
Journal of Physics: Conference Series

Interoperable geometry and mesh components for
SciDAC applications
To cite this article: T J Tautges et al 2005 J. Phys.: Conf. Ser. 16 486

View the article online for updates and enhancements.

Related content
Interoperable mesh components for large-
scale, distributed-memory simulations
K Devine, L Diachin, J Kraftcheck et al.

-

Optimization in SciDAC applications
Jorge J Moré, Todd S Munson and Jason
Sarich

-

ALPS: A framework for parallel adaptive
PDE solution
Carsten Burstedde, Martin Burtscher,
Omar Ghattas et al.

-

Recent citations
Updating meshes on deforming domains:
An application of the target-matrix
paradigm
Patrick Knupp

-

Impact of SciDAC on accelerator projects
across the office of science through
electromagnetic modeling
K Ko et al

-

This content was downloaded from IP address 207.241.231.83 on 26/07/2018 at 01:29

https://doi.org/10.1088/1742-6596/16/1/067
http://iopscience.iop.org/article/10.1088/1742-6596/180/1/012011
http://iopscience.iop.org/article/10.1088/1742-6596/180/1/012011
http://iopscience.iop.org/article/10.1088/1742-6596/78/1/012052
http://iopscience.iop.org/article/10.1088/1742-6596/180/1/012009
http://iopscience.iop.org/article/10.1088/1742-6596/180/1/012009
http://iopscience.iop.org/article/10.1088/1742-6596/180/1/012009
http://dx.doi.org/10.1002/cnm.1013
http://dx.doi.org/10.1002/cnm.1013
http://dx.doi.org/10.1002/cnm.1013
http://iopscience.iop.org/1742-6596/16/1/026
http://iopscience.iop.org/1742-6596/16/1/026
http://iopscience.iop.org/1742-6596/16/1/026
http://oas.iop.org/5c/iopscience.iop.org/902011000/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?

Interoperable geometry and mesh
components for SciDAC applications

T. J. Tautges*+, P. Knupp*, J. A. Kraftcheck+, H. J. Kim+
*1Sandia National Laboratories, Albuquerque, NM, 87185
+University of Wisconsin-Madison, Madison, WI, 53706

tjtautg@sandia.gov

Abstract. Software components for representing and evaluating geometry (TSTTG/CGM) and
finite element mesh (TSTTM/MOAB), and a higher-level component for relations between the
two (TSTTR/LASSO), have been combined with electromagnetic modelling and optimization
techniques, to form a SciDAC shape optimization application. The TSTT data model described
in this paper allows components involved in the shape optimization application to be coupled
at a variety of levels, from coarse black-box coupling (e.g. to generate a model accelerator
cavity using TSTTG) to very fine-grained coupling (e.g. smoothing individual mesh elements
based in part on geometric surface normals at mesh vertices). Despite this flexibility, the
TSTT data model uses only four fundamental data types (entities, sets, tags, and the interface
object itself). We elaborate on the design and implementation of effective components in the
context of this application, and show how our simple but flexible data model facilitates these
efforts.

1. Introduction
PDE-based computations rely heavily on discrete (mesh) and continuous (geometry) domain
representations, increasingly by importing this capability in the form of software components rather
than “re-inventing the wheel” locally. A recent example of a component-based approach is a
collaboration between SLAC, Sandia and Carnegie Mellon University on accelerator shape (design)
optimization where the electromagnetic (EM) performance of accelerator cavities is optimized through
adjustment of geometric design parameters [5]. The model problem for this effort is a Low-Loss
cavity model for the International Linear Collider (ILC) shown in . This application requires
components for geometry and mesh which interact with EM modeling and optimization parts of the
calculation at a variety of levels. The geometry and mesh parts of this application also present an
interesting study in components themselves, because of their interactions together (amongst
themselves and with other components in the calculations) in typical simulations, the often central role
of mesh data in various types of simulations, and the variety of data from other applications (so-called
“metadata”) often accompanying and accessed through the mesh data.

The Terascale Tools & Technologies (TSTT) center [1] was established as part of the DOE
SciDAC program [2] to develop interoperable components for geometry, mesh, and other enabling
technology tools, for applications like the one described above. One of the principal outcomes of this

1 SANDIA IS A MULTIPROGRAM LABORATORY OPERATED BY SANDIA CORPORATION, A LOCKHEED
MARTIN COMPANY, FOR THE UNITED STATES DEPARTMENT OF ENERGY UNDER CONTRACT DE-AC04-
94AL85000.

Institute of Physics Publishing Journal of Physics: Conference Series 16 (2005) 486–490
doi:10.1088/1742-6596/16/1/067 SciDAC 2005

486© 2005 IOP Publishing Ltd

effort has been the definition of common interfaces for geometry (TSTTG), mesh (TSTTM), and data
relations (TSTTR). These interfaces, implemented by our CGM, MOAB and LASSO components,
respectively, play a central role in the construction of the shape optimization application described
above. This paper describes the design used for these components, and shows how this design
simplifies the construction of the shape optimization application.

Figure 1: Parameterized geometric model for International Linear Collider Low-Loss superconducting cavity.
Not all of the 20 design parameters are shown.

2. Geometry, Mesh and Relations Interface Implementations
Our components share the same basic data model, which enables both simplicity and flexibility of the
components. This data model, or ontology, is described first, followed by descriptions of the actual
components.

2.1. A Simple Ontology for Geometry and Mesh
This ontology consists of four basic data types:
Interface Instance: The instance of a component which serves as the overall “container” of a
component’s data and as the point of reference for those data.
Entity Handle: The data type used to reference topological entities in the geometry or mesh
(“vertex”, “geometric face”, etc.) in calls to the component functions.
Entity Set: Arbitrary combinations of entities and of other sets; supports directed (i.e. parent-child)
relationships between sets, which are distinct from a set containing another set.
Tag: An arbitrary piece of data stored on entities, sets, or the interface itself.

This ontology is used to interface to the various types of geometry, mesh, and other application
data found in many computational simulations; specific examples of this are given later in this paper.

2.2. CGM: A Component For Geometry Representation [3]
The Common Geometry Module (CGM) is a code library providing CAD geometry functionality used
for mesh generation and other simulation applications. CGM provides functions for geometry
creation, query and modification, tools for geometry decomposition and non-manifold topology
representation, and support for loading solid models on parallel computers. CGM uses the ACIS solid
modeling engine, and has support for facet-based and “virtual” geometry. CGM implements TSTTG,
which provides a core set of commonly needed functions, as well as functionality for the tags and sets
described in Section 2.1. CAD-based geometric modeling is crucial for high-fidelity accelerator
modeling applications of the type described later in this paper and in Ref. [5]. For example, the model
shown in is constructed by a C++ function which calls CGM through the TSTTG interface.

2.3. MOAB: A Component For Mesh Representation [4]
MOAB is a component for representing and evaluating finite element mesh data. MOAB

represents elements in the finite element “zoo” as well as polygonal and polyhedral elements, and can
store hexahedral meshes in structured or unstructured formats. MOAB is optimized for efficiency in
memory and cpu time (in that order). Figure 2 shows that mesh access times for MOAB are
comparable to the C++ object-based representation like those in CUBIT, while memory costs are
substantially less in MOAB. Figure 2 also shows the cost savings of using MOAB’s TSTT-like C-
language interface compared to calling through the standard SIDL-based TSTTM interface.

zcc zcbb1

ra1
ra0 zcl

a1all
bll

487

2.4. LASSO: A Component For Relating Geometry & Mesh Domain Data
Although modern finite element meshing tools require access to both geometry and mesh, we keep

the representations of mesh and geometry separate and independent, recovering when necessary the
relations between mesh and geometry which existed when the mesh was generated. This separation
results in finer-grained components for geometry and mesh, which increases potential for re-use
without duplicating application-native functionality. The TSTTR interface, implemented in our
LASSO component, performs the tasks of finding, storing, and retrieving these relations between
geometry and mesh data. Relations are stored in terms of tags on the geometry (pointing to associated
mesh) and the mesh (vica versa); since tags can store arbitrary data, this does not introduce
dependencies between the geometry and mesh components themselves. In the future, this
functionality will also be useful for relating geometry and mesh data to those in other components
(e.g. fields and discretizations).

Figure 2: Memory usage (left) and access time (right) for MOAB unstructured (UCD) and structured (SCD)
representations. MOAB’s native interface is compared to CUBIT datastructures and MOAB’s SIDL/Babel-
based TSTTM interface implementation. Performance of MOAB’s C-based TSTT interface is comparable to
MOAB’s native interface in most cases.

2.5. Mesquite: A Mesh Quality Improvement Toolkit
Mesh quality can affect both robustness and accuracy of finite element analyses. The Mesquite toolkit
uses optimization-based techniques, in concert with mathematically rigorous quality objective
functions, to achieve mesh improvement in critical regions without significant quality degradation in
other regions. See Ref [6] for more details.

3. Shape Optimization Application
In this collaboration between Sandia/TSTT, Stanford Linear Accelerator Center, and Carnegie Mellon
University, components from the various institutions are being integrated into an overall shape
optimization capability, where design parameters determining the shape of the accelerator cavity
shown in are being tuned such that electromagnetic performance of the cavity is optimized [5]. The
overall procedure used for this effort is shown in Figure 3. This procedure makes calls to the CGM,
MOAB, LASSO, and Mesquite components, as well as incorporating optimization techniques from
CMU into the SLAC analysis code Omega3P. Focusing on the geometry and mesh, implemented in
the ”DDRIV” section of Figure 3, this procedure a) generates a geometry G(p) based on a new shape
parameter vector p using a procedure which calls TSTTG/CGM (the model shown in is generated by
this procedure, for example); b) relates a pre-computed mesh Mo to the new geometry and projects the
mesh to that model using TSTTG/CGM and TSTTR/LASSO; c) Untangles & smoothes the mesh onto
the new model using Mesquite; and d) repeats steps a-c for small perturbations δp of each parameter,
computing the sensitivity of boundary mesh vertices with respect to those changes (so-called “design
velocities”).

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8
Elements (million)

M
em

or
y

(M
B

)

CUBIT

TSTT

MOAB,
UCD

MOAB,
SCD

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8
Elements (million)

Ti
m

e
(s

)

CUBIT

TSTT

MOAB, SCD, UCD

488

Data is communicated between the various components, inside and outside DDRIV, using tags and
sets provided in the TSTT data model. For example, tags are used to mark geometric boundary mesh
vertices to tell Mesquite not to move these vertices; sets are used to group mesh faces for assignment
of boundary conditions and communication of those to Omega3P; and design velocities are stored as
tags on mesh vertices for communication to the optimization procedure. Communication of these
diverse types of data using the same tag mechanism in TSTTM and TSTTG shows the flexibility of
the data model. This example also shows coupling between components at a variety of levels, from
high-level access (e.g. calling TSTTG as a black box from a function to generate the ILC geometry) to
very low-level, fine-grained access (e.g. optimizing mesh vertex positions in part by evaluating the
geometric surface normal at each boundary vertex). The ability to couple at these very different levels
is also an example of the flexibility of the data model.

Many applications in addition to the SLAC application exhibit this behavior of accessing geometry
and mesh data at both coarse- and fine-grained levels. The flexibilities in data types and level of
access is crucial to component-based applications, since they facilitate changing interactions between
components and tools (something which is quite likely during application development) without
modifying the component interfaces or the components themselves (something which should be quite
rare). This flexibility will also be crucial for extending this shape optimization approach to different
accelerator modes and to different applications altogether.

The benefit of using software components, for shape optimization and other applications, comes
not only from relieving the application from having to develop the components’ capabilities locally,
but, just as importantly, by providing a vehicle for delivering future improvements to applications
through standard interfaces. This has been the case during the development of the DDRIV driver
application, where new capabilities in Mesquite were accessed simply by adjusting startup options and
calling through the same Mesquite interface used previously. Modifications to the overall process
flow were also made simpler because of the flexibility inherent in the data model; for example, the
geometric model used in a given iteration of the optimization can either be read from disk, or
generated by DDRIV using a dynamically-assigned design parameter vector; subsequent steps of the
iteration (relating mesh, smoothing, etc.), proceed from there without depending on the method used
to obtain the geometric model. In fact, standard interfaces go one step further, by allowing wholesale
substitution of components to gain access to new techniques.

4. Component Design and Implementation Issues
As part of this development effort, we have observed several characteristics which strongly

influence the usability and efficiency of our components, and which are important elements of the
design of these components. Briefly, these characteristics are:

Component Scope: Defining the proper scope of a component involves tradeoffs. In essence, a
component should be just large enough in scope to cover some logical grouping of functionality, while
being small enough that its scope does not needlessly overlap with that of other components or with
code already implemented in most applications. In general, making finer-grained components gives
applications more options for which pieces of functionality to use. It is for this reason we choose to
package geometry and mesh as separate and independent components.

Ontology: As with component scope, there are tradeoffs in defining a component’s ontology:
having too few semantic types makes it difficult to verify semantic correctness, while having too many
or too specific semantic types makes it difficult to extend the functionality of a given component
(something that is often needed relatively frequently) without also changing the component’s ontology
(something that should be quite infrequent). The ontology for the TSTT components is effective, as
demonstrated by its ability to communicate both low- and high-level data between related and
unrelated components, even though only four basic data types are used.

489

Figure 3: Overall shape optimization process flow; ddriv tool is box on upper left.

Implementation & Efficiency: Good component designs balance the opposing goals of a) efficient

access to component data and calls across component interfaces, and b) support for rapid assembly of
components to support new applications. This balance has proven quite challenging in practice,
particularly during the definition of the data model used in and functional interfaces exposed by the
TSTT components. The following capabilities are relevant to this issue and must be considered
carefully:

• Native storage & minimized data copying
• Aggregate access to fine-grained data
• Use of the right component framework (if any)

Overall we feel we have struck the right balance between these goals, at least as shown by the rapid
construction of the shape optimization application; real performance numbers will be useful for
evaluating this assertion quantitatively.

5. Conclusions
This paper describes our design and implementation of components for geometry, mesh, and data
relations between the two. A shape optimization application is described which shows the simplicity
and flexibility of the data model implemented by these components, and how the components can be
used to store and retrieve data commonly encountered in simulations of this type. Designing effective
geometry and mesh components (measured by the simplicity and flexibility with which they can be
used in real applications) has required a careful balance of component scope, design of the component
ontology, and implementation of that design.

References
[1] The Terascale Simulation Tools and Technology (TSTT) Center, http://www.tstt-scidac.org/.
[2] SCIDAC: Scientific Discovery Through Advanced Computing, http://www.csm.ornl.gov/scidac/.
[3] Timothy J. Tautges, “CGM: a Geometry Interface for Mesh Generation, Analysis and Other

Applications”, Engineering with Computers, 17:299-314 (2001).
[4] Timothy J. Tautges, Ray E. Meyers, Karl Merkley, Clint Stimpson, Corey Ernst, “MOAB: A

Mesh-Oriented Data Base”, Sandia National Laboratories Report SAND2004-1592, Sandia
National Laboratories, Albuquerque, New Mexico, 2004.

[5] K. Ko, “Impact of SciDAC on Office of Science Accelerators through Electromagnetic
Modeling”, SciDAC2005, June, 2005.

[6] M. Brewer, L. Diachin, P. Knupp, T. Leurent, D. Melander, “The Mesquite Mesh Quality
Improvement Toolkit”, Proceedings, 12th International Meshing Roundtable, Sandia National
Laboratories report SAND 2003-3030P, Sept. 2003.

490

