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We survey the concept of assortativity, starting from its original definition by Newman in 2002. Degree
assortativity is the most commonly used form of assortativity. Degree assortativity is extensively used in
network science. Since degree assortativity alone is not sufficient as a graph analysis tool, assortativity is
usually combined with other graph metrics. Much of the research on assortativity considers undirected,
non-weighted networks. The research on assortativity needs to be extended to encompass also directed
links and weighted links. In addition, the relation between assortativity and line graphs, complementary
graphs and graph spectra needs further work, to incorporate directed graphs and weighted links. The
present survey paper aims to summarize the work in this area and provides a new scope of research.
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1. Introduction

In this survey paper, we provide an overview of assortative mixing in complex networks. The concept of
assortativity was introduced by Newman [1] in 2002 and is extensively studied since then. Assortativity
is a graph metric. It represents to what extent nodes in a network associate with other nodes in the
network, being of similar sort or being of opposing sort. Generally, the assortativity of a network is
determined for the degree (number of direct neighbours) of the nodes in the network. The concept of
assortativity may, however, be applied to other characteristics of a node as well, such as node weight,
coreness, node betweenness, kth level node degree (number of nodes that can be reached in no more than
k hops; also known as expansion) etc. In addition, assortativity may be applied to node characteristics
that are not directly topology-related, such as race or language (see, e.g. Quayle et al. [2] and Nagoshi
et al. [3]).

Assortativity is expressed as a scalar value, ρ, in the range −1 � ρ � 1. Degree assortativity is
identified as ρD. A network is said to be assortative when high-degree nodes are, on average, connected
to other nodes with high-degree and low-degree nodes are, on average, connected to other nodes with
low degree. A network is said to be disassortative1 when, on average, high-degree nodes are connected
to nodes with low(er) degree and, on average, low-degree nodes are connected to nodes with high(er)

1 The term disassortative is also used in some publications.
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508 R. NOLDUS AND P. VAN MIEGHEM

degree. Assortativity provides information about the structure of a network, but also about dynamic
behaviour of the network and robustness of the network, such as random or targeted attack and virus
spread. Considering only the degree distribution of the network does, generally, not provide sufficient
information about the network.

The original definition of assortativity (Newman [1]), for non-weighted, non-directed networks, is
based on the correlation between random variables. We define the linear correlation coefficient between
two random variables X and Y as follows:

ρ(X , Y) = E[XY ] − μX μY

σX σY
= E[(X − E[X ])(Y − E[X ])]√

E[(X − E[X )2]E[(Y − E[Y ])2]
(1)

where μX and μY are the mean of X and Y , respectively, E[XY] − μX μY is the covariance of X and
Y and σX and σY are their respective standard deviation. To derive a definition of degree correlation,
assortativity, we apply the following approach. We randomly select a link l in the graph. The link
connects two nodes: a start node, denoted l− and an end node, denoted l+. The degree D of l− is
denoted by Dl− and the degree of l+ is denoted by Dl+. Newman [1] derived, from Equation (1), the
linear degree correlation coefficient:

ρD =
∑

jk jk(ejk − qjqk)

σ 2
q

(2)

where

ejk is the joint-remaining degree probability for remaining degree j and remaining degree k (the remain-
ing degree of a node is equal to the degree of that node minus one);

qk = (k+1)pk+1∑
j jpj

is the normalized distribution of the remaining degree Dr of a randomly selected node;

σq is the standard deviation of qk .

The assortativity is quantified by the Pearson correlation coefficient (Van Mieghem [4], Chapters 2
and 4) of X and Y , whereby X and Y are the remaining degree at the end of a link. The division by σ 2

q
(variance of q) serves to normalize the assortativity in the range [−1, 1]. The rationale for basing the
degree assortativity on the remaining degree (= di − 1) of node i rather than on the degree of node i, di,
is that the tendency for two nodes i and j to connect is determined from the moment that these nodes i
and j are not yet connected, i.e. have degree di − 1 and dj − 1. We also refer to Van Mieghem [4] for a
further description of the linear correlation coefficient.

Assortativity has, since its inception in 2002, been studied extensively, notably by Newman [5,6],
D’Agostino et al. [7], Chang et al. [8], Estrada [9], Holme et al. [10], König et al. [11], Leung et al. [12],
Litvak et al. [13], Liu et al. [14], Manka-Krason and Kulakowski [15], Nguyen [16], Piraveenan
et al. [17–23], Van Mieghem et al. [24,25], Wang et al. [26], Winterbach et al. [27], Xia et al. [28],
Xu et al. [29], Xulvi-Brunet et al. [30], J. Zhou et al. [31] and D. Zhou et al. [32].

The paper is organized as follows. After a brief introduction on graph analysis in Section 2, Section 3
presents a literature survey. Section 4 lays the theoretical foundation for the concept of assortativ-
ity, including various examples. Although the foundation considers directed networks (networks with
directed links), the examples in this section comprise undirected networks only. Section 5 applies
assortativity to networks with non-weighted, directed links. This was studied by, among others, Foster
et al. [33] and Piraveenan et al. [20]. Assortativity for weighted networks is, thus far, not sufficiently
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ASSORTATIVITY IN COMPLEX NETWORKS 509

explored. Section 6 studies the relation between assortativity and graph spectra. Here, we refer to the
work by Van Mieghem et al. [24,25]. Section 7 studies methods for influencing the network’s assor-
tativity, such as degree-preserving rewiring (DPR). A network’s assortativity may be modified for a
specific reason, such as increasing the network’s robustness (e.g. resilience against link removal) or to
mitigate the effect of virus spread through the network. Section 8 looks into the relation between assor-
tativity and line graphs. This relation was studied by, among others, Liu et al. [14] and Manka-Krason
and Kulakowski [15]. Section 9 studies the relation between assortativity and complementary graphs,
studied by Wang et al. [26]. In Section 10, we study the concept of local assortativity. We refer to the
work of Piraveenan et al. [18]. Section 11 contains conclusions and provides directions for future work.

2. Graph analysis

Extensive description of graph analysis can be found in Van Mieghem [4], part III, and in Van
Mieghem [34]. We represent a network as a graph G(N , L), with node set N of N = |N | nodes and
with link set L of L = |L| links.2 The graph may be represented through its adjacency matrix A of size
N × N , with elements

aij = 1, when a link exists between node i and node j

= 0, when no link exists between node i and node j

We assume that no self-loops exist (hence aii = 0) and no overlapping links, i.e. there cannot be more
than one link between i and j. Such a graph is known as a simple graph. For undirected graphs, links
have no direction. For undirected graphs A is symmetrical, i.e. aij = aji and A = A�. For directed graphs,
where links have a direction, we have aij |= aji, for i |= j. For example, when a link exists from node i to
node j, but not in the other direction, then aij = 1 and aji = 0. Graphs may comprise weighted links, in
which case a link has a weight associated with it. Usually, this weight wij is expressed by a non-negative
real number.3 The corresponding weighted adjacency matrix W contains the weights wij instead of aij.

We study assortativity in graphs of various classes, whereby the class constitutes a description of
the topology of the network. The degree sequence of a network alone cannot be considered as a com-
prehensive characterization of that network, which is one of the reasons for Newman to introduce the
concept of assortativity. Well-known network models (classes) include:

– Erdős–Rényi (ER) random graph [35,36]. A graph of the class ER comprises a set of N nodes.
Nodes in the network are connected by a link with probability p. The presence of a link between
a node pair is stochastically independent of the presence of a link between any other node pair.
The ER network has binomial degree (D) distribution:

Pr[D = k] =
(

N − 1
k

)
pk(1 − p)N−1−k (3)

2 Literature also uses the terminology vertex to refer to a node and edge to refer to a link; the notation G(V , E) is used, were V
is the set of vertices and E is the set of edges.

3 When the graph represents an electrical circuit comprising resistive components, capacitive components and inductive com-
ponents, then wij may be a complex variable.

Downloaded from https://academic.oup.com/comnet/article-abstract/3/4/507/775579
by guest
on 26 July 2018



510 R. NOLDUS AND P. VAN MIEGHEM

For large N and λ = p(N − 1) is independent of N , the degree distribution Equation (3)
evolves into a Poisson distribution (Van Mieghem [4], Chapter 2):

Pr[D = k] = e−λ λk

k!
(4)

– Barabási–Albert (BA) random graph [37]. A graph of the class BA is a growing network model.
The network is built from a starting graph, normally a complete graph with N0 nodes, to which
iteratively a node is added. Each newly added node is connected to m existing, randomly selected
nodes. The probability of attachment to a randomly selected node is proportional to the degree
probability of that existing node, which explains the term preferential attachment.

For large N , a BA graph has power law (scale-free) degree distribution:

Pr[D = k] = ck−3 (5)

A scale-free graph generalizes Equation (5) to a power-law degree distribution:

Pr[D = k] = ck−γ (6)

whereby γ > 1, although, for most real-world networks, 1.2 � γ � 3.5 and where c is a normal-
ization factor so that

∑N−1
k=1 Pr[D = k] = 1.

– Watts–Strogatz (WS) small world graph [38]. A WS graph is an evolving graph. The graph is
constructed from a regular graph, such as (typically) a ring lattice. An iterative rewiring process
is applied to rewire each link, with probability pr, to a randomly selected other node. The term
‘small world’ is used since networks of this class exhibit shortest paths with small average hop
count E[H]. At the same time, the clustering coefficient, C, of the graph remains high. (C is a
measure of the number of triangles in the graph relative to the number of triplets in the graph [4].)
When pr increases towards 1, the resulting network will be close to an ER network.

The degree of the WS graph is centred around the degree of the non-rewired nodes. When we
consider a WS graph constructed from a ring lattice without rewiring (pr = 0), the degree of
each node is identical, as each node is connected to the same number of neighbours. When the
rewiring probability pr increases or when the number of rewiring cycles c increases, the graph
becomes more random and the degree distribution evolves towards a binomial distribution (or
Poisson distribution, depending on N and L). For pr = 0, we have the average hop count of the
shortest path as a function of N , E[HN ] = O(N). When pr becomes sufficiently large, the average
hop count of the shortest path becomes E[HN ] = O(log N).

– Callaway growing network [39]. The Callaway graph class is, just like the BA graph class, a
growing network model. The graph is built from an initial complete graph with small N0, e.g.
5. Then nodes are added iteratively. For every added node, a link is added between two nodes.
The two nodes are selected randomly from the set of existing nodes and the newly added node.
As such, a Callaway network model may be considered a variant of the BA network model. The
degree distribution has an exponential form.

– Lattice (e.g. ring lattice, spherical lattice, square lattice, cubic lattice). The lattice is a regular
structure, whereby each node is connected to a defined number of neighbours. However, for a
square lattice, for example, nodes at the edge of the network structure have smaller degree.
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– Bi-partite network (generalized to k-partite network). The bi-partite network comprises one sub-
network N with n nodes and another subnetwork M with m nodes. Links exist between nodes in
N and nodes in M , but not between nodes in N or between nodes in M .

– A star network is a special case of a (N , M ) bi-partite network; it has N = 1.

– A tree network is any connected graph with L = N − 1 links.

Complex networks of a particular class have certain qualifying characteristics, one of them being the
degree distribution. Network rewiring modifies the topology of the network in order to change certain
characteristic of the network. The rewiring may have the effect that the network is transformed from one
graph class to another graph class. When we consider, for example, an observed network that is classified
as a BA graph, and we apply random rewiring, the network will gradually become a network possessing
the characteristics of an ER random network. Rewiring is described in more detail in Section 7.

The degree D of a randomly selected node in the graph represents the number of direct neighbours.
The degree vector is represented by [d1, d2, . . . , dN ]T. The degree probability density function, PDF, is
defined as fD(k) = Pr[D = k]. The joint degree PDF, being the probability that two randomly selected
nodes have two specific degree values, is defined as fD1D2(k, l) = Pr[D1 = k, D2 = l]. When the random
selection of the first node is stochastically independent of the random selection of the second node, then
fD1D2(k, l) = fD(k) · fD(l). Assortativity relates to the joint degree distribution for links in the network.
When randomly selecting a link l in a graph, the degree of the node on one end of the link, dl−, is not
stochastically independent of the degree of the node on the other end of the link, dl+. Assortativity is a
measure of the extent to which Dl− and Dl+ are correlated for a network.

The study of assortativity often comprises network transformation. The assortativity of a network
may be increased or decreased by a network modification such as link addition, link removal, link
rewiring and DPR. DPR is described in Section 7.

3. Literature survey

When we consider an ER graph, the existence of a link between two nodes has no relation to the degree
of these respective nodes. When considering a BA graph, we observe that the preferential attachment
of a link between a newly added node and an existing node is a function of the degree of that existing
node. For a BA graph with sufficiently large network size, we observe that, on average, for each node
i, the distribution of the degree of the nodes connected to node i, is independent of the degree of node i
itself; i.e. no degree correlation exists.

Newman observed that in many real-world networks the degree of the nodes connected to a ran-
domly selected node i has a relation with the degree of that node i itself. In other words Pr[Dj =
k|j∼i] |= Pr[D = k], j ∼ i indicating the existence of a link between i and j and Dj being the degree of a
randomly selected neighbour j. Two networks with identical degree vector may have different assortativ-
ity. Some empirically found assortativity values, as well as simulation results, are shown in Table 1; [1]
and [5] provide further assortativity values of actual networks.

Physics authors and mathematics authors, albeit the latter to a lesser extent, tend to publish articles
with others that have equally high or equally low number of publications, i.e. forming an assortative
network. For connections on the Internet, we note that highly connected Autonomous Systems (AS)
are connected to other AS’s that themselves have few(er) connections, i.e. forming a disassortative
network. The same observation applies for undirected hyperlinks between Web pages. For experimental
(i.e. generated) ER and BA networks, the assortativity is ∼0.
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Table 1 Assortativity for value for different networks

Network Assortativity

Physics coauthorship [40] 0.363
Mathematics coauthorship [41] 0.120
Company directors (see [42] for reference) 0.276
Connections between autonomous systems on the Internet [43] −0.189
World Wide Web (see [5] for reference) −0.067
Undirected hyperlinks between Web pages in a single domain [37] −0.065
Neural network (see [42] for reference) −0.163
Experimental ER graph (for sufficiently large network size) ∼0
Experimental BA graph (for sufficiently large network size) ∼0

Assortativity has a direct relation with the robustness of the network, in terms of connectivity of
the network. A failure of, or targeted attack on a high-degree node in an assortative network would
leave other high-degree nodes connected to one another. This minimizes the chance of the network as
a whole to become disconnected. In a disassortative network, high-degree nodes are less connected to
one another. Many paths between nodes in the network are dependent on high degree node(s). Failure
of a high-degree node in a disassortative network would hence have more impact on the connectedness
of the network.

Newman [5] provides a general exploration of assortativity, applied on various kinds of network and
using various node characteristics based on which assortative mixing may occur.

Extensive exploration of the concept of assortativity has been done by Piraveenan [21]. Piraveenan
studies, among others, the existence of networks that are perfectly assortative or perfectly disassortative.
In a perfectly assortative network, all nodes are connected to other node(s) of the same type, e.g. same
degree. One example is a complete network, where all nodes are connected to all other nodes and all
nodes have degree di = N − 1. For such network, degree assortativity is maximal, ρD = 1. If the network
comprises nodes with different degree, then perfect degree assortativity is still possible. Perfect degree
assortativity would be reached when the network is fragmented in sub-networks, whereby each subnet-
work itself constitutes a complete network. Perfect disassortativity is more difficult to achieve. One class
of network that is determined [25] to be perfectly disassortative is the complete bipartite graph, Km,n,
with m |= n. A star graph is an example of complete bipartite graph, Km,1. Piraveenen et al. [18] asso-
ciate assortativity also with information content of a network. Networks which are degree assortative or
degree disassortative have higher information content than networks which are degree non-assortative.
When considering a random node i of a degree assortative or degree disassortative network, we know
what degree(s) to expect for the nodes connected to node i. When considering a random node i of a
degree non-assortative network, we have no expectation of the degree(s) of the nodes connected to
node i. This relation between assortativity and network information was also observed by Sole and
Valverde [44]. The information content related to the link set of a graph is defined in [19] as follows:

I(q) =
N−1∑
j=0

N−1∑
k=0

ej,k log
ej,k

qjqk
(7)

where

j, k ∈ N ;
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qj, qk probability of remaining degree j, k (the ‘remaining degree’ is the number of links leaving the
node other than the link on which we arrived, i.e. for node i, the remaining degree is di − 1);

ej,k probability that a randomly selected link l connects a node with remaining degree j and a node with
remaining degree k; hence ej,k = Pr[{Dl− − 1 = j} ∩ {Dl+ − 1 = k}].

For scale-free networks, we replace in Equation (7) N by Np, Np being the cut-off point for scale-
freeness of the degree distribution. It follows from Equation (7) that the information content of a network
is influenced by the ratio between the joint degree probability ej,k and the product of the respective
probabilities qj and qk . By changing the topology of a network through, e.g. rewiring, we can increase or
decrease the information content of that network. Piraveenan et al. [19] have observed a direct relation
between the information content of a network and that network’s (dis)assortativity.

Assortativity does not reveal information about individual nodes. A network with a given assortativ-
ity comprises nodes that contribute to this assortativity. Not all nodes contribute equally to the network’s
assortativity. A network that is non-assortative overall may comprise nodes that are themselves highly
assortative, e.g. comprise high-degree nodes that connect to other high-degree nodes. Networks with
equal assortativity may have different distribution of the assortativity contribution per node. The assor-
tativity contribution is referred to as local assortativity [21] or node assortativity. Local assortativity is
further explored in Section 10.

Assortativity for networks with weighted links is studied by Chang et al. [8]. The rationale is that in
many networks, the link between two nodes may be weak or strong, i.e. may have a weight, reflecting
aspects such as data transfer capability, data transfer cost or length. Open shortest path first (OSPF)-
based IP networks is one practical example where links have a defined weight, namely the data transfer
capacity between two connected OSPF routers.4 The degree of a node is no longer a discrete quantity,
but rather a set of real variables. Chang et al. [8] propose that the Strength of a node is the sum of
the weights of the links connected to that node. Hence, assortativity for these networks relates to the
tendency of nodes with the same or opposing strength to be connected to one another. This definition
of node strength is also applied by Wang et al. [45], which studies, among others, the distribution of
the link weight for a single node. Assortativity for networks with weighted links5 is also studied by
Leung and Chau [12]; the weighted assortativity, ρw, is proposed in [12]. When considering a network
with weighted links, we can still calculate the (non-weighted) assortativity by ignoring the weight of the
links. It is then observed (e.g. in [12]) that ρw and ρD can differ substantially for a network. One may,
however, question the validity of ignoring the link weights in a weighted network. A link with small
weight has in that case the same connection value as a link with high weight, while these links may
contribute significantly differently towards the network’s robustness and other network characteristics.

König et al. [11] present a network transformation model whereby a stationary, non-assortative or
disassortative network migrates towards an assortative network. The network transformation includes a
combination of link addition and link removal (decay of existing links). The motivation of this model is
that nodes in the network, e.g. a human interaction network or a technological network, are constrained
in the number of links that it can maintain. This model is distinctively different from the network growth
models from, e.g. Catanzaro et al. [40] and Piraveenan et al. [23], for generating a network with a given
assortativity. For these models, a network grows through the addition of nodes and links, according to
some rule. These models do not define a constraint in the number of links incident to a node. Neither do
they consider the removal of links.

4 This data transfer capability is not only dependent on the physical characteristics of the Ethernet cable, but also on the
capability of the IP interfaces on the OSPF router.

5 Newman’s original definition of assortativity does not consider weighted links.

Downloaded from https://academic.oup.com/comnet/article-abstract/3/4/507/775579
by guest
on 26 July 2018



514 R. NOLDUS AND P. VAN MIEGHEM

Litvak and Van der Hofstad [13] observe that networks which are inherently degree disassortative,
such as the Internet, show a decreasing degree disassortativity as the network size N increases, i.e. ρD

moves towards 0. It is shown that the assortativity of the network is influenced by the distribution of
the degrees of the nodes in the network. A broad distribution of degrees (range of degree values) has a
decreasing effect on the assortativity value. For large networks, the degree distribution will on average
be broader than for small networks. To mitigate this apparent shortcoming of Newman’s assortativity
definition, Litvak and Van der Hofstad [13] propose the rank correlation as an alternative method for
calculating degree–degree correlation. The rank correlation is defined as follows:

ρrank
n =

∑n
i=1(r

X
i − (n + 1)/2)(rY

i − (n + 1)/2)√∑n
i=1(r

X
i − (n + 1)/2)2

∑n
i (r

Y
i − (n + 1)/2)2

(8)

whereby X and Y are random variables, representing the degree at either end of a randomly selected link
in the network. The variables rX

i and rY
i are the rank of an observation Xi and Yi, respectively, for the case

that the sample values (Xi)|i=1,...,n and (Yi)|i=1,...,n are ranked in descending order. The rank correlation
is based on the classical Spearman’s rho6 measure [46] (as opposed to assortativity, which is based
on the Pearson correlation coefficient (Van Mieghem [4], Chapter 2). Litvak and Van der Hofstad [13]
show that the ranking definition allows for uncovering disassortativity in networks even for large N
and continue to propose that the rank correlation should, along with assortativity, be a standard tool
for complex network analysis, specifically networks that are by nature scale-free in terms of degree
distribution.

Note For Newman’s definition of assortativity Equation (1), Equation (2), based on the Pearson
correlation coefficient, graph theoretic notation exists Equation (14), Equation (15), Van
Mieghem [25]. For the rank correlation, based on the Spearman rho measure, such graph
theoretic notation does not exist. When performing graph analysis, the theoretic notation of
the assortativity is far easier to work with than the original definition. This makes the assor-
tativity, for practical purposes, a more attractive metric than the rank correlation.

Holme and Zhao [10] view assortativity from a different perspective. Holme and Zhao [10] define
a null model for a network, formed by the ensemble G(G), whereby each element of G constitutes a
network G′ with the same degree sequence as G. G comprises all G′ that may be formed from G, with
the same degree sequence. All elements from G are placed in two-dimensional space formed by the
assortativity and the clustering coefficient [4,47]:

C = 3
ntriangle

ntriplet
(9)

where ntriangle is the number of triangles (=closed triplet, also denoted as �G) and ntriplet is the num-
ber of connected triplets (subgraph consisting of three nodes, connected through two or three links).
Traversing the entire G, i.e. generating all elements G′ of G, is non-trivial. Several techniques exist
for transforming a network for increasing or decreasing assortativity. Winterbach et al. [27] study a
greedy DPR approach. Van Mieghem et al. [25] and Noldus and Van Mieghem [48] apply a targeted
approach for selecting links to be rewired in order to affect the assortativity, without affecting the degree
sequence.

6 We write ‘rho’ instead of ρ, to prevent confusion with assortativity.
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Placing the elements from G into said two-dimensional space formed by ρD (horizontal axis) and C
(vertical axis) provides the null model. When analysing an observed network G, whereby assortativity
and clustering coefficient of that network are calculated, the network can be pegged into its correspond-
ing position in the assortativity-clustering space. We can then determine how far the assortativity of the
network G may be increased, or decreased, and what clustering coefficient may be attained.

A different two-dimensional metric space may be devised, such as assortativity versus average short-
est path or assortativity versus effective graph resistance. Each such two-dimensional metric space, serv-
ing as null model for the observed network, may be used to interpret the potential assortativity range of
the network. Put differently, it visualizes the extent to which an increase or decrease in assortativity of
the network may affect the other metric.

The concept of a null-model in a graph is applied also by Maslov and Sneppen [49]. Their null-
model Gnull of a graph G is formed by a node set N , whereby each node in N has the same degree as
the corresponding node in G. Hence, the degree of each node in Gnull is identical to the degree of the
corresponding node in G. Links, however, are randomly distributed. Gnull may be generated by random
rewiring of all the links. Gnull will have a probability Pnull[Di = k, Dj = l], whereby i and j are the nodes
at the end of a randomly selected link and k and l their respective degrees. For an observed network, the
joint-degree probability of a randomly selected link is defined as P[Di = k, Dj = l]. Visualization (colour
plotting) of the ratio P[Di = k, Dj = l]/Pnull[Di = k, Dj = l] shows (dis)assortative, or non-assortative,
trend for nodes of varying degree. A further interesting observation by Maslov and Sneppen [49] is that
when considering all nodes j that are neighbour of a specific node i, certain kinds of networks exhibit a
power-law ratio between E[Dj] and Di for a node i with Di = k. Specifically, nodes i with high Di have
low E[Dj]. This is observed for the Internet and for protein networks. This characteristic of a network
will, on average, curb the spread of deleterious information/data.

Estrada [9] introduces a method for determining whether a network is assortative, by inspecting the
following structural characteristics of the network: (a) clustering coefficient (also known as transitiv-
ity), (b) intermodular connectivity and (c) branching. Assortativity is rewritten in [9] into an expression
containing, among others, the clustering coefficient, the intermodular connectivity and the branching.
By inspecting the relation between these three network metrics, it can be determined whether the
network is assortative, disassortative or non-assortative. It is shown that both clustering coefficient
and intermodular connectivity have a positive effect on assortativity, while branching has a negative
effect on assortativity. Estrada’s result [9] corresponds to the fact that a correlation is observed, empir-
ically, between clustering coefficient and assortativity, as well as between modularity and assortativity.
Networks with high modularity and high clustering coefficient are normally assortative. This is also
observed by Youssef et al. [50].

Whereas assortativity is presented as a single value in the range [−1, 1], the assortativity of a net-
work is, in a way, a representation of a characteristic that may differ for each node in the graph. Each
node i in the graph has a certain connectivity value di, i.e. the degree of the node. Each neighbour j
of node i itself also has a connectivity dj. For each node i, the average degree of its neighbours can be
determined. In this manner, we can calculate the average of dj, E[Dj] as a function of di. This approach
is studied by Pastor-Satorras et al. [42]. For assortative networks, E[Dj] will increase for increasing di,
whilst for disassortative networks, E[Dj] will decrease for increasing di. For non-assortative networks,
E[Dj] will remain constant for increasing or decreasing di.

Li et al. [51] propose a network metric that is related to assortativity, namely Likelihood. Like-
lihood,7 which we denote as Lh, considers the degree of adjacent nodes. The likelihood of a graph

7 Li et al. use L to denote likelihood, but that will confuse with number of links in a graph, so we use Lh instead.
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G(N , L) is defined as follows:

Lh(G) =
∑

(i,j)∈L

didj (10)

The likelihood corresponds to the second Zagreb index, as defined by Gutman and Trinajstic [52].
To compare graphs of different class and size, the likelihood definition as given in Equation (10) is
normalized within the range of Lh(G)min and Lh(G)max, yielding the normalized likelihood Lhnorm(G).

Lhnorm(G) = Lh(G) − Lh(G)min

Lh(G)max − Lh(G)min
(11)

The extreme values Lh(G)min and Lh(G)max relate to a graph of particular size N and degree set. The
normalized likelihood has a value in the range [0,1]. Calculating Lhnorm(G) requires that Lh(G)min and
Lh(G)max are calculated. Li et al. [51] show how Lh(G)min and Lh(G)max can be calculated. For a change
in network topology, such as DPR, the absolute change in Lhnorm(G) can easily be recalculated, as the
product didj changes only for the nodes involved in the rewiring, and hence Lh(G) can be recalculated.
Since Lh(G)max and Lh(G)min are constant for constant degree sequence, the Lhnorm(G) for the rewired
graph follows from the Lh(G) from the rewired graph.

Li et al. [51] show a relation between likelihood and assortativity. However, no further experiments
are conducted to study how the likelihood and assortativity correlate for a network of particular class and
degree sequence. By means of network rewiring, we can vary the assortativity of the network between
its minimum and maximum value.

4. Degree assortativity of non-weighted, undirected graphs

Networks may be classified through their degree distribution. When randomly selecting a node of a
network, the probability of that node having degree k is defined by the degree PDF, FD(k) = Pr[D = k]
of that network. Figure 1 shows a number of examples of degree PDF for different classes of graphs.

When we consider a single node in a graph, the probability of that node having a particular degree
follows from the degree distribution of that graph. A particular node i with degree di = k is connected
to k other nodes. Each one of these k other nodes has its own degree, dj|i∼j = l. When taking the aver-

age degree of the nodes incident to node i, dj =
∑

k dj|i∼j

k , we can define the relation between di and dj.
Considering that there may be multiple nodes with a specific degree k, we average this relation for all
nodes with a specific k. Visualizing this relation reveals the degree correlation in a graph. Specifically,
it reveals that for certain graph classes, the average degree of nodes adjacent to i is dependent or not
dependent on the degree of i. This is shown in Fig. 2 for an ER graph with N = 10 000 and p = 0.1.

In this example, the average degree of nodes j adjacent to node i is stable around 1000, for different
k. We may consider (at least) the following degree distributions for a graph:

(1) degree distribution, Pr[D = k], defining the probability for a randomly selected node to have
degree k;

(2) combined-degree distribution, Pr[D1 = j, D2 = k] = Pr[D1 = j|D2 = k] · Pr[D2 = k] = Pr[D2 =
k|D1 = j] · Pr[D1 = j], defining the probability for a randomly selected pair of nodes that do
not have to be connected to each other, to have degrees j and k, respectively; presuming that
the selection of node 2 is stochastically independent of the selection of node 1, the combined
degree distribution can be written as Pr[D1 = j, D2 = k] = Pr[D1 = j] · Pr[D2 = k];
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(a) (b)

Fig. 1. Examples of degree PDF. (a) Binomial degree distribution. Erdös–Rényi random graph; N = 10 000, p = 0.1. (b) Power-
law degree distribution. Scale-free graph; N = 10 000, N0 = 4, 2 links added for each new node.

Fig. 2. Degree–degree correlation for ER graph, N = 10 000, p = 0.1 and E[D] = (N − 1)p ≈ 1000.

(3) joint degree distribution, Pr[Dl− = j, Dl+ = k], defining the probability for a randomly selected
link l to have degree j on one end of the link (denoted l−) and to have degree k on the other end
of the link (denoted l+). This relation represents assortativity (degree correlation).

We observe the following:

– Non-assortative network. The distribution of the degree of the nodes j connected to a randomly
selected node i follows the same distribution as the degree distribution of the network as a whole.

– Assortative network. For a randomly selected node i, there will be a concentration of high(er)
joint-degree probability for connected nodes j having the same or similar degree as i.

– Disassortative network. For a randomly selected node i, there will be a concentration of high(er)
joint-degree probability for connected nodes j having a degree different from the degree of i.
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Table 2 Assortativity for random graph, N = 1000, varying p

Assortativity

p rmin rmax raverage

0.0009210 (= pc) −0.163 0.181 −0.005
0.009210 (= 10pc) −0.052 0.047 −0.002
0.09210 (= 100pc) −0.018 0.015 −0.002
0.1 −0.018 0.013 −0.002
0.2 −0.013 0.008 −0.002
0.5 −0.007 0.003 −0.002

Whereas the degree distribution of a network is considered a first-order metric for characterizing the
network, assortativity is considered as a second-order metric. The relevance of assortativity is strongly
related to the assortativity range, ρmax – ρmin, for that network, whilst keeping the degree distribution
of that network unaffected. A network may be transformed, through link rewiring, whereby the degree
distribution is not changed (DPR). With DPR, the degree of the involved nodes is not affected. When
applying DPR on a dense network, the assortativity of that network will vary between ρmin – ρmax,
whereby ρmax and ρmax will be specific for this network, with this specific degree distribution. The
range of ρD for the sparse network is found to be larger than the range of ρD for the dense network.
A large range of ρD implies greater relevance of assortativity as second-order metric for the network,
compared with a small range of ρD.

We will now study the assortativity of various classes of networks. The four classes of graphs that
are considered are: (a) ER random graph, (b) BA scale-free graph random graph, (c) WS small-world
random graph and (d) Callaway random growth model.

4.1 ER random graph

We expect a degree assortativity ρD ≈ 0 for the ER class of random graph. The reason is that the presence
of a link between two nodes is independent of the presence of links between these nodes and other nodes.
There is no dependency between the degree of a node and the probability that there is a link between
that node and another node of particular degree. Table 2 provides the assortativity for an ER class of
graph with varying p (link probability). We vary p from the threshold link density8 pc to 0.5. For each
ER graph Gp(N), the assortativity has been calculated, using Equation (15), for 10 000 instances of that
Gp(N).

Figure 3 shows the PDF (including curve fitting), distributed over 250 bins, of the assortativity for
some of the graph models.

Figure 3 shows that the assortativity for the ER network is distributed around 0. Hence E[ρD] = 0.
For a higher value of p, the ρD is distributed over a smaller range.

4.2 BA scale-free graph random graph

We consider the growth model as defined by Barabási & Albert (BA) [37]. For the BA graph, a network
is constructed from a small (e.g. N0 = 3) complete network. The nodes in the starting graph, as well

8 pc ≈ ln(N)/N (asymptotically), for large N , is the critical link probability for ER graph, above which the graph will almost
surely be connected (Erdös & Rényi [36], [9]; [4]).
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(a) (b)

Fig. 3. Assortativity (rho) PDF for ER random graph. (a) N = 1000, p = 0.1. (b) N = 1000, p = 0.2.

Table 3 Assortativity for BA graph, N = 1000

Graph definition Assortativity

N0 m rmin rmax raverage

3 2 −0.147 −0.038 −0.092
4 2 −0.158 −0.038 −0.089
5 2 −0.135 −0.038 −0.084
10 2 −0.116 −0.006 −0.064
10 3 −0.093 −0.018 −0.055
10 5 −0.078 −0.008 −0.046

as the nodes that were added in the earlier part of the growth process have a higher expected degree.
During the growth process, these nodes have a higher attraction for the new nodes to be added, due to
the higher degree of these nodes. The degree of these nodes, therefore, tends to increase more than the
degree of the nodes that were added later in the growth process. Put differently, when one node has,
through the random node selection of the growth model, a higher degree than the other nodes in the
network, that node tends to continue to attract more new connections than the other nodes.

An intuitive thought (1) might be that BA graphs would show disassortativity. The reason is that
every time a new link is added, the link is placed between the newly added node n, which has degree
0 � dn < m (m being the number of links that are added for each newly added node) just prior to the
attachment, which is by definition a low degree, and the existing node, which is likely a node with
relatively high degree, resulting from the preferential attachment. Placing a link between a low-degree
node and a high-degree node is expected to make the graph as a whole more disassortative.

Table 3 provides the assortativity range for various BA graphs. The network is built up to N = 1000,
starting from a complete graph with 3 � N0 � 10 and 2 � m � 5. The assortativity has been calculated
for 10 000 instances of each graph definition.

Figure 4 shows the PDF (including curve fitting), distributed over 250 bins, of the assortativity for
the different graphs models.
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(a) (b)

Fig. 4. Assortativity (rho) PDF for BA graphs. (a) N = 1000, N0 = 3, m = 2. (b) N = 1000, N0 = 5, m = 2.

Figure 4 and Table 3 show that the simulated BA network overall is slightly disassortative, ρD

distributed around −0.10 and −0.08, respectively. Experiments show that for large N , ρD for BA graph
will be ≈ 0.

4.3 WS small world random graph

The Watts & Strogatz [38] small-word graph is obtained by applying n steps of random rewiring on all
links of a ring-lattice. However, the principle of constructing a small-world graph may also be applied
to other regular graph classes, such as square lattice, as for example explored by Makowiec [53], cubic
lattice or spherical lattice. A WS graph obtained from a square lattice may not mimic a small-world
(so we might not want to call it a ‘WS graph’). A WS graph may, alternatively, be generated through
random link addition, as opposed to random link rewiring. This is proposed by Dorogovtsev [54].

When constructing a WS graph from a ring lattice, the following parameters are used:

N Size of the lattice

d Degree of each node; it shall be an even value; each node is connected to (d/2) adjacent neigh-
bours on either side

n Number of rewiring cycles; in each rewiring cycle, all links in the graph are visited and are
randomly rewired with probability pr

pr The probability for a link to be rewired, if not already rewired, during one rewiring cycle

Figure 5 shows a number of ring lattices that are rewired into a WS graph model. All lattices have
N = 100.

Figure 6 shows the assortativity (including curve fitting) distribution for two of the WS graph models
shown in Fig. 5, with a difference that N is set to 1000. The assortativity distribution is obtained by
generating each graph model 10 000 times with the same characteristic parameters (N , d, n, pr). For
reference, the assortativity for the non-rewired ring lattice is 1.0, since all nodes have equal degree.

Figure 6 illustrates that the iterative rewiring process makes the network slightly disassortative. This
is to be expected, since each rewiring step ‘breaks’ the chain of nodes that are equally connected to a
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Fig. 5. Rewired ring lattices (WS graph model).

(a) (b)

Fig. 6. Assortativity (rho) PDF for rewired ring lattices (WS graph model). (a) d = 4; n = 1; pr = 0.1. (b) d = 4; n = 5; pr = 0.25.

designated number of their respective neighbouring nodes. The rewiring steps obviously break that.
With increasing number of rewiring steps, the network becomes random and so ρD approaches 0.

We will now explore the assortativity of the WS graph model when applying the rewiring on a square
lattice. All nodes that are not corner node or edge node have d = 4. It is conceivable that a square lattice
may also be devised with larger d, e.g. d = 8, whereby also diagonal connections are included. Figure 7
shows WS graph models obtained from this square lattice (N = 64, d = 4), for constant pr (pr = 0.1)

and various n.
Fig. 8 shows assortativity distribution (including curve fitting), distributed over 250 bins, associated

with WS graph models as shown in Fig. 7, with N = 1024. The test is repeated 10 000 times.
The assortativity of the square lattice is <1.0, since not all nodes have the same degree (nodes at

the graph boundary have lower degree). For increasing N , the assortativity of the non-rewired square
lattice approaches 1.0, since the effect of the lower degree of nodes at the graph boundary decreases. As
more rewiring cycles are performed, the assortativity decreases, as expected. The rewiring introduces
randomness, so assortativity will (eventually) approach 0.

A further variant of the traditional WS model is the following. Iteratively, an existing link from node
i ∈ [1, N] is rewired with probability pr or a new link is added to node i with probability pr. When an
existing link is rewired or a new link is added, instead of selecting the target node randomly over all
other nodes, a preferential rewiring/preferential attachment is applied. The rewiring/attachment is done
by randomly selecting a node and then applying a further probability proportional to the degree of that
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(a) (b)

Fig. 7. WS graph models from square lattice. (a) n = 1; Average shortest path = 2.01. (b) n = 5; Average shortest path = 1.56.

(a) (b)

Fig. 8. Assortativity (rho) distribution for WS graph models from square lattice. (a) n = 1. (b) n = 10.

node. The rationale of this model is that the regular lattice represents an ‘imposed network structure’,
such as a (created) closed community. Within the community structure, starting off as a regular structure,
preferential attachment starts to occur. With an increasing number of rewirings or link additions, the
graph is expected to approach the BA model, with power law degree distribution.

4.4 Callaway random growth model

The Callaway model [39] forms part of the class of ‘growth models’. For every newly added node, a link
is added with probability δ, between two randomly selected nodes (selected uniformly from all nodes,
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including the newly added node), provided that no link exists yet between the two selected nodes. The
Callaway model differs from the ER model in that the nodes that are added at a later moment have
a smaller chance of having been selected once or multiple times for creating a link from that node,
to another node. So, these nodes will, on average, have a lower degree. The Callaway growth model
also differs from the BA growth model, since for the BA growth model, new links are always created
between the newly added node and an existing node. The Callaway growth model could, however,
create a network with isolated nodes. A further difference between the Callaway growth model and the
BA growth model is that for the Callaway model, the degree of nodes does not influence their likelihood
of attracting more links. Hence, there is no preference in the attachment. The rationale of the Callaway
growth model, when comparing with the ER model, is that the degree of a node becomes a function of
the age of that node.

Callaway et al. [39] observe that their network growth model exhibits a distinctive degree corre-
lation, as a function of the degree of a node. It is shown in [39] that a positive correlation coefficient
exists, for nodes to connect with other nodes of similar degree. This differs clearly from the ER random
graph, whereby degree correlation is, on average 0. Positive degree correlation is in Callaway graphs
prevalent especially for higher degree nodes, rather than for lower degree nodes. High-degree nodes
tend to connect to other high-degree nodes. For lower degree nodes, the degree of connected nodes is
more evenly distributed between low(er) degree nodes and high(er) degree nodes.

Callaway et al. [39] define the following formula for degree correlation:

ρ =
∑

i∼j|(di=q,dj=r)[q − (1 + 4δ)][r − (1 + 4δ)]eqr

4δ(1 + 2δ)
(12)

where by

i ∼ j link l with start node i = l− having dl− = q and end node j = l+ having dl+ = r;

δ probability of adding a link between the randomly selected pair of nodes;

eqr
2δ

1+4δ
(eq−1,r + eq,r−1) + pq−1pr−1

1+4δ
, which is the fraction of links l with dl− = q and dl+ = r.

Clearly, Equation (12) for ρ is recursive; ρ will therefore have to be calculated during the growth
process of the graph. According to Equation (12), the value of δ ranges between 0.0 and 1.0. Experiment
and calculation shows, see Fig. 9, that ρ will range between 0.0 and 0.4.

Newman [1] has conveniently transformed Equation (12) into:

ρ = δ

(1 + 2δ)
(13)

4.5 Assortativity of specific classes of graph

In the present section, we compute the assortativity of selected graph classes. For this purpose, we make
use of the reformulation of assortativity by Van Mieghem et al. [25]:

ρ = N1N3 − N2
2

N1
∑N

i=1 d3
i − N2

2

(14)

where Nk = uT Aku equals the total number of walks with k hops. Thus, N0 = N , N1 = 2L, N2 =∑
(di)

2 = dT d and N3 = dT Ad = uT A3u (Van Mieghem [4]).
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Fig. 9. Degree correlation, ρ, as a function of link density, δ.

Equation (14) is further transformed into (Van Mieghem et al. [25]):

ρD(G) = 1 −
∑

i∼j(di − dj)
2

∑N
i=1 d3

i − 1
2L

(∑N
i=1 d2

i

)2 (15)

where di represents the degree of node i. Equation (15) for assortativity constitutes a graph theoretic for-
mula, since it expresses the assortativity in terms of the degree of the nodes in the graph. Equation (15)
can be written as follows:

ρD(G) = 1 − 2

∑N
i=1(di)

3 −∑i∼j didj∑N
i=1 d3

i − 1
2L

(∑N
i=1 d2

i

)2 (16)

Combining Equation (16) with Equation (10) results in:

ρD(G) = 1 − 2

∑N
i=1(di)

3 − Lh(G)∑N
i=1 d3

i − 1
2L

(∑N
i=1 d2

i

)2 (17)

We conclude from Equation (17) that a linear relation exists between the assortativity and the likelihood
of a graph.

4.5.1 Path graph. A path graph with N = 2 is perfectly assortative, since all nodes have equal
degree. For a path graph of N > 2, all the nodes have di = 2, except for i = 1 and i = N , which have
di = 1. The term

∑
i∼j(di − dj)

2 in Equation (15) equals 2, since the outermost links have d1 − d2 = −1

and dN−1 − dN = 1 while all other links have di − dj = 0. The term
∑N

i=1 dk
i in Equation (15) for k = 2
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yields 4N − 6, while for k = 3 it yields 8N − 14. Using (15) yields

ρD(G) = − 1

N − 2
. (18)

The path graph with N > 2 is always disassortative. For N = 3, ρD = −1 and with increasing N , ρD

increases towards 0.

4.5.2 Star graph. The central node in the star graph with N > 2 has di = N − 1, all other nodes have
di = 1. The star graph is a special case of complete bipartite graph Km,n, namely m = 1 and n = N − 1.
The complete bipartite graph has ρD = −1, as will be shown in a next section. So, a star graph always
has ρD = −1.

4.5.3 Lattice. We consider a two-dimensional lattice of size N × M , with the number of links equal
to L = (N − 1)M + (M − 1)N = 2NM − N − M . The nodes in the graph can be divided in the follow-
ing groups;

– (N − 2)(M − 2) inner nodes with di = 4;

– 2(N − 2) + 2(M − 2) = 2N + 2M − 8 nodes along the edge with di = 3;

– 4 corner nodes with di = 2.

The links can be grouped as follows:

– each corner node has two links, for which di − dj = 1;

– apart from the links from the corner nodes, there are 2(N − 3) + 2(M − 3) links residing at the
perimeter of the lattice, for which di − dj = 0;

– along the perimeter of the lattice, there are 2(N − 2) + 2(M − 2) = 2N + 2M − 8 links con-
necting to inner nodes, for which di − dj = 1;

– the remaining links in the lattice connect nodes of equal degree, so di − dj = 0.

Figure 10 provides graphical representation for assortativity of a lattice with N = 2, . . . , 35 and
M = 2, . . . , 35.

For a 2 × 2 lattice, ρD = 1, since all nodes have degree 2.

4.5.4 Complete bi-partite graph. For a complete bi-partite graph Km,n, with n |= m, we have perfect
disassortativity, i.e. ρD = −1. The m nodes in set M all have degree equal to |N | and the n nodes in
group N all have degree equal to |M |. Since we assume n |= m, all low-degree nodes are connected to
high-degree nodes and all high-degree nodes are connected to low-degree nodes. The ρD = −1 for the
complete bi-partite graph can also be shown as follows. The term

∑
i∼j(di − dj)

2 in Equation (15) is
equal to nm(n − m)2, since there are n∗m links, connecting nodes which have degree n and m, respec-
tively. The term

∑N
i=1 d3

i is equal to mn3 + nm3 = nm(n2 + m2), since each node in set M has degree n
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Fig. 10. Assortativity for lattice graph, N = 2 · · · 35 and M = 2 · · · 35.

Fig. 11. Tree graph with D = 2 and k = 2.

and each node in set N has degree m. Likewise, the term
∑N

i=1 d2
i equals nm(n + m), while the number

of links L is equal to n∗m. Filling these terms into Equation (15) yields ρD = −1.

4.5.5 Tree graph. We consider a k-ary tree as shown in Fig. 11. Each node has equal number of
branches, denoted k. The depth of the tree is denoted by D.

For a depth D = 1, we have perfect disassortativity, ρD = −1; the tree resembles a path graph with
N = 3. As the depth D increases, the tree becomes less disassortative. This is shown in Fig. 12.

For trees with k > 2, the rise of ρD will be less than for trees with k = 2. This is attributed to the
relative larger number of end-branches for which |di − dj| = k. The difference in degree for the nodes
connected by the end-branches, makes the graph more disassortative.

5. Degree assortativity of non-weighted, directed graphs

Degree assortativity for directed networks follows the same principle as degree assortativity for non-
directed networks. Equation (2) can be generalized for directed networks. Newman [5] defines the
degree assortativity for directed networks as follows:

ρ =
∑

jk jk(ejk − qin
j qout

k )

σinσout
(19)
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Fig. 12. Assortativity for tree graph with k = 2, k = 3 and k = 4.

where

in, out refer to in-degree and out-degree, respectively;

ejk fraction of links connecting a node with out-degree k to a node with in-degree j, whereby j, k ∈ N ;

qin
j = (j+1)pin

j+1∑
j jpin

j
= (j+1)Pr[Din=j+1]

E[Din] normalized distribution of in-degree, where Din is the in-degree of a

randomly selected node;

qout
k = (k+1)pout

k+1∑
k kpout

k
= (k+1)Pr[Dout=k+1]

E[Dout]
normalized distribution of out-degree, where Dout is the out-degree

of a randomly selected node;

σin, σout standard deviation of qin
j , standard deviation of qout

k

Newman’s assortativity Equation (19) for directed networks considers the correlation between a
node’s out-degree and the adjacent nodes’ respective in-degree, and the correlation between a node’s
in-degree and the adjacent nodes’ respective out-degree. It may, however, be more logical if the assor-
tativity for directed networks would measure the correlation between nodes considering their respec-
tive in-degree or their respective out-degree. The rationale is that in-degree and out-degree represent
a characteristic of a node and the correlation coefficient should be based on comparable characteris-
tics. Piraveenan et al. [20] propose a modified definition of assortativity for directed network, taking
this (intuitive) more logical approach. Some examples of directed networks are (Newman [1]) e-mail
address books, World Wide Web and software dependencies. The graph creation models that are com-
monly used for undirected networks are not directly usable for directed network. The models describe
the ‘adding of a link’, but do not describe how the direction of that link is chosen. More specifically,
the processes for generating a graph of class ER, BA or WS do not take link direction into account. In
order to be able to study directed networks of different class, and specifically study the assortativity of
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these directed networks, such models would be needed. Li et al. [55] describe a method for generat-
ing a graph with required directionality. Chen and Olvera [43] describe methods for creating directed
graphs with a given in-degree and out-degree distribution. Also, rewiring methods need to be enhanced
for considering directed links. A network growth model should also decide on the weight of the added
link. In addition, a growth model should increase the weight of existing links. So, not only the network
size (node set, N) and the number of links (link set, L) grows, but also the weights of the links in the
network will change over time. Leung and Chau [12] propose a growth model for a network composed
of weighted links.

When analysing directed networks through their assortativity, a multi-layered approach may be
applied. For a directed network, the assortativity may be differentiated in three classes:

(i) in-degree assortativity, which measures the tendency of nodes with particular in-degree to con-
nect to other nodes with the same in-degree or with different in-degree;

(ii) out-degree assortativity, which measures the tendency of nodes with particular out-degree to
connect to other nodes with the same out-degree or with different out-degree; and

(iii) overall assortativity, which forms an aggregation of the in-degree assortativity and the out-
degree assortativity.

A network may be assortative for its in-degree, but disassortative for its out-degree or vice versa.
Piraveenan et al. [20] have studied this differentiated form of assortativity. The degree distribution
and the degree correlation for directed graphs are also studied by Myers [56] in ‘networks’ built from
software dependencies. Myers [56] observes, indeed, that directed networks may exhibit different assor-
tativity when taking the direction into account.

6. Relation between assortativity and graph spectra

The spectrum of a graph [34] is defined as the set of eigenvalues of a particular connectivity matrix
of that network, together with the corresponding eigenvectors. The Laplacian matrix Q of G is defined
as Q = Δ − A, where A is the adjacency matrix and Δ = diag(di). The following graph spectra are
commonly used in spectral graph analysis:

Adjacency eigenvalues The set of N eigenvalues λN � λN−1 � · · · � λ1 of the adjacency matrix
A. The highest eigenvalue of A, λ1, is known as spectral radius. The
difference between λ1 and λ2 is known as spectral gap

Laplacian eigenvalues This spectrum is derived from the Laplacian matrix Q. It is formed by
the set of N eigenvalues, 0 � μN−1 � · · · � μ1 of Q. The second smallest
eigenvalues of Q, μN−1, is known as the algebraic connectivity (coined
by Fiedler [57])

Graph spectra have been extensively studied and have proven to be a useful tool to evaluate essential
properties of a network. We refer the reader to Cvetkovic et al. [58] for background on Adjacency
spectrum and to Mohar [59] for a survey on the Laplacian spectrum, and to Van Mieghem [34] for
extensive analysis on the use of graph spectra for complex networks.

The spectral radius is of particular interest for a network. We are interested to know how λ1 relates
to the assortativity. Is there a relation between assortativity and λ1? Generally, we notice that with
increasing ρD, there is also an increase in λ1. Hence, if we would like to have a large λ1, then one way
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of achieving that is increasing the assortativity of the graph. The increase in assortativity also leads to
faster information (including virus!) spread through the network, due to the high inter-connectivity of
the high-degree nodes. This faster information spread with increasing assortativity is observed despite
the fact that increasing assortativity also leads to higher average hop count. It is furthermore shown by
Van Mieghem et al. [25] that an increase of λ1 may lead to disconnectivity of a graph.

We are also interested in the relation between the algebraic connectivity and assortativity. It is shown
in [25] that with decreasing assortativity of a graph, towards disassortativity, λ1 decreases but μN−1

increases. A higher μN−1 translates into increased topological robustness of the network. Generally, we
notice that with increasing ρD, μN−1 decreases. Hence, by influencing the assortativity of the graph, we
can affect μN−1. Especially, by making the network more disassortative, we can improve the topolog-
ical robustness. But this will, at the same time, decrease the speed of information spread through the
network.

The Laplacian spectrum of the graph may be used to express the effective graph resistance. Effective
graph resistance is initially defined as (Klein & Randić [60]):

RG =
∑

1�i�j�N

Rij (20)

Where Rij is the effective resistance between node i and node j in the graph. The effective graph resis-
tance is also commonly expressed as:

RG = N
N−1∑
i=1

1

μi
(21)

where μi is the ith eigenvalue of the Laplacian matrix of G. Van Mieghem et al. [24] show that an
increase in assortativity leads to an increase in RG. Depending on the actual network, the increase of
assortativity above a certain value leads to sharp rise of RG and eventually RG approaches ∞. This can
be explained by the aforementioned fact that the increase in assortativity will eventually lead to graph
disconnectivity, hence RG = ∞.

7. Influencing assortativity through network topology changes

It is shown in earlier sections that the assortativity of a network represents a specific structural aspect
of that network and that we may want to influence that specific aspect of the network. For example, we
may want to increase the spectral radius, λ1, or increase the algebraic connectivity, μN−1. The present
section shows that we can change these spectral values by changing the assortativity of the graph.

Zhou et al. [32] consider assortativity for single, stand-alone networks versus assortativity for inter-
dependent networks. They observed that increasing the assortativity of a network makes the network
more robust against node removal, but at the same time makes the network less stable. It is, however,
further observed in [32] that for interdependent networks, an increase in assortativity decreases the
robustness of the interdependent networks. Generally, when changing the assortativity of a network
through topological changes to that network, we change other metrics of that network as well, such as
the effective graph resistance. Increasing ρD through DPR leads to an increase in RG. When applying
link addition instead of DPR, both ρD and RG may potentially be improved. Ellens et al. [61] investigate
methods to improve RG through link addition.
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Fig. 13. Degree-preserving rewiring.

D’Agostino et al. [7] have also studied the effect of assortativity on the robustness of a network.
A general conclusion is that disassortative networks are easier to immunize due to a higher epidemi-
ological threshold. Although assortative networks are more prone to the propagation of failures, these
networks require a longer intervention time to prevent further failures (epidemic spreading). Assorta-
tivity of a network relates both to the network’s robustness against node failure and to the network’s
dynamic behaviour with respect to failure spreading.

Trajanovski et al. [62] have introduced the concept of robustness envelope and have determined that
the relation between assortativity and robustness against node failure depends on the type of failure.
A moderate increase in assortativity increases the network’s robustness against targeted node attacks,
while a moderate decrease in assortativity increases the network’s robustness against random uniform
node attacks (or node failure).

The network topology change can take various forms. We identify: (i) link addition, (ii) link removal,
(iii) link rewiring and (iv) DPR. The rationale of DPR is that the degree sequence (first-order graph met-
ric) is unaffected, whilst the assortativity or other second-order graph metric changes. The impact on
assortativity, by network modification, is highly dependent on the kind of modification, on the link(s)
and nodes involved in the modification and on the class of the network. The topology modification
will affect also other metrics of the network than assortativity. For example, link removal will increase
the average shortest path in the network or may disconnect the graph; it will also increase the effec-
tive graph resistance. Link removal, link addition and link rewire (if not pair-wise) will affect the
degree vector of the graph. Hence, network topology modifications will in practice be bound by cer-
tain restrictions.

DPR entails that the network is rewired in such way that the degree vector d = [d1, d2, d3, . . . , dN ]�

is preserved. The degree probability distribution is unchanged, but the joint degree distribution
FD1D2(k, l) for two randomly selected nodes may be affected. DPR is a common technique for net-
work modification without altering d. DPR has the practical characteristic that a node keeps the number
of traffic connections. One prominent example is formed by IP routers, which have a defined number of
interfaces. An IP sub-network may be rewired, while keeping the number of cables per router constant.
By keeping the degree vector unchanged, we can influence the assortativity of the network through
DPR. This is visualized in Fig. 13.

The rewiring depicted in Fig. 13 relates to graphs with undirected, non-weighted links. By rewiring
node 2 to node 3 and node 4 to node 1, nodes 2 and 3 both become more assortative, as they are now
connected to other nodes (nodes 3 and 2, respectively) that have degree closer to their own degree.
Node 1 and 4 also become more assortative, being rewired to other nodes with degree closer to their
own degree. The basis of assortativity change due to DPR is provided in Lemma 1 in Van Mieghem
et al. [25].
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DPR increases or decreases the assortativity with multitudes of a deterministic value. Equation (15)
is rewritten as

ρ(G) = 1 − (dl1− − dl1+ )2

S
− . . . − (dlL− − dlL+ )2

S
(22)

where

S =
N∑

i=1

d3
i − 1

2L

(
N∑

i=1

d2
i

)2

l1− , l1+ start node (−), end node (+) of link 1 of link set L.
Every link i ∼ j|di |= dj pulls ρD(G) from 1 further towards −1, in multiples of unit steps S−1.

The change in ρD(G) resulting from DPR can hence easily be calculated, since one set of links
[i ∼ j, k ∼ l] is replaced by another set of links [i ∼ k, j ∼ l]. Their respective contributions to ρD(G)

equal −((di − dj)
2/S), −((dk − dl)

2/S) before rewiring, and −((di − dk)
2/S), −((dj − dl)

2/S) after
rewiring. The change in ρD(G) from this rewiring equals 2(didk + djdl − didj − dkdl)/S.

Different strategies may be devised, in order to let the network topology converge in as few rewiring
steps as possible towards the desired state. In addition, the rewiring strategy should be such that a link
pair that is suitable for rewiring can be found in as few attempts possible. Winterbach et al. [27] outline
a methodology for exhaustively rewiring a network, studying whether a greedy approach yields the
optimum assortativity for a network within reasonable time. The approach in Winterbach et al. [27] is
based on constructing a set R of all rewirable link pairs in the network. Rewiring is done by selecting
a link pair from R and verifying that rewiring that link pair will increase the assortativity. The rewiring
action leads to a change of R; some of the link pairs in R are no longer rewirable and new rewirable
link pairs are added. So, R would have to be updated after every rewiring step. In fact, especially when
rewiring is applied on large networks, in access of 1000 nodes, an optimized algorithm for finding
rewirable links becomes crucial in order to curb the computation time. The need for such optimized
algorithm further depends on the practical use of the network rewiring. When the aim of the rewiring
is to transform the network towards its optimum assortativity (or other required metric), then many
repeated rewiring steps are required. Alternatively, the aim may be to increase the assortativity to a
defined absolute value or to increase the assortativity with a defined factor. In such cases, fewer rewiring
steps may be needed. Winterbach et al. [27] derive also an exact method for calculating the maximum
assortativity that may be reached through DPR. This method has computational complexity C of order
C = O(N6), so the method is, practically, suitable for small networks only.

Noldus and Van Mieghem [48] describe a method for assortative rewiring by ordering nodes accord-
ing to their degree. The first link of the node pair is formed by selecting the node with highest degree
and selecting the link connecting that node with another node having the lowest degree of all nodes
connected to this first node. The second link is found by selecting the node with lowest degree and
selecting the link connecting that node with another node having the highest degree of all nodes con-
nected to this second node. The rewiring step, depicted in Fig. 13, follows that approach. When a link
pair is found, a check can be done whether the conditions for rewiring are fulfilled, namely: the links
shall not share a node, rewiring shall not result in overlapping links and rewiring shall not result in
graph disconnection.

For DPR, link pairs can be found that will increase the assortativity of the network (Van Mieghem
et al. [25], Noldus and Van Mieghem [48]). What is not yet explored is how to deterministically find the
link pair that will provide the largest absolute increase or decrease in assortativity.
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When applying DPR, a graph G is transformed to G′. The graphs G and G′ belong to a set of
graphs G with the same degree vector d. It must, however, yet be proven whether all G′ ∈ G can be
reached through DPR, when starting from G. The set G may in fact comprise several clusters of G′,
each cluster comprising graphs that may be created through iterative rewiring from any other graph
within that cluster, but not from a graph residing in another cluster. The set G may be reflected through
a graph itself, G(N , L), whereby each node ∈ N represents a (rewired) graph G and each link ∈ L rep-
resents a rewiring action. When G is not connected, then apparently it is not possible to rewire between
all G′.

There is currently no known methodology to efficiently determine the absolute bounds for assorta-
tivity that can be achieved through DPR, other than exhaustive analysis: rewiring G to every possible G′,
then rewiring every obtained G′ to every possible G′′, with G′′ not being isomorphic to G or any of the
already obtain G′ or G′′. This process is then to be continued until no further rewiring is possible. Then
the complete set G is determined and the assortativity range of G′ ∈ G can be determined, but only for
the cluster in G that G belongs to. Furthermore, instead of using rewiring to achieve a G′ with minimal
or maximum assortativity, other network topology changes may be applied, such as link addition or link
upgrade (increasing the link transmission capacity). There is no literature available that investigates the
effect on assortativity from these other network topology changes.

The changing of assortativity of a network, whilst keeping the degree vector unmodified, is studied
also by Xia et al. [28]. Their method is based on random selection of link pairs for rewiring the network,
for the case that the rewiring leads to increase or decrease of assortativity, as appropriate, and otherwise
discard the rewiring and (randomly) select a next link pair. This method is due to its randomness deemed
to be less efficient than the method applied by Noldus and Van Mieghem [48], where a targeted link set
selection is applied. Xia et al. show that by decreasing the assortativity of a scale-free network, whilst
keeping the degree vector unmodified, the packet drop rate of the network decreases, i.e. the network
traffic performance improves. The test was done for a traffic model that represents typical traffic model
in the Internet. The packet drop rate for a single node is related, obviously, to the capacity of that
node and to the amount of traffic that is scheduled to pass through that node. We learn from [28] that
rewiring may also be applied to optimize the network’s performance for traffic throughput. The rewiring
is done to balance the traffic over the nodes in the network. We observe here that the optimum network
configuration, in terms of balanced traffic flow through the respective nodes in the network, is dependent
on the traffic model. For a given network instance, any traffic model will lead to a certain load on each
of the nodes. This load may be expressed as the ‘traffic betweenness’ of the node. The betweenness
value for a node considers the shortest paths, for any node pair in the network, traversing that node.
The traffic betweenness takes also the traffic flow for each path into account. A shortest path carrying
more traffic contributes proportionally more to the node’s betweenness than a shortest path carrying less
traffic.

Further work is needed to identify the relation between assortativity and betweenness. As also
pointed out by Martin-Hernandez et al. [47], nodes or links with high betweenness would cause more
traffic disruption when subject to failure compared with nodes or links with low betweenness. Rewiring
the network will affect the betweenness of individual nodes and individual links. Not all possible DPR
steps may therefore be feasible, since some rewiring steps may lead to an increase of betweenness of
particular node or link beyond a threshold value.

Xulvi-Brunet & Sokolov [30] apply DPR to a non-assortative, scale-free graph to either increase
the assortativity to a maximum value (network becomes increasingly assortative) or to decrease the
assortativity to a minimum value (network becomes increasingly disassortative). Various metrics are
compared against the increase assortativity/disassortativity. The following effects are observed:
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Increasing assortativity when ρD > 0:

• Average hop count E[H] grows rapidly. The logarithmic relation between E[H] and N , which we
normally observe for scale-free networks, is preserved when ρD increases.

• Average clustering coefficient C increases.

• Information spread through the network, when considering each individual node in the network as
origin of information, becomes slower. The increased assortativity will have the effect that infor-
mation is rapidly arriving at high-degree nodes, as high(er)-degree nodes are connected to other
high(er)-degree nodes. But the further distribution to (remote) nodes with lower degree will be
slower, as these low(er) degree nodes are connected to other low(er) degree nodes.

• Node percolation is affected. When the assortativity of the network increases, the network will more
easily break up resulting from removal of a fraction, q, of nodes in the network (0 � q � 1).

Decreasing assortativity when ρD < 0:

• The average hop count E[H] grows marginally.

• Average clustering coefficient C decreases and will eventually become 0. Compare: a star network
has clustering coefficient = 0 (no loops in the network) and is maximum disassortative.

• Information spread through the network, when considering each individual node in the network as
origin of information, shows stark ‘peaks and valleys’. Information spreads fast when the infor-
mation has reached a high(er) degree node, since that high(er) degree node reaches out to a large
number of connected nodes. From the respective connected nodes, however, information spreads
slower, since these connected nodes will typically be low(er) degree nodes, following from the dis-
assortative nature of the network. The low(er) degree nodes are, however, connected to a (small)
number of high(er) degree nodes, so information will start spreading faster again etc.

• Node percolation is minimally affected. When the disassortativity of the network increases, the
network will slightly more easily break up resulting from removal of a fraction, q, of nodes in the
network (0 � q � 1).

8. Relation between assortativity and line graphs

A graph G(N , L) can be represented as a line graph H(NH , LH), whereby NH represents the number of
nodes in H and LH represents the number of links in H (Liu et al. [14]). Line graphs are often used as
network model for certain real-world network structures. The line graph is created as follows:

– each link in the graph G is represented through a node in H ; hence, |NH | = |L|;
– two nodes in H are connected if and only if the corresponding links in G share a node in G.

|LH | can be expressed as |LH | =∑i(di(di − 1)/2) = 1/2
∑

i d2
i − L, where i is a node in G (Van

Mieghem [34]).

Figure 14 shows a few examples of graph G and their respective corresponding line graph H .
We are considering here only graphs with undirected, non-weighted links.
Manka-Krason and Kulakowski [15] show that line graphs of simple, non-directed graphs, always

show positive linear degree–degree correlation, which translates into assortativity, i.e. ρD > 0. This
result from [15] seems to be in disagreement with Liu et al. [14]. For the networks G generated in [14],
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Fig. 14. Example of graphs and corresponding line graphs.

ρD(G) is stepwise increased towards 0; the ρD(H) for each G varies around 0, including ρD(H) < 0. Liu
et al. [14,63] construct the root graph from a line graph. An initial line graph is constructed, comprising
a set of cliques, as well as the corresponding root graph. The root graph corresponding to the initial
line graph is a collection of star graphs, each star corresponding to a clique in the initial line graph.
Since a star graph has ρD = −1, a graph G consisting of a collection of stars also has ρD = −1. The line
graph is iteratively transformed by merging two randomly selected nodes for which h > 1, i.e. belong
to different cliques from the initial line graph. Each such transformation of the line graph translates to a
reduction of the number of nodes, in the corresponding root graph, with k = 1. The root graph becomes
more assortative at every step, up to ρD = 0. By varying the number of cliques in the initial line graph
and the size of the cliques, a network with a desired ρD in the range −1 � ρD � 0 can be created. (to
be precise: the process can be repeated until ρD � ρdesired.) Hence, the model presented in [14] may be
used to generate graphs with a desired assortativity. Manka-Krason and Kulakowski [15] have taken a
different approach for generating line graphs. A large number of realizations of a particular graph class
(ER and BA) are generated. For each graph realization, the corresponding line graph is generated. This
is a different way of constructing a graph than the manner in which graphs are generated in [14], which
explains the difference in results regarding the assortativity value for the line graphs.

It is yet to be explored how the analysis of the assortativity of a network, such as increasing the
assortativity of the network through DPR, may be facilitated by analysing the line graph of the network,
instead of analysing the original graph of the network. For example, increasing the assortativity through
DPR may be accomplished by applying an algorithm to find suitable link pairs in G. Such algorithm
may be derived from the linear law for assortativity, devised by Liu et al. [14]. The algorithm shall
preferably deterministically find the link pair that yields maximum assortativity increase (or decrease)
when degree-preserving rewired.

9. Relation between assortativity and complementary graphs

The adjacency matrix of the complement Gc of G is denoted Ac, whereby Ac = J − I − A, whereby
J = uu� (the all one matrix) and I is the identity matrix (Van Mieghem [34]). Wang et al. [26] show
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that a linear relation exists between the degree assortativity of the original graph, ρD(G), and the degree
assortativity of the complementary graph, ρD(Gc). The assortativity for the complementary graph is
expressed as [26]:

ρD(Gc) = −ρD(G)
2Lσ 2[Dl+(G)]

(N(N − 1) − 2L)σ 2[Dl+(Gc)]
+ 1 − N2σ 2[D(G)] − 2Lσ 2[Dl+(G)]

(N(N − 1) − 2L)σ 2[Dl+(Gc)]
(23)

whereby σ 2[Dl+(G)] is the variance of the degree at one side of an arbitrary link in G and σ 2[Dl+(Gc)]
is the variance of the degree at one side of an arbitrary link in Gc. It follows from Equation (23) that
ρD(Gc) is linearly related to ρD(G), resulting from the observation that except for ρD(G), all terms and
factors in Equation (23) are constant for a particular degree vector. This linear relation enables us to
study the assortativity in a graph by considering the complementary graph. When applying changes to
the topology of the complementary graph whereby the degree vector is not affected, a resulting change
in assortativity relates linearly to the corresponding change in assortativity of the original graph. DPR
applied on a graph can be modelled to a corresponding action in the complementary graph. The search
for the link pair in a graph that provides the largest increase or decrease in assortativity of the graph
amounts in finding the link pair in the complementary graph that provides largest decrease or increase,
respectively, in assortativity.

We derive the degree assortativity for G’s complement, ρD(Gc), from Equation (15).

ρD(Gc) = 1 −
∑

i/∼/j(dj − di)
2

∑N
i=1(N − 1 − di)3 − (1/2Lc)

(∑N
i=1(N − 1 − di)

)2 (24)

whereby

(1) i/ ∼ /j no link exists between nodes i and j;

(2) Lc = N(N−1)

2 − L, the number of links in Gc.

When applying DPR, ρD(G) is increased or decreased with a deterministic multiple of

S = 1∑N
i=1 d3

i − (1/2L)
(∑N

i=1 d2
i

)2 .

The ρD(Gc) is decreased or increased with a deterministic multiple of

Sc = 1∑N
i=1(N − 1 − di)3 − (1/2Lc)

(∑N
i=1(N − 1 − di)

)2

S and Sc are not affected by the DPR. Hence there exists a linear relation between ρD(G) and ρD(Gc)

during DPR.
It is further observed in [26] that the assortativity range, ρmin − ρmax, in a sparse network is generally

larger than in dense networks. This means that in a sparse network, the assortativity has more relevance
as second-order characterizer (metric) than in a dense network. Figure 15 shows the distribution (fitted
curves) of ρD(G) and the distribution of ρD(Gc) taken over 105 realizations of an ER random graph with
N = 1000 and p = 0.1.
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Fig. 15. Distribution of assortativity (rho) of G versus distribution of assortativity of Gc.

Since p < 0.5 graph Gc has a higher link density than G. This manifests itself in a smaller assor-
tativity range for Gc than for G. When p approaches 0.5, G and Gc will have approximately equal
assortativity distribution. When p increases above 0.5, then Gc will have a larger assortativity range
than G.

10. Local assortativity

Piraveenan et al. [18] introduce the concept of Local assortativity. Local assortativity provides an addi-
tional dimension to network analysis. We have already earmarked assortativity as second-order net-
work metric, as opposed to degree distribution, being a first-order network metric. Following this line
of thinking, local assortativity may be considered a third-order network metric, as it provides further
differentiation in graphs with equal degree distribution and equal assortativity.

When considering a network with a certain degree distribution and certain assortativity, it is
observed that the individual nodes in that network contribute differently to the assortativity of that net-
work as a whole. An assortative network may comprise nodes that contribute positively to the network’s
overall assortativity, as well as nodes that contribute negatively to the network’s overall assortativity.
Since the network as a whole is assortative, there is effectively more positive contribution to the net-
work’s assortativity than negative contribution to the network’s assortativity.

Local assortativity is defined such that each node in the network has its own assortativity value,
which is dependent on local properties of the node. Namely its degree and the degree of its neighbours.
Local assortativity ρi of node i is defined as [18]:

ρi =
(j + 1)(jk̄ − μ2

q)

2Lσ 2
q

(25)
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Fig. 16. Average local assortativity, as a function of the degree of a node (source: (18)).

where

j = di − 1, the remaining degree of node i;

k̄ = 1
di

∑
i∼j(dj − 1), the average remaining degree of the neighbours of node i;

σq is the standard deviation of the distribution of j (the remaining degree) over all nodes in the network;

μq = E[D − 1], the mean of j (the remaining degree) over all nodes in the network

L is the number of links in the network.

Equation (25) satisfies the requirement:

ρ =
N∑

i=1

ρi (26)

Figure 16 shows the average local assortativity value, as a function of the degree of a node, for example
networks with different ρD.

Figure 16 reflects for nodes with equal degree the average local assortativity. We observe that for an
assortative network, high-degree nodes contribute substantially more towards the network’s assortativ-
ity than low-degree nodes. In addition, up to a certain degree value, nodes have a negative contribution
to the network’s assortativity. We call this degree the critical degree, kc.

The local assortativity, as defined in [18], is also very convenient for recalculating assortativity when
DPR is applied. There are four nodes and two links involved in a DPR action (Fig. 13). It follows from
Equation [25] that the local assortativity for these four nodes is affected, but is unaffected for the other
nodes in the network. The change in local assortativity of the four nodes involved in the rewiring can
be calculated (by calculating the new k̄ for these four nodes) and with that the new assortativity.
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We briefly describe scalar assortativity. The scalar assortativity, L, is a generalization of Newman’s
assortativity; it measures the tendency of nodes to be connected to other nodes having the same or having
opposing (scalar) value (Newman [5]). The ‘value’ of a node may be a Boolean or a (continuous) scalar
value, hence the term ‘scalar assortativity’. The scalar value of a node may change over time; nodes in
a network may be subject to change, imposed by arbitrary stimulus or influence. A change in a node’s
scalar value hence affects the scalar assortativity of the network. The scalar assortativity of a network
may hence be expressed as a function of time, Lt. A scalar assortativity value of Lt = 1 means that at
time t, all links in the network have identical node state at either side of the link. For a network with
Lt = −1, all links in the network have, at time t, nodes with dissimilar node state at either side of the
link. As expected, Lt = 0 means that at time t, nodes with a particular state are equally likely connected
to nodes with the same state as connected to nodes with dissimilar states. Scalar assortativity is a useful
network metric when studying dynamic networks whereby the state (scalar value) of a node changes
over time.

Piraveenan et al. [17] introduce the concept of node congruity, l. The node congruity is defined
as the contribution of a particular node to the network’s scalar assortativity. We may regard the node
congruity as local scalar assortativity. The sum of the node congruity for all nodes in the network equals
the scalar assortativity of that network. Considering that the scalar value of the nodes in a network
may change over time, the node congruity will also change over time. At time t, a node’s congruity
is denoted as lt. The congruity of node i represents a scaled difference between the average state (or
scalar value) of the neighbours of node i and the average state (or scalar value) of the network as a
whole. When the neighbours of node i have on average a higher scalar value than the expected value for
the entire network, then node i has a positive congruity. A negative congruity for node i occurs when
the neighbours of node i have on average a lower scalar value than the expected value for the entire
network. Piraveenan et al. [17] continue to show that the distribution of node congruity for a network
provides additional tool to study a network’s dynamic behaviour.

Xu et al. [29] have also observed that within a network, the overall assortativity of that network
may be (strongly) influenced by a small number of highly connected nodes, commonly referred to as
rich nodes or superrich nodes, as appropriate. Nodes with low degree may exhibit a different mixing
pattern than nodes with high degree in that same network. For networks with power-law degree dis-
tribution, superrich nodes are defined as nodes whose degree exceeds the cut-off degree kc [29]. For
a network that is overall scale-free and that contains one or more nodes with k � kc, these (super)rich
nodes are apparently not the result of the growth process of that network. They may, instead, have been
artificially added. A (small) number of superrich nodes may therefore give a false overall assortativity
value for the network as a whole. Xu et al. [29] propose a modified method for calculating assortativity,
namely by excluding the superrich nodes. This modified definition of assortativity is denoted as ρc. Xu
et al. [29] state that ρc constitutes a more realistic descriptor of the network than ρD. To determine from
what degree onwards the (super)rich nodes in the network start to distort the assortativity, ρc should be
calculated over n =∑i=N

i=1 1|ki�p nodes, with p ranging from kc to N − 1. Assortativity is then reflected
as a graph, with ρc a function of p. As p becomes larger, starting at kc, the assortativity becomes more
and more affected by the superrich nodes. Rationale of this approach is that not every node with k � kc

is necessarily a superrich node. A node with degree slightly higher than kc may be the natural result of
the growth process, so ought to be taken into account.

A final form of local assortativity we study is the Universal Assortativity Coefficient (UAC) defined
by Zhang et al. [64]. The UAC assigns an assortativity contribution value to a single link or to a group
of links. The assortativity contribution value for a single link is formed by the relation between the
remaining degree of the nodes on the end-points of the link and the expected remaining degree of the
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network as a whole. The UAC for a link l, ρl, is defined as:

ρl = (j − Uq)(k − Uq)

Lσ 2
q

(27)

where

j, k the remaining degree of the respective nodes at the end of link l; itemUq = E[D − 1], the expected
value of the remaining degree of the entire network;

σq standard deviation of the remaining degree distribution of the entire network; itemL number of links
in the network.

The following holds:

ρ =
L∑

l=1

ρl (28)

Analogous to the general definition of assortativity, when ρl > 0, the link is said to be assortative, when
ρl < 0, the link is said to be disassortative and when ρl = 0, the link is said to be non-assortative.
According to Equation (27), a link is assortative when for both ends of the link, the remaining degree
is higher or lower than the expected degree remaining degree of the entire network. Otherwise, the link
will be disassortative, unless for both ends of the link, the remaining degree is equal to the expected
degree remaining degree of the entire network. The absolute value |ρl| is the assortative (for ρl > 0)
or disassortative (for ρl < 0) strength of the link. Equation (27) can be used on a group of links; the
UAC for a group of links is the sum of the individual ρl. Zhang et al. [64] argue that their definition of
local assortativity is advantageous compared with the definition from Piraveenan et al. [18]. Their main
argument is that their definition pertains to links, whereas the definition form Piraveenan et al. [18]
pertains to nodes. The link local assortativity can be applied to an arbitrary set of links, e.g. the links of
a single node.

11. Conclusions and future work

The concept of assortativity has been extensively studied since its introduction by Newman [1]. The
assortativity, being a second-order metric, adds insight in the characteristics of a network. Although
assortativity as a concept may be applied to any qualification of a node, it is most often applied on
the degree of a node, yielding degree assortativity. Various adapted forms of assortativity have been
proposed over time. Assortativity for directed networks and for networks with weighted links needs
further study. Social networks, for example, exhibit connections that have direction. Communication
networks contain links that may have weight, expressing, e.g. link capacity or transmission cost.

Networks may be rewired for changing static or dynamic behaviour of that network, e.g. to increase
or decrease the assortativity of that network. DPR is studied extensively as a means to rewire a network
without changing its degree vector d. When links are directional, DPR must distinguish between in-
degree and out-degree of the nodes involved in the rewiring and keep both constant. When links have
a weight, rewiring may be done degree-preserving, but then the nodes involved in the rewiring end
up with a different connectivity. This follows from the fact that links with different weight contribute
different to the connectivity of a node.

Assortativity alone is not always sufficiently representative of the network as a whole. A network
may be assortative overall, but some nodes would qualify as particularly disassortative, or the other way
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around. Each node or each link in that network contributes in some portion to the overall assortativity.
This leads to local assortativity (local node assortativity, local link assortativity). The assortativity of a
network may be reflected through a node-assortativity PDF or link-assortativity density function. Many
aspects of local assortativity remain unexplored.

The relation between line graphs and assortativity, as well as the relation between complementary
graphs and assortativity, has been studied in various papers. Constructing line graph and constructing
complementary graph is generally defined for simple graphs containing undirected, non-weighted links.
Finally, we propose the following areas for further research in assortativity:

– Graph theoretic definitions of assortativity for networks containing weighted links.

– Network rewiring methodology for networks containing weighted links and/or directed links.

– Relation between assortativity and betweenness, also in combination with network rewiring.

– Using the line graph H of a root graph G as a tool for applying (degree-preserving) rewiring in
the root graph G.

– Using the complementary graph Gc as a tool for applying (degree-preserving) rewiring in the
original graph G.

– Distribution of local node assortativity and local link assortativity, also in combination with net-
work rewiring. Can we apply DPR to a network to alter the local node assortativity distribution
or local link assortativity distribution, whilst keeping the assortativity of the network as whole
unaffected.

– Relation between assortativity, betweenness and effective graph resistance.
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