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Abstract
Weestablish amathematically rigorous, general and quantitative framework to describe currents of
non- (orweakly) interacting, indistinguishable particles driven far from equilibrium.We derive tight
upper and lower bounds for the achievable fermionic and bosonic steady state current, respectively,
which can serve as benchmarks for special cases of interactingmany-particle dynamics. For fermionic
currents, we identify a symmetry-induced enhancementmechanism in parameter regimeswhere the
coupling between system and reservoirs is weak. Thismechanism is broadly applicable provided the
inter-particle interaction strength is small as compared to typical exchange interactions.

1. Introduction

Currents—the specific physical feature of non-equilibrium steady states of open systems subject to a potential
gradient established by reservoirs—are a prominent topic of various branches of condensedmatter physics. As
the sizes of technological devices driven by currents reachmesoscopic scales, non-trivial quantum effectsmust
be taken into account [1–4]. Yet, our theoretical understanding of currents in quantum systems is far from
complete, e.g.,many results are available for perfect lattices [5], butmore realistic set-ups, with disorder and
decoherence, still pose a panoply of open questions [6–12].

The past decade has seen a vivid debate on the relevance of quantummechanics in biological systems and
most notably in photosynthesis [13–19]. Since photosynthetic organisms are immersed in an environment of
thermal photons, onemay describe the situation via a constant influx of photons triggering an outflowof
electrons [20]. The system, a large collection of intricately coupled chlorophyllmolecules, is therefore constantly
experiencing aflowof excitonswhichmay be interpreted as a current. At present, the debate [21–25] on how
suchflow in the stationary state can be affected by quantum coherence on transient time scales remains
widely open.

Quantum effects do not only emerge naturally inmany cases, they can also be engineered. In quantumdots
[26–29] andmolecular junctions [30–34], currents have been studied for decades. In addition, cold atom [35–
38] and trapped ion [39] set-ups provide clean testing grounds to study currents in amanifestly quantum
mechanical setting, including quantummany-particle and statistical effects.

The aimof this contribution is to provide a rigorousmathematical treatment of currents in non-equilibrium
quantum systems. To achieve this goal, we need amodel which is analytically controllable. Therefore, we treat
the coupling between the system and the particle reservoirs in aMarkovianway, i.e. we ignorememory effects in
the dynamics and use therefore a dynamical semi-group.Moreover, we focus on systems inwhich inter-particle
interactions are sufficiently weak, such that the system can be described by effectivemodel of free, i.e., non-
interacting particles. For fermions, this implies that the shifts in energy levels associated to inter-particle
interactionsmust be small compare to the energy-level spacings associatedwith the exchange interaction
induced by the exclusion principle. In this scenario, we can derive bounds on the current, which are sufficiently
tight to be saturated by properly designed systems. Our results thus also serve as a benchmark for studies of
quantum transport in systemswhere interactions (or other nonlinear effects) cannot be ignored. A violation of
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our analytically derived bounds is an unambiguous indicator of non-trivial interaction-induced effects, beyond
meremany-particle interferences between indistinguishable particles.

To establish such a versatile theoretical approachwhich can handle the above diverse scenarios, and, in
particular, also accounts for potential quantum statistical effects on transport, section 2 of our present
contribution provides a self-contained introduction to themathematically rigorous framework ofmany-particle
quantum currents.Wewill herein strongly rely on algebraic quantum statisticalmechanics, a formalismwhich
stems frommathematical physics. This algebraic approach to quantummechanics ofmany-particle systems is
indispensable to study infinitely large systems (as we do in section 5).Within this framework, we introduce a
quantumversion of the continuity equation, applicable to open systemdynamics of the semi-group type
[40, 41].We consider three contributions to the dynamics: aHamiltonian part for the reversible particle
dynamics, and two non-Hamiltonian parts which describe particle injection and extraction, respectively. For
such non-equilibriummany-particle systemswe derive several fundamental properties: in sections 3 and 6we
derive an upper bound for the particle current in the fermionic setting, and a lower bound for bosonic systems,
respectively. In section 4, we show that the fermionic upper bound can be saturated by appropriate design of the
Hamiltonian part of the dynamics. The algebraic framework allows us to go beyond the standard Fock space
formalism,whichwe illustrate in section 5, wherewe derive an upper bound for the current density in a ribbon,
i.e., a 2D lattice systemwith shift-invariance in one direction, and afinite width in the other.

The strength of our contribution is that itmakes no assumptions on the underlying single-particle
Hamiltonian, and that it is applicable whenever the interaction between particles can be ignored to a good
approximation.Hence, our approach does not only provide fundamental insight on the achievable currents in
non-equilibriumquantum systems, but also opens novel perspectives for research in the fieldsmentioned above,
where onemay exploit the here identified design principle in a specific context.

2.Many-fermion systems

Wefirst provide an introduction to the algebraic formalismwhich describesmany-fermion systems. The results
presented in this section are well-known in themathematical physics literature on quantum statistical
mechanics [42–45]. In sections 3–6, we apply this formalism to investigate the physics of currents in open
quantum systems.

2.1. Fock space
It is commonpractice to describemany-fermion systems in terms of Fock space. This space is formally
constructed using a single-particleHilbert space, also referred to as themode space, as basic building block
which provides all degrees of freedomof a single particle. As postulated by Pauli, identical particles are
independent of labelling, a constraint which either leads to bosons or fermions. Thewave functions of the latter
species change sign under odd permutations of particles which is reflected in the fermionic n-particleHilbert
space

= Ä Ä Ä ∣ ( )( )    . 1n
asym

The anti-symmetrisation implies that the space ( ) n is linearly generated by functions of the form

åy y y p y y y   = Ä Ä Ä
p

p p p
Î!

( ) ( )( ) ( ) ( )
n

:
1

sign . 2n
S

n1 2 1 2

n

 

Here Sn denotes the permutation group of n objects,π a permutation, and p( )sign the signature ofπ. Note that
these functions are generally not normalised and that they vanishwhenever the single-particle wave functions
are linearly dependent, as expected from fermions. Functions of the type(2) are often called Slater determinants.

The fermionic Fock space G( ) constructed on is built to accommodate any number of particles and
therefore glues together all n-particle spaces:

G = Å Å Å Å( ) ( )( ) ( )    , 32 3 

where  describes the vacuumcomponent where no particles are present in the system. In the fermionic case
and for afinite dimensionalmode space the direct sumbreaks off: fermionic Fock space can never harbour
more particles than ( )dim . Often it is assumed that Fock space is sufficient to describe generalmany-particle
systemswhich is slightly inaccurate. Fock space can only accommodate finite numbers of particles. Both in the
case where is notfinite dimensional, e.g., for infinitely extended systems (see section 5), or for a bosonic
system (see section 6), physics ismuch richer than Fock space. To study this larger realmofmany-particle
quantumphysics, wemust switch to a description in terms of observables and select aHilbert space
representation thatmatches the given physical situation.
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2.2. Algebra of observables
Themain tools at hand in Fock space are the creation and annihilation operators: j( )†a and j( )a respectively,
wherej Î .Wework in a formalismof non-local creation and annihilation operators which have a
straightforward interpretation: they create and annihilate a single-particle statej. Their action is easily given on
Slater determinants:

j y y y j y y y   =    ( ) ( )†a , 4n n1 2 1 2 

wherewe have identified the n-particle vector y y y y=    Î( ) ( )n
n

n
1 2  with

yÅ Å Å Å( )0 0 n  in G( ) . The annihilation operator is the adjoint of the creation operator, its action
on a Slater determinant is

åj y y y j y y y y y   = - á ñ     
=

+
- +( ) ( ) ( )a 1 , . 5n

j

n
j

j j j n1 2
1

1
1 1 1  

Indeed, as onemay expect for fermions, sign bookkeeping is required.
Fermionic creation and annihilation operators obey the canonical anti-commutation relations (CAR)

j y j y j y y j= á ñ = " Î{ ( ) ( )} { ( ) ( )} ( )† a a a a, , and , 0 , . 6

These operators generate an algebra that forms the basicmathematical framework for the description ofmany-
fermion systemswith a givenmode space. The key idea of algebraic quantumphysics is that the algebra of
observables, rather than aHilbert space, is the centralmathematical object to describe large quantum systems.

As a general algebraic framework and to contrast it with the Fock space representation above, we introduce
abstract creation and annihilation operators y( )*c and j( )c respectively,j y Î , . Itmust be emphasised that
these objects are no longer linear operators on the Fock space, butmerely generate a formal algebra determined
by the basic relations

y yÎ ( ) ‐ ( )* c is linear, 7

j y j y j y= á ñ ={ ( ) ( )} { ( ) ( )} ( )* c c c c, , and , 0. 8

The * is a formal operationwhich is the abstract version of theHilbert space adjoint †. One then completes the
algebrawith respect to the uniqueC*-norm to obtain theC*-algebra CAR of theCARon4. The completion is
needed to apply generalmathematical results and to describe dynamics in a controlledway. This framework is
necessary to describe generalmany-particle systemswith infinite-dimensional single-particle spaces; in these
systems, we cannot describe all possible physics for all possible states (see section 2.3) on the level of Fock spaces.
In our present contribution, we strictly require this framework for the study of the quantum ribbon in section 5.

In this formalism, observables are those objects Î O CAR which are constructed using , y( )*c and j( )c
andwhich have the additional property that = *O O . In the context ofmany-particle systems, it is often useful
to focus on polynomials of *c and c, inwhich contributions with specific particle numbers are related to definite
orders. In this work, we focus solely on the simple class of single-particle observables corresponding to
polynomials of order two.

A single-particle observable is essentially an embedding of an observable on the one-particle space into the
many-particle framework. In Fock space, one assigns a copy of the observable to each different particle in an
additiveway, e.g., the total energy of a systemdescribed by a single-particleHamiltonian is the sumof the single-
particle operators for each separate particle. The formal algebraic way to express this second quantisation is via
themapping G ( )  : CAR from the space of bounded operators on to the algebra of observables, which
acts as

å h h h hG = á ñ( ) ( ) ( ) ( )*O O c c: , , 9
i j

i j i j
,

wherewemay select any orthonormal basis h{ }j of. In order to ensure that G( )O belongs to the algebra one
has to impose the rather restrictive condition thatO is a trace-class operator. It is not hard to check that different
bases h{ }j yield a same second quantised observable.

A specific example of interest in the discussion of particle currents for finite dimensional one-particle spaces
 is the number operator Nwhich literally counts the number of particles in the system. This operator is in
essence of single-particle type, as it is given by

å h h=G =( ) ( ) ( ) ( )*N c c: . 10
j

j j

4
AC*-algebra  is by definition equippedwith a normwhich fulfils the properties =*x x   and =* *x x x x     for all Î x . Here,

this demand is strong enough to fix the norm in a uniquewaywhich is why it is referred to as theC*-norm. For amuchmore complete and
formal introduction toC*-algebras, see for example [46].

3
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Indeed, particle currents describe the in- and outflowof particles and therefore the behaviour of the observable
N goes hand in handwith the behaviour of such currents.

Not only does the algebraic formalism require amore abstract description of the observables in our theory, it
also implies amore general structure for the quantum states which determine the statistics ofmeasurement
outcomes for these observables.

2.3. States
Aquantum state is commonly associated either with a state vectorψ orwith a densitymatrix ρ. Expected values
of observablesO are given by y yá ñ = á ñO O, or rá ñ =O Otr . This presupposes a specificHilbert space
representation of the physical system. Themore general algebraic formalism starts with expectation functionals
that allow for a probabilistic interpretation [47–49]. Thus a state is a linear functional w  : CAR on the
algebra of observables fulfilling the requirements

w w= " Î( ) ( ) ( )*  x x x1 and 0 . 11CAR

These properties are respectively known as the normalisation and positivity conditions.
A useful tool to describe states, and their perturbations, on aC*-algebra is theGelfand–Naimark–Segal

(GNS) construction [43, 45, 46, 50]. This procedure associates a unique, but state-dependent, Hilbert space
representation of the algebra to stateω. This representation returns the state as an expectationwith respect to a
state vector. Different statesmay, however, lead to inequivalent representations, which typically happens in the
thermodynamic limit ofmany particle-systems. As an example onemay consider Bardeen–Cooper–Schrieffer
theory [51–58], where states with afinite particle density in the thermodynamic limitmust be represented in a
differentHilbert space than the Fock spacewhich is constructed by exciting the physical vacuum (see
section 2.1). TheGNS construction is a key result in algebraic quantumphysics, which stresses that the
properties of the system’s state are essential prerequisites to study physicalmodels.

States onCAR are usually characterised in terms of correlation functions, i.e., one strives to define all objects
of the form

w y y j j( ( ) ( ) ( ) ( )) ( )* *c c c c . 12m n1 1 

In the present context, where only single-particle observables are considered, there are simpleways to describe
the relevant expectation values. A notable fact is the existence of a linear operator Î ( ) Q for eachω, which
serves as a (non-normalised) densitymatrix and is commonly interpreted as a covariancematrix:

w y j j y= á ñ( ( ) ( )) ( )*c c Q, . 13

In the class of gauge-invariant quasi-free states, this operatorQ suffices to fully determine the state5. In general,
this is far from true and one can just say thatQ characterises the single-particle statistics.

The fact that we are considering states on theCAR-algebra directly implies that   Q0 . Thefirst
inequality is necessary to fulfil positivity of the state, the second is a consequence of the fermionic behaviour and
represents Pauli’s exclusion principle. It follows [45] that for a general single-particle observable G Î( ) B CAR,
withB a trace-class operator on,

w G =( ( )) ( ) ( )B Q Btr . 14

This identitymight not seem spectacular but it offers an enormous computational simplification. It is, therefore,
one of the key ingredients in all the following sections of the present contribution.

Ifω is a normal6 gauge-invariant quasi-free state it can be shown that

w = < ¥( ) ( )N Qtr , 15

hence directly expressing the expected particle number in terms ofQwhich is now also a trace-class operator.
This condition is also sufficient to guarantee normality.

2.4.Dynamics
In the spirit of the algebraic approach, itmakes sense to consider the elements of the algebra CAR as the
dynamical objects in the theory, whereas the states remain unchanged at all times. This formally implies that we
can consider amapping L  :t t,

CAR CAR
1 0

for an evolution from time t0 up to t1. Thefirst obvious
requirements for awell-defined dynamics are

5
An accessible introduction to fermionic quasi-free states can be found in [59].

6
For an operator algebra of observables which acts on aHilbert space, a state is said to be normal if it can be represented by a density operator

which is a trace-class operator on the sameHilbert space.However, because we consider abstract C*-algebras, it onlymakes sense to refer to
normal states in the context of a specific representation. Throughout our contributionwewill always refer to normal states as states which can
be represented by a densitymatrix on the Fock space, in otherwords, states which are normalwith respect to the Fock representation. Note
that in this representation the abstract operators c are represented by the operators a of (6).

4
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L = L " Î( ) ( ) ( )*   x x xand 0 . 16t t t t, ,
CAR

1 0 1 0

These demandsmust be fulfilled for any choice of t1 and t0.
Amore debatable [60–62] assumption on the dynamics is complete positivitywhich formally says that the

system can be trivially embedded in a larger systemwithout having to fear for loss of positivity. Such embeddings
are also important to include internal degrees of freedom in the description. Complete positivity in other words
guarantees that effective descriptions of only a subset of relevant degrees of freedom are possible. The formal
mathematical phrasing requires an extension of the algebra by anymatrix algebraN to obtain Ä N

CAR .
Wemay now trivially extend Lt t,1 0

onCAR to L Ä idt t N,1 0 on Ä N
CAR .When L Ä idt t N,1 0 is a positivemap

for anyN, the dynamics is said to be completely positive [63–65].
In addition to complete positivity, onemay impose another demandwhich rarely holds exactly for a real

physical systembut often provides a very good approximation [66–68]: we impose a one-parameter semi-group
structure on our dynamicalmap. The term ‘semi-group’ implies divisibility of themap and hence the existence
of a generator.Moreover, the generator is time-independent and thus themap is only governed by = -t t t1 0. In
otherwords, we canwrite the dynamics in terms of Lt , and obtain that

L = L L = L L "+ ◦ ◦ ( )t s, 0. 17t s t s s t

In general, we do not assume that the inverse exists, thuswithholding the family ofmaps frombeing a full-blown
group.

This type of dynamics is particularly useful due to powerfulmathematical results. The results byGorini,
Kossakowski, Sudarshan [69] and Lindblad [65] arewell-know, but only hold for algebras of observables which
can be described by bounded operators on aHilbert space. Nevertheless, Lindblad provided amore general
recipe for completely positive, one-parameter semi-group dynamics on aC*-algebra : he showed that any
equation ofmotion of the type

= Y + + " Î

Î Y 

( )

( )

* 

  
t

x x k x x k x

k

d

d
, with

and : a completely positive map, 18

leads to a dynamicalmapwith such properties. Hence, wemay follow this prescription to engineer a dynamical
systemwith the desired phenomenological properties. In otherwords, we do notmicroscopically derive amaster
equation but rather study onewhich has the correct phenomenology.

In our present work, we follow and explore amodel described byDavies [70]. Fromhere onward, we assume
that isfinite dimensional which is a considerable technical simplification. In section 5, however, wewill deal
with translation-invariant systems and discuss how to copewith thismore general situation. In particular, (18)
allows us towrite the generator of the dynamical semi-group in a form that nearly resembles the standard
Lindblad form [70]:

h= + +[ ] ( ) ( ) ( ) 
t

x x x x
d

d
i , , 19d a

åg d q d d d-( ) ≔ ( ) ( ) ( ) { ( ) ( ) } ( )* * ⎜ ⎟⎛
⎝

⎞
⎠x c x c c c x

1

2
, , 20d

j
j
d

j j j j

åg a q a a a-( ) ≔ ( ) ( ) ( ) { ( ) ( ) } ( )* * ⎜ ⎟⎛
⎝

⎞
⎠x c x c c c x

1

2
, , 21a

j
j
a

j j j j

where a d Î ,j j . Tomake sure thatΨ in (18) is a CP-map, onemust impose [70] that θ in(19) is the
*-automorphismdetermined by

q y y y= - Î( ( )) ( ) ( )* * c c , . 22

The Lindblad generators a and d describe the injection and extraction of particles into and from the system,
respectively.With respect to the systemdegree of freedom, these termsmediate absorption and dissipation, thus
the superscripts a and d.More specifically, fermions described by single-particle state vectors a{ }j are injected
into the systemwith positive rates g{ }j

a , and particles which state vectors d{ }j are lost from the systemwith

positive rates g{ }.j
d Note that also temperature dependences can be accommodatedwithin the positive rates

g{ }.j
a d We consider systems of non-interacting particles, therefore, in accordance to (9), wemust set h = G( )H

with = Î ( )†  H H .
We follow themodel of [70], andmany results of that paper are relevant for the present one. Specifically, we

are interested in the dynamics of single-particle observables, given by = G( )x B with Î ( ) B . Using (9), we
insert G( )B into (19) followed by a straightforward computation [67, 70, 71] based on the anti-commutation
relations (8), andwefind that the relevant equation ofmotion for one-particle observables is given by

5
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å å
g

a a
g

d d

G = G G - G G +

= + = ñá = ñá
= =

( ) [ ( ) ( )] { ( ) ( )} ( )

∣ ∣ ∣ ∣ ( )


t

B H B P B AB

P A D A D

d

d
i , , 2 tr , with

, :
2

, and :
2

. 23
j

n
j
a

j j
k

n
k
d

k k
1 1

a d

That Î ( ) P A D, , directly follows from their definitions. Because the semi-group dynamics generated by
(23) isMarkovian, all ratesmust be positive, which in turn implies that A 0, D 0, and hence P 0.
Moreover, for convenience in section 3.2, we assume thatA andD are strictly positive. For the bound on the
current that will be derived later on, we can always consider the general case A 0 and D 0 using continuity.

2.5. Non-equilibrium steady states
Now that the equations ofmotion are determined, we observe that they can be solved exactly:

òL G = G +- - - + - - - +( ( )) ( ) ( ) ( )( ) ( ) ( ) ( ) B B s B Ae e 2 d tr e e . 24t
P H t P H t

t
P H s P H si i

0

i i

Wenotice that, through its dependence on the absorption generatorA, the second term is specifically related to
the population of the system, via the particles that are pumped in. To infer the statistical distribution of
measurement results associatedwith the observable L G( ( ))Bt , we need to lift (24) to the level of states, by virtue
of (14):

ò
w L G =

+

- - - +

- - - +

( ( ( ))) ( )

( ) ( )

( ) ( )

( ) ( )

B B Q

s B A

tr e e

2 d tr e e . 25

t
P H t P H t

t
P H s P H s

i i

0

i i

An alternative perspective can be formulated by considering the object w L◦ ;t because Lt describes a
dynamicalmap, it actually follows that, for any >t 0, w L◦ t is a quantum state in its own right. In other words,
we can treat the dynamics in the Schrödinger picture, by defining a family of states

w w= L◦ ( ): . 26t t

Intriguingly, equation (25) even provides uswith an explicit expression for theQ(t) that appears in(14); by
rewriting(25), we find

ò
w G =

= +- + - - - + - -

( ( )) ( ( ))

( ) ( )( ) ( ) ( ) ( )

B BQ t

Q t Q s A

tr , with

e e 2 d e e , 27

t

P H t P H t
t

P H s P H si i

0

i i

whereQ is the single-particle covariancematrix for the initial state w.
Typically, at asymptotic times, pumped systems relax into a non-equilibrium steady state where finite

currents are flowing. This limiting state has completely forgotten the initial conditions of the system. Put
differently, generically each systemobservable converges to amultiple of the identity. Theway to describe the
asymptotic state, is by explicitly considering the limit  ¥t in (24). To do so, note that since >P 0,
generically,

=
¥

- + - - ( )( ) ( )Qlim e e 0 28
t

P H t P H ti i

and therefore wefind that

ò
w G =

= =
¥

¥
- + - -

( ( )) ( )

( ) ( )( ) ( )

B BQ

Q Q t s A

tr , with

: lim 2 d e e . 29
t

P H s P H s

NESS NESS

NESS
0

i i

HereNESS stands for non-equilibrium steady state. This, e.g., implies that the expected number of particles in
the system converges to

òw= =
¥

- + - -( ) ( ) ( )( ) ( )n N s A2 d tr e e . 30P H s P H s
NESS

0

i i

It is not hard to show [70] that theNESS state is the gauge-invariant quasi-free state determined by Q .NESS

3. Currents

Non-equilibrium systems are typically characterised by the presence of currents, evenwhen they reach a
stationary state. In this section, wefirst discuss general properties of currents, determined by the ‘continuity
equation’ (33).We translate these results to a quantummechanical setting to arrive at a sound definition of
quantum particle currents. Finally, we extensively discuss a fundamental property of fermionic currents, which is
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one of our key results: the existence of a universal upper bound—irrespective of the specific potential encountered
by the particle flow.

3.1. Particle currents
We start by a formal definition of the particle current in the context of quantummaster equations. The general
structure in(19) presents us with the change of particles in the systemover time. Because the number operator

= G( )N , we insert = B into (23) and obtain

= +( ) ( ) ( ) 
t

N N N
d

d
, 31d a

= - G - G +( ) ( ) ( ) ( )
( )

D A A2 2 2 tr . 32
23

Note that theHamiltonian contribution vanishes in the evaluation of (23) because
G G = G =[ ( ) ( )] ([ ]) H H, , 0.This implies that theHamiltonian, which is itself an observable of the form (9),
conserves the total number of particles.

We now study the particle current as a thermodynamic flux [40, 41] and focus on its behaviour in the
NESS(29).We note that, by definition of the steady state, the time derivative of the number operator is zero in
theNESS, which yields, after combination of (31), (32)with (14), the balance equation

w + = - + - =( ( ) ( )) ( ) ( ( )) ( )
( )

  N N DQ A Q2 tr 2 tr 0. 33d a
NESS

29
NESS NESS

Wecannowdefine the current of outflowing particles as

w= = = -∣ ( ( ))∣ ( ) ( ( )) ( )
( )

 J N DQ A Q: 2 tr 2 tr , 34d
NESS NESS

33
NESS

where the absolute value is added becausewe focus on themagnitude of the current.

3.2. Bounding the current
Although expression(34) suggests that the current is independent of theHamiltonian Î ( ) H , it is implicitly
present in Q .NESS Indeed, we can rewrite the current, using(29), to obtain

ò=
¥

- - -( ) ( )( ) ( )J s D A4 d tr e e . 35H P s H P s

0

i i

In principle, this expression allows for a direct computation of the current, although this is generically intricate,
e.g.,when the operators in (35) do not commute. It is therefore instructive to derive a bound, to gain some
general understanding of the parameter dependence of the current.

To do so, wefirst introduce the super-operator

= - + = +( ) [ ] { } ( ) X H X P X P A D: i , , with . 36

 can be split into a sumof two commuting terms, leftmultiplication by P−iH, and rightmultiplication by
P+iH, respectively. Therefore, wemaywrite

= +- + ( )   , 37P H P Hi i

where

= =( ) ( ) ( ) X YX X XY: and : . 38Y Y

Generically,  is invertible and for positive definite >P 0 we can use the identity

ò
ò
ò

= -

= - -

=

-
¥

¥

- +

¥
- - - +

( ) ( )( )

( ) ◦ ( )( )

( )( ) ( )

 

 

X s s X

s s s X

s X

d exp

d exp exp

d e e . 39

P H P H

s P H s P H

1

0

0
i i

0

i i

Next, we compute

- - = -( ) ( ) ( ) ( )† † † †   X X X X X X X PX2 0, 40

fromwhich it follows that

+( ) ( ) ( ) ( )† † †  X X X X X X . 41

Wenow introduce a symmetrised zero temperatureDuhamel (or Bogoliubov) inner product [45, 72–74]:

á ñ = +~
- -( ( ) ( ) ) ( )† † X Y X Y X Y, : tr . 421 1
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HereX andY are general linear operators. Positivity of the scalar product follows from the invertibility of  ,
from =( ) ( ( ))† † X X , from(41) and from

=( ) { } ( )† † X X P X Xtr tr , 0. 43

For an explicit evaluation of Schwarz’ inequality

á ñ á ñ á ñ~ ~ ~∣ ∣ ( )A P A A P P, , , 442

we observe that

+ = ( ) ( ) ( )   P2 . 45P H P Hi i

fromwhichwe infer that

á ñ =~ ( )A P A, tr , 46

á ñ =~ ( )P P P, tr , 47

òá ñ =~

¥
- - - +( ) ( )( ) ( )A A s A A, 2 d tr e e . 48s P H s P H

0

i i

Inserting these results in(44), we obtain

- +( ( )) ( ( ) ) ( ) ( )A A J A Dtr tr 2 tr 492

and it then follows that

+
( ) ( )
( )

≕ ( )J
A D

A D
J2

tr tr

tr
, 50max

which is the desired bound to the current. It is a universal one, since it does only depend on the reservoir
coupling agentsA andD, but not on the potential landscapewhich the fermions have to be transmitted through,
defined by the systemHamiltonianH.

Since Jmax lacks a dependence on the single-particleHamiltonianH, it is suggestive to inspect the tightness of
the bound (50) for variable relative strength of unitary dynamics and reservoir couplings. For this purpose, we
slightly rewrite (35) as

ò= l l
¥

- - -( ) ( )( ) ( )J s D A4 d tr e e , 51H P s H P s

0

i i

wherewe introduced the parameterλ, to scale the relative strength of theHamiltonian part of the dynamics as
compared to particle loss and pump. l  0 completely cancels the coherent part of the dynamics while l  ¥
makes the oscillatoryHamiltonian partmuch faster than the rateswithwhich the systems couples to the
reservoirs.

In the remainder of this section, we seek to numerically confirm the validity of(50)whenλ in(51) is varied.
To approach this problem,we considermany realisations of the system, each time choosing a randomλ,
randomHamiltonianH, and random channelsA andD. For every realisation, theNESS current(51) is
evaluated and compared to the upper bound(50). The results of this procedure are shown in figure 1, where
specific choices for the randommatrix ensembles weremade: we consider a systemofmmodes, i.e.,

=( ) mdim . TheHamiltonianH is sampled from theGaussian orthogonal ensemble (GOE) [75]which
implies that it is amatrix whose entries are sampled from anormal distribution:

d~ +( ) ( )
⎛
⎝⎜

⎞
⎠⎟H

v

m
Normal 0, 1 . 52ij ij

The parameter v is related to the spectral radius (i.e., the largest eigenvalue in absolute value) and physically
v m can be thought of as the typical (i.e., rootmean squared) coupling strength between differentmodes. The
matrices which describe the couplings between the system and the channelsmust be constructed so that they are
always positive semi-definite. A standardmethod to generate randommatrices fulfilling this constraint is to
resort to theWishart ensemble [76]. The latter ensemble is solely determined by the number of absorption
(dissipation) channels,mA (mD). For our numerical simulations, we set

=
+

=
+

( )† †A
m m

W W D
m m

W W
1

, and
1

, 53
A D

a a
A D

d d

whereWa andWd are ´m mA and ´m mD matrices respectively. They are generated by choosing random
components according to

~( ) ( ) ( )W Normal 0, 1 . 54a d ij,

The additional factor + -( )m mA D
1 in(53) is included to set the average eigenvalue ofP(23) equal to 1.With

this choice of ensembles, we can genuinely interpretλ(51) as the ratio of the frequencies of the coherent
oscillations induced byH and the incoherent rates contained in P.
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Figure 1 clearly shows that the bound(50) is valid for all realisations regardless of themagnitudeλ.
Nevertheless, we do observe that the bound is typicallymore accurate in the limit of dominantly coherent
dynamics, characterised by l 1 . In this contribution, wewill not attempt to understand the specific statistical
properties which are obtained from the randommatrix theory treatment.We do, however, note that in the limit
l 1 (ormathematically l  ¥), the current is susceptible to changes in theHamiltonian (recall
equation (51)) and that, therefore, a natural next step is to attempt to saturate the bound(50) in this regime7.

4. Symmetry enhanced current

In this section, we investigate how an appropriate design of the system can generate a current close to Jmax(50).
Becausewe are considering a designed system, it is reasonable to focus on the regime l 1 where the coherent
dynamics has a strong influence on the current. To get amaximal effect of the coherent contributions, we
rigorously focus on the regime l  ¥. This allows us to treat the problemusing perturbation theory. In this
limit, rapidly oscillating terms appear in(51) and by the Riemann–Lebesgue lemma [77]many contributions to
J cancel.

TheHamiltonian can be represented in its spectral decomposition as

å= ( )H E R . 55
k

k k

Here theEk are the eigenvalues ofH andRk are the orthogonal projectors on the corresponding eigenspaces ofH.
Usingfirst order perturbation theory (where l1 is small), we compute

ò
òå

=

=

l l

l l

¥ ¥

¥
- + - -

¥
- -

{ }

{ } ( )

( ) ( )J s D A

s DR A R

lim lim 4 d tr e e

4 d tr e e . 56

P H s P H s

k
k

sR PR sR PR
k

0

i i

0

k k k k

If wewant to saturate the bound on the current we have to design theRk in an appropriate way.
StructuringHamiltonians goes hand in handwith introducing symmetries.We therefore assume the

existence of a unitary operatorU, such that

=[ ] ( )H U, 0. 57

In order for such a symmetry to be useful, itmust connect the couplings of the absorption channelsA to those of
the output channelsD, leading to the requirement

= ( )†U A U D. 58

Figure 1. Scatter plot of the stationary current J(51) relative to themaximal current Jmax(50). The variableλ(51) controls the relative
strength of theHamiltonian and incoherent contributions. For each data point llog10 is randomly chosen from the interval -[ ]5, 5 .
For each realisation, theHamiltonianH in(51) is chosen from theGOE(52)with typical coupling v m betweenmodes, with
v=1, andmode numberm=10. The channels(23)A andD in(51) are drawn from aWishart ensemble(53)withmA=5 and
mD=10. Data points are compared to the upper bound =J Jmax (horizontal red line). The value l = 1 is indicated by a vertical grey
line, it coincides with themean eigenvalue of = +P A D.

7
From(51) it directly follows that attempts to saturate the bound by optimisingH are futile in the limit where l = 0.
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Given these additional structures, we can rewrite(56) as

òå=
l¥

¥
- -{ } ( )†J s R U A U R Alim 4 d tr e e . 59

k

sR PR
k k

sR PR

0

k k k k

The fact thatU andH commute, implies thatU is block-diagonal with respect to the spectral decomposition ofH

= ⨁ ( )U U . 60
k

k

This further implies

òå=
l¥

¥
- -{ } ( )†J s U R A R U Alim 4 d tr e e , 61

k

sR PR
k k k k

sR PR

0

k k k k

which can in general not be cast in amore transparent form.However, in the case where theHamiltonianH is
non-degenerate (implying that, apart from (57), there are no unitary symmetries present in the system), we
obtain thatRk are rank-one operators. In this casewe can expressU as

å= q ( )U Re , 62
k

k
i k

such that qei k are the eigenvalues ofU. In turn this leads to

òå=
l¥

¥
- -{ } ( )J s R A R Alim 4 d tr e e . 63

k

sR PR
k k

sR PR

0

k k k k

By virtue of (56), whereD is replaced byA, and (29), the right-hand side is exactly l¥ AQlim 2tr NESS. Due to the
symmetry (57), this implies that

l=  ¥ ( )AQ DQtr tr in the regime . 64NESS NESS

However, from the balance equation (33), we read that

= - ( )DQ A AQtr tr tr . 65NESS NESS

Both equations (64) and (65) can hold simultaneously onlywhen =AQ Atr tr 2,NESS which implies that

= =
l¥

( )J A Dlim tr tr . 66

The second equality in (66) follows from(58). Inserting expression(58) into(50) directly yields

= =
l¥

⟹ ( )J A J Jtr lim 67max max

which is exactly whatwewanted to achieve.
Inwords, we have shown that, in the absence of degeneracies inH, it suffices tofind a unitary operatorU

which commutes with theHamiltonian (i.e., a symmetry) and transformsD into A, in order to saturate the
upper bound for the current in the limit l  ¥.Themost natural picture to associate with such a
mathematical formulation, is that of a reflection symmetry. The limiting regime ofλ can be seen as a rigorous
way of demandingweak coupling, implying that the time scales of the systemdynamics aremuch faster than
those set by the rateswithwhich the system couples to its reservoirs.

In realistic set-ups, this limit is never exactly achieved, therefore it is instructive to conduct numerical
simulations to assess the deviations from the optimally achievable current, as a function ofλ. This is done in
figure 2: tomake the simulation as general as possible, we start by sampling the unitaryU introduced in (57)
from theHaarmeasure [75]8. Because thematrix is unitary and random,we can always obtain a spectral
decomposition

å= ñáq

=

∣ ∣ ( )U e ee . 68
k

m

k k
1

i k

Weuse this decomposition as the starting point for the construction of theHamiltonian, whichwe define as

å= ñá ~ -
=

∣ ∣ ([ ]) ( )H E e e E m mUniform 2, 2 . 69
k

m

k k k k
1

So =[ ]H U, 0 follows by construction. The choice of the uniformdistribution for the eigenvalues Ek is
arbitrary, it simply serves to ensure that the typical level spacing—and hence the typical frequency of the
coherent oscillations—is independent of the system sizeN.We sampleA from theWishart ensemble, see(53)
and(54), butmust take the constraint = †D U AU into account.When focusing on the regime of l 1 in
figure 2, we observe a similar trend as for figure 1.However, oncewe approach l 1, we observe that, indeed,
»J Jmax for all realisations.

8
TheHaarmeasuremay be interpreted as the uniformdistribution over the set of unitarymatrices.
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The fact that the bound(50) can be saturated in the regime of dominantly coherent dynamics, l 1, can
be understood in a straightforwardway: on the one hand, the rates withwhich the reservoirs couple to the system
set time scales for particle exchange, which also governs the bound(50). On the other hand, however, coherent
time scales, set by theHamiltonian, determine how the particles explore the variousmodes inside the system.
Therefore, if these coherent time scales are too slow, particles will linger in themodes where they entered the
systemwhere they block the path for additional particles due to Pauli’s exclusion principle. Hence, the limit
l 1, guarantees fast redistribution of particles within the system, and, in addition, the design principle (58)
and (57) guarantees a balance between input and output channels, such that particles can be extracted efficiently.
In general, however, interference effects, incorporated in the fact that A D, , andH do not commute,make this
naive picturemore complicated. This is precisely why amathematically rigorous treatment is important and
non-trivial.

Furthermore, we stress that this discussionmakes statements on the current J(51) relative to the bound
Jmax(50). However, themaximal current Jmax itself depends on the absorption and dissipation channels (as
governed by operatorsA andD). Therefore, whenwe rescale these parameters as gA A and gD D, it
directly follows, from expression(50), that gJ Jmax max . The results offigure 2 imply that for any such value of
γ, the current J(51) can be optimised, for l g , by appropriately designing the system according to (58) and
(57). However, because the value of the bound increases with γ, it is conceivable that a large value of γ (and thus
large rates of particle exchange between system and reservoirs) can lead to large currents, even for slow coherent
time scales, i.e., l g< . This hypothesis is, indeed, confirmed infigure 3.We can define the current gJ which
results from rescaling gA A and gD D:

ò g g=g
g g

¥
- - -( ) ( )( ) ( )J s D A4 d tr e e . 70H P s H P s

0

i i

Figure 3 shows how the current (in units which are fixed by theHamiltonian’smean-level spacing) scales as a
function of the rescaling parameter γ. TheHamiltonians are generated following (52) and (69), for fully random
anddesignedHamiltonians, respectively. For the fully random systems, a single set of input and output channels,
represented byA andD, respectively, is randomly chosen according to (53) and keptfixed. In the simulation of
the designed systemswefix onlyA and generateD according to (58).

Infigure 3we see that typically the current increases whenwe increase the incoherent rates for particle
exchange (by varying γ). However, we also observe that the bound is tighter in the regime of dominantly
coherent dynamics as given by g 1 . In this regime, the designed systems give rise to optimal transport by
saturating the bound, whereas we see fluctuations in the full random systems (see inset infigure 3). Itmust be
noted that the double logarithmic scale of the plotmasks thesefluctuation.

Up to this point, we studied systemswhich contain afinite number of particles at all times. The strength of
theC*-algebraic treatment and the formulation of themodel in terms of a general CAR is the possibility to
extend the setting to systemswith an infinite number of degrees of freedom. In the following section, we
consider systems that require a technical treatment based on current densities.We prove a generalisation of the
bound(50) to a class of shift-invariant systems as commonly encountered in theoretical solid-state physics.

Figure 2. Scatter plot of the stationary current J(51) relative to themaximal current Jmax(50). The variableλ(51) controls the relative
strength of theHamiltonian and incoherent contributions. For each data point llog10 is randomly chosen from the interval -[ ]5, 5 .
Each realisation of theHamiltonianH in(51) is generated according to(69)withmode numberm=10 and random symmetry
operatorU from theHaarmeasure [75]. For each realisation, the absorption operatorA(23) in(51) is drawn from aWishart
ensemble(53)withmA=10. The dissipation operatorD is determined by the condition(58). Data points are compared to the upper
bound =J Jmax (horizontal red line). The value l = 1, which coincides with themean eigenvalue ofP, is indicated by a vertical grey
line.
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5. The quantum ribbon

Abovewe focused on systemswith afinite dimensionalmode space, which excludesmodels with a translational
invariance in some spatial directions. The latter situation requires to perform a thermodynamic limit, i.e.,we
first have to consider afinite subsystem, and subsequently perform a limiting procedure where the size of the
system tends to infinity while the particle density remainsfinite [45].We now consider such amodel situation,
with some inspiration from [78].

The specific systemunder consideration is a ribbon: a 2D systemwith translation invariance in one
direction, andfinite width in the orthogonal dimension.We assume that the system is accurately described by a
tight-bindingmodel and therefore the single-particleHilbert space is given by a discrete lattice

Ä≔ ( )  l ,d2 where d quantifies thefinite width of the lattice. For Î k wedenote by { }1 k the sequence in
( )l2 with 1 at place k and 0 everywhere else. Themode space of our system can then also be seen as

ÄÎ⨁ { }  1k k
d with the one-step shift along the ribbon given by y yÄ Ä+{ } { }1 1 .k k 1

5.1. Shift-invariance
Let usfirst focus on the space ( )l2 . The Fourier transform p( ) ([ ))F l L: 0, 22 2 can be defined through its
action on the indicator functions Î ( ){ } l1 k

2 :

j j =≔ ( ) ( ){ }F x1 , with e . 71k k k
kxi

Abounded operator operatorA on ( )l2 is shift-invariant if and only if = -
ˆA F M Fa

1 . Here

y y y p= Î( )( ) ˆ ( ) ( ) ([ )) ( )ˆM x a x x L, 0, 2 72a
2

Figure 3. Scatter plot of the stationary current gJ (70) in units of themean-level spacing of theHamiltonian. The variable γ(70)
determines the incoherent time scales. For each data point glog10 is randomly chosen from the interval -[ ]5, 5 . Data points are
compared to the upper bound Jmax (red line, (50)). Both fully randomand designed systems are shown. In each case, an inset shows the
fluctuations of the currents gJ as compared to the bound, by zooming in on the parameter range g Î [ ]0.001, 0.01 . Hamiltonians and
channels are generated as follows: fully random systems (top): for each realisation, theHamiltonianH in(70) is chosen from the
GOE(52)with typical coupling v m betweenmodes, with v=1, andmode numberm=10. A single set of channels(23)A andD
in(70) are drawn from aWishart ensemble(53)withmA=5 andmD=10, and remain fixed for all realisations.Designed systems
(bottom): each realisation of theHamiltonianH in(70) is generated according to(69)withmode numberm=10 and random
symmetry operatorU from theHaarmeasure [75]. A single absorption operatorA(23) in(51) is drawn from aWishart ensemble(53)
withmA=10, which is kept fixed for all realisations. The dissipation operatorD is determined by the condition(58).
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and pÎ ¥ˆ ([ ))a L 0, 2 .Therefore a bounded shift-invariant operator on ( )l2 corresponds to amultiplication
operator on p([ ))L 0, 22 by a bounded function on p[ )0, 2 . Hermitian operators correspond hereby to real-
valued functions and positive semi-definite operators to non-negative functions.

This can straightforwardly be generalised to = Ä( )  l d2 : we say that a bounded operatorX on
Ä( ) l d2 is translation-invariant along the ribbon iff = Ä Ä-( ) ( )ˆ X F M FX

1 , where p ˆ [ ) X : 0, 2 d is
a boundedmatrix-valued function. If we nowdenote = Ä{ }e e1 ,k l k l, with { }el the standard basis in d, wemay
write that

òp
á ñ = á ñ

p
¢ ¢ ¢

- ¢-ˆ ( ) ( )( )e X e x e X x e,
1

2
d , e . 73k l k l l l

k k x
, ,

0

2
i

It also follows that, for two shift-invariant operatorsX and Y ,

= Ä Ä-( ) ( ) ( )ˆ ˆ XY F M F . 74XY
1

It is useful to generalise (73) to the case where p ˆ [ ) X : 0, 2 d is integrable
9. In general, such a choice leads to

an unboundedX.
To discuss currents, we are confrontedwith the problem that the global number operatorN, which counts

the number of fermions on the ribbon, is not an element in theCAR algebra over Ä( ) l d2 . In fact,  does
not contain any shift-invariant elements except for themultiples of . Shift-invariant elements are introduced by
their local restrictions onfinite subsets L Ì  of the ribbon. To construct these local restriction, we define the
appropriate projectors

å ñá ÄL
ÎL

≔ ∣ ∣ ( ){ } { } P 1 1 . 75
p

p p

Wecannow consider theΛ-restriction G L L( )P XP of ‘G( )X ’, which is a bona fide element of the algebra.
Translation-invariancemanifests itself by G L+ L+( )P XP1 1 being the one-step shift of G L L( )P XP . The global
number operator corresponds to the choice =ˆ ( )X x 1 for pÎ [ )x 0, 2 and its restriction toΛ is just the number
operator for themode space L Ä( ) l ,d2 i.e., it counts the number of fermions on the compact domain defined
by the restrictionΛ.

Suppose that a shift-invariant   Q0 determines the one-particle expectations (13) and thatX defines a
shift-invariant one-particle observable as above. BothQ andX are determined bymatrix-valued functions Q̂
and X̂ on p[ )0, 2 that satisfy the requirements that ˆ Q0 1and X̂ be real-valued and integrable.We can
now consider the expectation of the density of G( )X in a specific state wQ wherewe rewrite henceforth

= ¼{ }P P:n n1, ,

w w= G
¥

˜( ) ( ( )) ( )x
n

P XPlim
1

, 76Q
n

Q n n

wherewe introduce the ‘∼’ to refer to densities in the system. Because of translation-invariance, there is no
problem infixing the leftmost site of the interval at 1. A small computation, similar to the type of computations
used in proving Szegö’s theorem [78], yields

òw
p

=
p

˜( ) ( ˆ ( ) ˆ ( )) ( )x x X x Q x
1

2
d tr . 77Q

0

2
d

5.2. Currents in the quantum ribbon
The bound (50) on the fermionic current nicely fits with shift-invariance. For shift-invariantH,A, and D, both
sides of the bound scale linearly with the length of the sub-interval on the ribbon that we consider. It then
suffices to renormalise the inequality to obtain an analogous bound for densities.

The dynamics is a priori similar to the dynamics generated by (23), althoughwe now specifically focus on the
situationwhere H A, , andD are shift-invariant operators.We can simply repeat the arguments from section 2.5
above and obtain that in the long-time limit any state asymptotically converges to a shift-invariant state
determined by thematrix-valued function

ò=
¥

- + - -ˆ ( ) ˆ ( ) ( )( ˆ ( ) ˆ ( )) ( ˆ ( ) ˆ ( ))x Q x s A x2 d e e . 78P x H x s P x H x s
NESS

0

i i

The particle density r w( ) for a translation-invariant state determined by Q̂ (77) is given by

òr w
p

=
p

˜( ) { ˆ ( )} ( )x
d

Q x
1

2
d

1
tr . 79

0

2
d

Note that in our dynamical systemwe are typically dealingwith a particle density r w˜( ) that changes over time.

9
The integrability of amatrix-valued function can be understood in a component-wise way.
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We start by considering the evolution of the local number operator = G( )N Pn n , which is described by (23):

G = G - + +( ) ([ ] { }) ( ) ( )
t

P H P A D P P AP
d

d
i , , 2 tr 80n n n n n

such that

w G = - + +

= - + +

( ( )) ([ ] ) ({ } ) ( )

( [ ] ) ( { } ) ( ) ( )
t

P H P Q A D P Q P AP

P Q H P P Q A D P P AP

d

d
itr , tr , 2 tr

tr , tr , 2 tr . 81

n n n n n

n n n n n n

Note that, because Pn is a projector, (14) yields w G =( ( )) ( )P P QPtrn n n , and that(74) implies that commutators
and anti-commutators of shift-invariant operators are again shift-invariant. Therefore, wemay use(77) and
evaluate

ò

r w

p

=

= - -
p

¥
˜( ) ( )

( { ˆ ( )( ˆ ( ))} { ˆ ( ) ˆ ( )}) ( ) 

t n d t
P QP

d
x A x Q x D x Q x

d

d
lim

1 d

d
tr

1

2
d 2 tr tr , 82

n
n n

0

2
d d

wherewe already used that =( [ ˆ ( ) ˆ ( )]) Q x H xtr i , 0d for all x.
By definition of the non-equilibrium steady state

r w =˜( ) ( )
t

d

d
0 83NESS

andwe therefore define the current density as

ò òp p
= = -

p p
˜ { ˆ ( ) ˆ ( )} { ˆ ( )( ˆ ( ))} ( )  j

d
x D x Q x

d
x A x Q x

1
d tr

1
d tr . 84

0

2

0

2
d d

For every pÎ [ )x 0, 2 ,we can apply (44) tofind

- - +( ˆ ( )) ( ˆ ( ) { ˆ ( )( ˆ ( ))}) { ˆ ( ) ˆ ( )} ( )   A x A x A x Q x A x D xtr tr tr tr 852d d d d

which can be rewritten and integrated to obtain

òp +

p
˜ ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( )
( )  

 
j

d
x

A x D x

A x D x

1
d

tr tr

tr tr
, 86

0

2 d d

d d

as a universal upper bound for the fermionic current across the quantum ribbon.

6. Bosonic systems

Throughout the preceding parts of this contribution, we focused on systems of non-interacting fermions. Our
methods are, however, also applicable to systems of non-interacting bosons. In this scenario, wemust consider
additional technical details related to the algebra of canonical commutation relations (CCR) [45, 50, 79]. One
technical issue is that, for infinite dimensionalmode spaces, the bosonic algebra only allows us to define
creation and annihilation operators in a representation dependent way. Another technical issue is that, even for
finite dimensional, states are not necessarily given by a densitymatrix on Fock space. Therefore, we here
deliberately focus on systemswith afinite number of particles, such that we remain in the Fock representation at
all times.

The bosonic Fock space is defined (quite analogous to (1) and (3)) as

G Å Å Å Å( ) ≔ ( )( ) ( )    87b 2 3 

with

= Ä Ä Ä ∣ ( )( )    . 88n
sym

TheCCR can nowwewritten in terms of non-local creation and annihilation operators j( )†b and j( )b which
act on ‘Slater permanents’ in a similar fashion as (4) and (5). These unbounded operators on G ( )b satisfy CCR:

y yÎ ( ) ‐ ( )† b is linear, 89

j y j y j y= á ñ =[ ( ) ( )] [ ( ) ( )] ( )† b b b b, , and , 0. 90

In analogy to the fermionic case, we describe our dynamics in terms of the phenomenologicalmaster
equation10

10
Wedefine this equation for all linear operators on Fock space, a set whichwe denote G( ( ))Lin .
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å

= =- G + + Î G

= -

( ) [ ( ) ] ( ) ( ) ( ( ))

( ) { } ( )† †

   



t
X X H X X X X

X L XL L L X

d

d
i , , for all Lin ,

with
1

2
, , 91

a d

a d

i
i
a d

i
a d

i
a d

i
a d

and, in analogy to(19)–(21)we choose g d= ( )L bi
d

i
d

i and g a= ( )†L b .i
a

i
a

i Again, a Î{ }i denote the
single-particle state vectors inwhich particles are absorbed into the system, whereas d Î{ }i denote the single-
particle state vectors fromwhich particles are dissipated out of the system. Because the creation and annihilation
operators are unbounded, it remains to verify that this leads to a valid dynamicalmap, i.e., that it fulfils the
conditions (16) andmaps elements of the algebra onto other elements of the alegbra. To do so, we evaluate

j y j y j y j y= - + - + á ñ( ( ) ( )) (( ) ) ( ) ( ) (( ) ) ( )† † † b b b H P b b b H P Ai i 2 , , 92

where the bosonic P is defined as

= - ( )P D A: , 93

withA andD as in(23). A fundamental difference between the fermionic and bosonic case is that the bosonic P
in(93) is not necessarily a positive semi-definite operator on the single-particle space.

We use(92) to evaluate the dynamics of a general single-particle observable

å h h h hG = á ñ( ) ( ) ( ) ( )†B B b b, , 94b

i j
i j i j

,

where h{ }i forms an orthonormal basis of the single-particleHilbert space. Straightforward integration of
(91) leads to

òL G = G +- - - - - -( ( )) ( ) ( )( ) ( ) ( ) ( ) ⎜ ⎟⎛
⎝

⎞
⎠B B s A Be e tr d 2 e e . 95t

b b t H P t H P
t

H P s H P si i

0

i i

Wenowobserve that the casewhere P is not positive semi-definite can lead to severe problems because it typically
does not allow for the system to remain containedwithin the Fock representation at all times. This can be
understood by assessing the time evolution of the particle number expectation value.We consider systemswhich
are initially local with respect to the Fock representation, therefore the state is given by a densitymatrix ρwhich
acts on G ( )b and

rá ñ = G < ¥r { ( )} ( )N tr . 96b

However, when P is not positive semi-definite, for generic ρ the asymptotic particle number is given by

r L G = ¥
¥

{ ( ( ))} ( )lim tr . 97
t

t
b

and thus diverges in the long-time limit. Physically thismeans that the system is unstable and never reaches a
steady state. Therefore, wemust impose that

( )D A, 98

and therefore P 0, to ensure that the system remain confined to Fock space for all all times. This implies that
systems of non-interacting bosonswhich absorb particles from an external reservoir require a sufficient (as
quantified by (98)) amount of dissipation to ensure the existence of awell-definedNESS11.

Having imposed condition(98), wefind that the solutions to the bosonic and fermionic equations of
motion, (95) and (24), respectively, are very similar, such that the same analysis as above can be repeated. The
bosonic continuity equation is the same as the fermionic onewhenwewrite it in terms ofP: in theNESSwe find

= ( )PQ A2tr 2tr . 99NESS

However, the definition ofPhas changed, so that the following balance equation between incoming and
outflowing currents holds:

+ =( ( )) ( ) ( )A Q DQ2tr 2tr . 100NESS NESS

This implies that we can still describe the currentflowing through the system as = ( )J DQ: 2tr .NESS

Remarkably, this definition of the current, togetherwith(98), implies that we can next precisely follow the
steps (36)–(48) of the proof for the fermionic bound.However, in (49)we did employ the explicit formof the
continuity equation, and therefore this step differs from the present bosonic case.We nowfind that

11
What is quite obvious from aphysical point of view, think, e.g., of amicro-maser scenario [80]where a single quantisedmode of the

radiationfield is pumped by a sequence of two-level atomswhich enter the resonator in the excited state and interact resonantly with the
resonatormode. The steady state is there defined by an equilibriumof gain and loss (damping) of the resonatormode. Note, however, that in
this paradigmatic realisation the effective pump rate depends nonlinearly on the occupation number of the resonatormode.
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-( ) ( ) ( )A J A Ptr 2 tr tr , 1012

which implies

+( ) ( )A A P
J

Ptr tr tr
2

tr 102

and therefore

-( )
≕ ( )J

A D

D A
J2

tr tr

tr
. 103min

The inequality(103) is remarkable because its derivation is largely analogous to that for the fermionic case, but it
ultimately produces a very different phenomenology: there is no upper bound for bosonic currents in theNESS.
However, bosonic currents are always stronger than a given quantity Jmin which is set by the channels. In systems
whereA comes close toD, while respecting (98), we see that the rate at which particles stream through the system
can become arbitrarily large.

Finally, we numerically scrutinize the lower bound(103). These results shown infigure 4 are obtained
through evaluation of the exact expression for J:

ò= l l
¥

- - -{ } ( )( ) ( )J s A D4 d tr e e , 104H P s H P s

0

i i

where P is given by(93). The parameterλ serves the same purpose as in(51) andfigures 1 and 2, and the
simulations are performed in a similar fashion as for figure 1: the valueλ is chosen randomly in away such that

llog10 is uniformly distributed, whereas theHamiltonians are sampled from theGOE(52). The choice ofA and
D ismore subtle because of condition(98). To satisfy this constraint, we rather choose P andA from theWishart
ensemble(53) to subsequently determine = +D P A.

The results in figure 4 confirm the prediction by the lower bound(103) and show a drastically different
behaviour compared to the fermionic case offigure 1. These results can be understood as amanifestation of
quantum statistics. However, bosons do not disturb each other statistically when they start piling up (as happens
when - »( )D Atr 0).Where the fermionic ‘repulsion’ is oftenmore important than the particle interaction,
this is not the case for bosons.Hence, the assumption of absence of interactions for bosons is rathermore
stringent than it is for fermions. Therefore, one should be careful when interpreting these bosonic results when

-( )D Atr is small and particle densities become high.

7. Conclusions

Wedescribedmany-fermion andmany-boson systems inwhich particles are incoherently pumped in and
dissipated from the system, such that the total dynamics can be considered to beMarkovian (memoryless).We
prove that, in the absence of interactions between particles, the total particle current across the system exhibits

Figure 4. Scatter plot which benchmarks the stationary current J(104)with respect to theminimal current Jmin(103). The variable
λ(104) controls the relative strength of theHamiltonianwith respect to incoherent contributions; for each data point, Llog10 is
randomly chosen from the interval [−5,5]. TheHamiltoniansH in(104) are chosen from theGOE(52)with typical interaction
v m betweenmodes, with v=1, andmode numberm=10. The channelsP(93) andA(23) in(104) are drawn from aWishart
ensemble(53)withmA=5 andmP=10.D in(104) is directly obtained from(93). Data points are compared to the lower bound
=J Jmin (horizontal red line). The value l = 1 is indicated (vertical grey line) since it represents the typical incoherent rate as the

mean eigenvalue ofP.
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universal properties in the stationary state: we could derive an upper bound(50) for fermionic currents, and,
under some additional conditionswhich prevent the system fromunlimited heating, a lower bound(103) for
bosonic currents. Remarkably, both bounds are independent of the specific potential landscape the particles are
transmitted through.

Numerically, we showed that, though counterintuitive, the bounds are typically sharp in the regimewhere
the coherent dynamics’ frequencies are high compared to the incoherent rates which determine the time scales
of the reservoir coupling. This also led us to designHamiltonians, as generators of the coherent dynamics, which
saturate the bound in the limit where coherent dynamics is dominant.We proved that, in this limit, very general
symmetry properties imposed onto theHamiltonian suffice to achieve our goal.More specifically, we
considered a unitary operator that commutes with theHamiltonian andmaps channels which connect the
incoming reservoirs to the systemonto channels which connect the system to the outgoing reservoirs.With
these design principles, we can saturate our upper bound for fermionic currents.We note that the centro-
symmetry [81–84], discussed in the context of optimal transport, is a special case of our present design principle.
Hence, this work also improves the understanding of how such symmetries enhance quantum transport.

Our results offer a starting point for the investigation of several newquestions, ranging from the relation of
the here presented results to the Landauer formalism [2, 85] to applications, e.g., in the quantum transport
theory of disordered systems [86–88] or in the quantum statistics of non-equilibriumdynamical processes
[89, 90]. On amore fundamental level, the natural next steps are to investigate [91] howparticle-interactions or
other general sources of dephasing [9, 10] impact the here derived universal bounds. In addition, it is a natural
question towonder what happens when the assumption ofMarkovian dynamics breaks down, e.g., it was
recently shown [92], for a non-equilibrium spin-bosonmodel, that the current is optimal for an intermediate
coupling between system and reservoirs.
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