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Abstract. Software components for representing and evaluating geometry (TSTTG/CGM) and 
finite element mesh (TSTTM/MOAB), and a higher-level component for relations between the 
two (TSTTR/LASSO), have been combined with electromagnetic modelling and optimization 
techniques, to form a SciDAC shape optimization application. The TSTT data model described 
in this paper allows components involved in the shape optimization application to be coupled 
at a variety of levels, from coarse black-box coupling (e.g. to generate a model accelerator 
cavity using TSTTG) to very fine-grained coupling (e.g. smoothing individual mesh elements 
based in part on geometric surface normals at mesh vertices).  Despite this flexibility, the 
TSTT data model uses only four fundamental data types (entities, sets, tags, and the interface 
object itself). We elaborate on the design and implementation of effective components in the 
context of this application, and show how our simple but flexible data model facilitates these 
efforts.   

1.  Introduction 
PDE-based computations rely heavily on discrete (mesh) and continuous (geometry) domain 
representations, increasingly by importing this capability in the form of software components rather 
than “re-inventing the wheel” locally.  A recent example of a component-based approach is a 
collaboration between SLAC, Sandia and Carnegie Mellon University on accelerator shape (design) 
optimization where the electromagnetic (EM) performance of accelerator cavities is optimized through 
adjustment of geometric design parameters [5].  The model problem for this effort is a Low-Loss 
cavity model for the International Linear Collider (ILC) shown in .  This application requires 
components for geometry and mesh which interact with EM modeling and optimization parts of the 
calculation at a variety of levels.  The geometry and mesh parts of this application also present an 
interesting study in components themselves, because of their interactions together (amongst 
themselves and with other components in the calculations) in typical simulations, the often central role 
of mesh data in various types of simulations, and the variety of data from other applications (so-called 
“metadata”) often accompanying and accessed through the mesh data.   

The Terascale Tools & Technologies (TSTT) center [1] was established as part of the DOE 
SciDAC program [2] to develop interoperable components for geometry, mesh, and other enabling 
technology tools, for applications like the one described above.  One of the principal outcomes of this 
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effort has been the definition of common interfaces for geometry (TSTTG), mesh (TSTTM), and data 
relations (TSTTR).  These interfaces, implemented by our CGM, MOAB and LASSO components, 
respectively, play a central role in the construction of the shape optimization application described 
above.  This paper describes the design used for these components, and shows how this design 
simplifies the construction of the shape optimization application. 

 
Figure 1: Parameterized geometric model for International Linear Collider Low-Loss superconducting cavity.  
Not all of the 20 design parameters are shown. 

2.  Geometry, Mesh and Relations Interface Implementations 
Our components share the same basic data model, which enables both simplicity and flexibility of the 
components. This data model, or ontology, is described first, followed by descriptions of the actual 
components. 

2.1.  A Simple Ontology for Geometry and Mesh 
This ontology consists of four basic data types: 
Interface Instance: The instance of a component which serves as the overall “container” of a 
component’s data and as the point of reference for those data. 
Entity Handle: The data type used to reference topological entities in the geometry or mesh 
(“vertex”, “geometric face”, etc.) in calls to the component functions. 
Entity Set: Arbitrary combinations of entities and of other sets; supports directed (i.e. parent-child) 
relationships between sets, which are distinct from a set containing another set. 
Tag: An arbitrary piece of data stored on entities, sets, or the interface itself. 

This ontology is used to interface to the various types of geometry, mesh, and other application 
data found in many computational simulations; specific examples of this are given later in this paper.  

2.2.  CGM: A Component For Geometry Representation [3] 
The Common Geometry Module (CGM) is a code library providing CAD geometry functionality used 
for mesh generation and other simulation applications.  CGM provides functions for geometry 
creation, query and modification, tools for geometry decomposition and non-manifold topology 
representation, and support for loading solid models on parallel computers.  CGM uses the ACIS solid 
modeling engine, and has support for facet-based and “virtual” geometry.  CGM implements TSTTG, 
which provides a core set of commonly needed functions, as well as functionality for the tags and sets 
described in Section 2.1.  CAD-based geometric modeling is crucial for high-fidelity accelerator 
modeling applications of the type described later in this paper and in Ref. [5].  For example, the model 
shown in  is constructed by a C++ function which calls CGM through the TSTTG interface. 

2.3.  MOAB: A Component For Mesh Representation [4] 
MOAB is a component for representing and evaluating finite element mesh data.  MOAB 

represents elements in the finite element “zoo” as well as polygonal and polyhedral elements, and can 
store hexahedral meshes in structured or unstructured formats.  MOAB is optimized for efficiency in 
memory and cpu time (in that order).  Figure 2 shows that mesh access times for MOAB are 
comparable to the C++ object-based representation like those in CUBIT, while memory costs are 
substantially less in MOAB.  Figure 2 also shows the cost savings of using MOAB’s TSTT-like C-
language interface compared to calling through the standard SIDL-based TSTTM interface.   
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2.4.  LASSO: A Component For Relating Geometry & Mesh Domain Data 
Although modern finite element meshing tools require access to both geometry and mesh, we keep 

the representations of mesh and geometry separate and independent, recovering when necessary the 
relations between mesh and geometry which existed when the mesh was generated.  This separation 
results in finer-grained components for geometry and mesh, which increases potential for re-use 
without duplicating application-native functionality.  The TSTTR interface, implemented in our 
LASSO component, performs the tasks of finding, storing, and retrieving these relations between 
geometry and mesh data.  Relations are stored in terms of tags on the geometry (pointing to associated 
mesh) and the mesh (vica versa); since tags can store arbitrary data, this does not introduce 
dependencies between the geometry and mesh components themselves.  In the future, this 
functionality will also be useful for relating geometry and mesh data to those in other components 
(e.g. fields and discretizations). 

 
Figure 2: Memory usage (left) and access time (right) for MOAB unstructured (UCD) and structured (SCD) 
representations.  MOAB’s native interface is compared to CUBIT datastructures  and MOAB’s SIDL/Babel-
based TSTTM interface implementation.  Performance of MOAB’s C-based TSTT interface is comparable to 
MOAB’s native interface in most cases. 

2.5.  Mesquite: A Mesh Quality Improvement Toolkit 
Mesh quality can affect both robustness and accuracy of finite element analyses.  The Mesquite toolkit 
uses optimization-based techniques, in concert with mathematically rigorous quality objective 
functions, to achieve mesh improvement in critical regions without significant quality degradation in 
other regions.  See Ref [6] for more details. 

3.  Shape Optimization Application 
In this collaboration between Sandia/TSTT, Stanford Linear Accelerator Center, and Carnegie Mellon 
University, components from the various institutions are being integrated into an overall shape 
optimization capability, where design parameters determining the shape of the accelerator cavity 
shown in  are being tuned such that electromagnetic performance of the cavity is optimized [5].  The 
overall procedure used for this effort is shown in Figure 3.  This procedure makes calls to the CGM, 
MOAB, LASSO, and Mesquite components, as well as incorporating optimization techniques from 
CMU into the SLAC analysis code Omega3P.  Focusing on the geometry and mesh, implemented in 
the ”DDRIV” section of Figure 3, this procedure a) generates a geometry G(p) based on a new shape 
parameter vector p using a procedure which calls TSTTG/CGM (the model shown in  is generated by 
this procedure, for example); b) relates a pre-computed mesh Mo to the new geometry and projects the 
mesh to that model using TSTTG/CGM and TSTTR/LASSO; c) Untangles & smoothes the mesh onto 
the new model using Mesquite; and d) repeats steps a-c for small perturbations δp of each parameter, 
computing the sensitivity of boundary mesh vertices with respect to those changes (so-called “design 
velocities”). 
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Data is communicated between the various components, inside and outside DDRIV, using tags and 
sets provided in the TSTT data model.  For example, tags are used to mark geometric boundary mesh 
vertices  to tell Mesquite not to move these vertices; sets are used to group mesh faces for assignment 
of boundary conditions and communication of those to Omega3P; and design velocities are stored as 
tags on mesh vertices for communication to the optimization procedure.  Communication of these 
diverse types of data using the same tag mechanism in TSTTM and TSTTG shows the flexibility of 
the data model.  This example also shows coupling between components at a variety of levels, from 
high-level access (e.g. calling TSTTG as a black box from a function to generate the ILC geometry) to 
very low-level, fine-grained access (e.g. optimizing mesh vertex positions in part by evaluating the 
geometric surface normal at each boundary vertex). The ability to couple at these very different levels 
is also an example of the flexibility of the data model. 

Many applications in addition to the SLAC application exhibit this behavior of accessing geometry 
and mesh data at both coarse- and fine-grained levels.  The flexibilities in data types and level of 
access is crucial to component-based applications, since they facilitate changing interactions between 
components and tools (something which is quite likely during application development) without 
modifying the component interfaces or the components themselves (something which should be quite 
rare).  This flexibility will also be crucial for extending this shape optimization approach to different 
accelerator modes and to different applications altogether. 

The benefit of using software components, for shape optimization and other applications, comes 
not only from relieving the application from having to develop the components’ capabilities locally, 
but, just as importantly, by providing a vehicle for delivering future improvements to applications 
through standard interfaces. This has been the case during the development of the DDRIV driver 
application, where new capabilities in Mesquite were accessed simply by adjusting startup options and 
calling through the same Mesquite interface used previously.  Modifications to the overall process 
flow were also made simpler because of the flexibility inherent in the data model; for example, the 
geometric model used in a given iteration of the optimization can either be read from disk, or 
generated by DDRIV using a dynamically-assigned design parameter vector; subsequent steps of the 
iteration (relating mesh, smoothing, etc.), proceed from there without depending on the method used 
to obtain the geometric model.  In fact, standard interfaces go one step further, by allowing wholesale 
substitution of components to gain access to new techniques.   

4.  Component Design and Implementation Issues 
As part of this development effort, we have observed several characteristics which strongly 

influence the usability and efficiency of our components, and which are important elements of the 
design of these components.  Briefly, these characteristics are: 

Component Scope: Defining the proper scope of a component involves tradeoffs.  In essence, a 
component should be just large enough in scope to cover some logical grouping of functionality, while 
being small enough that its scope does not needlessly overlap with that of other components or with 
code already implemented in most applications. In general, making finer-grained components gives 
applications more options for which pieces of functionality to use.  It is for this reason we choose to 
package geometry and mesh as separate and independent components.  

Ontology: As with component scope, there are tradeoffs in defining a component’s ontology: 
having too few semantic types makes it difficult to verify semantic correctness, while having too many 
or too specific semantic types makes it difficult to extend the functionality of a given component 
(something that is often needed relatively frequently) without also changing the component’s ontology 
(something that should be quite infrequent).  The ontology for the TSTT components is effective, as 
demonstrated by its ability to communicate both low- and high-level data between related and 
unrelated components, even though only four basic data types are used.   
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Figure 3: Overall shape optimization process flow; ddriv tool is box on upper left. 

 
Implementation & Efficiency: Good component designs balance the opposing goals of a) efficient 

access to component data and calls across component interfaces, and b) support for rapid assembly of 
components to support new applications.  This balance has proven quite challenging in practice, 
particularly during the definition of the data model used in and functional interfaces exposed by the 
TSTT components.  The following capabilities are relevant to this issue and must be considered 
carefully: 

• Native storage & minimized data copying 
• Aggregate access to fine-grained data 
• Use of the right component framework (if any) 

Overall we feel we have struck the right balance between these goals, at least as shown by the rapid 
construction of the shape optimization application; real performance numbers will be useful for 
evaluating this assertion quantitatively.   

5.  Conclusions 
This paper describes our design and implementation of components for geometry, mesh, and data 
relations between the two.  A shape optimization application is described which shows the simplicity 
and flexibility of the data model implemented by these components, and how the components can be 
used to store and retrieve data commonly encountered in simulations of this type.  Designing effective 
geometry and mesh components (measured by the simplicity and flexibility with which they can be 
used in real applications) has required a careful balance of component scope, design of the component 
ontology, and implementation of that design. 
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