in both 
arterial pressure and cardiac 
sympathetic tonus. Arterial 
baroreflex is required for 
PEH.

Chen et al.73

Exercise 
group*

Sham-exer-
cise group*

*SHR

Exercise protocol: SHR were random-
ized to: (1) a single bout of exercise on 
the motor driven treadmill at 15–16m/
min and 10° for 40min; or (2) to a 
sham-exercise group (Sham), placed 
on the treadmill for 40min with no 
exercise.

Occurs reduction of the frequency 
but not of the amplitude of GABA 
spontaneous IPSCs (sIPSCs); Endog-
enous substance P influence on sIPSC 
frequency, and sIPSC frequency 
response to exogenous application of 
substance P.

PEH is mediated in part by 
a downregulation of NK1-R 
on GABA neurons synaps-
ing onto NTS second-order 
baroreceptor neurons.
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Considerations

The paraventricular nucleus of the hypothalamus (PVN) and the 
rostral ventrolateral medulla (RVLM) promotes tonic effect on 
the control of sympathetic vasomotor tone that triggers blood 
pressure responses. Thus, there are evidences on baroreflex 
system and central mechanisms related to PEH. The main cen-
tral mechanisms are (1) interaction between substance P and 
the GABAergic system in the NTS that contributes to PEH, 
and (2) baroreceptor neurons disinhibited in the NTS increases 
RVLM inhibition, via activation of the GABAergic neurons 
in the CVLM, reduces PEH. We concluded that the nervous 
system has an important contribution to reduce postexercise 
blood pressure. In addition, the baroreflex system is important 
to adjust PEH, as well as nucleus tractus solitarii and RVLM 
involvement is fundamental to its occurrence.
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