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Abstract 1	

Numerical format describes the way magnitude is conveyed, for example as a digit (‘3’) or 2	

Roman Numeral (‘III’). In the field of numerical cognition, there is an ongoing debate of 3	

whether magnitude representation is independent of numerical format. Here, we examine the 4	

time course of magnitude processing when using different symbolic formats. We presented 5	

participants with a series of digits and dice patterns corresponding to the magnitudes of 1 to 6 6	

while performing a 1-back task on magnitude. Magnetoencephalography (MEG) offers an 7	

opportunity to record brain activity with high temporal resolution. Multivariate Pattern 8	

Analysis (MVPA) applied to MEG data allows us to draw conclusions about brain activation 9	

patterns underlying information processing over time. The results show that we can cross-10	

decode magnitude when training the classifier on magnitude presented in one symbolic 11	

format and testing the classifier on the other symbolic format. This suggests similar 12	

representation of these numerical symbols. Additionally, results from a time-generalisation 13	

analysis show that digits were accessed slightly earlier than dice, demonstrating temporal 14	

asynchronies in their shared representation of magnitude. Together, our methods allow a 15	

distinction between format-specific signals and format-independent representations of 16	

magnitude showing evidence that there is a shared representation of magnitude accessed via 17	

different symbols.  18	
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Introduction 19	

 Numbers are vital in our everyday life: we need them to count, calculate, and 20	

compare. Symbolic notations of numbers allow us to understand and interact with distinct 21	

quantities. We use a variety of symbolic notations that can all convey the same quantity. For 22	

example, the same magnitudes can be expressed using digits (“3”), Roman numerals (“III”), 23	

or words (“three”). A central debate in the field of numerical cognition is whether there is a 24	

shared brain representation of magnitude or whether representation varies depending on 25	

numerical format (Cohen Kadosh & Walsh, 2009).  26	

How does the brain represent magnitude information across different symbolic 27	

notations?1 Most previous studies examining magnitude processes accessed via different 28	

symbols, such as digits and number words, have used functional magnetic resonance imaging 29	

(fMRI) to compare spatial overlaps of activity (e.g., Eger, Sterzer, Russ, Giraud, & 30	

Kleinschmidt, 2003; Naccache & Dehaene, 2001; Pinel, Dehaene, Rivière, & LeBihan, 31	

2001). Although there is some debate about whether numerical processing is independent of 32	

notation, the majority of these studies suggest that the intraparietal sulcus (IPS) is critically 33	

involved in numerical processing independent of notation type (for reviews see Dehaene, 34	

Piazza, Pinel, & Cohen, 2003; Nieder & Dehaene, 2009).  While many of these studies show 35	

evidence for spatial overlap in the brain’s representation of magnitude across symbols, the 36	

dynamic emerging representation of magnitude potentially might have different timing 37	

profiles across formats.  38	

																																																								
1	 Note, for research on the distinction between magnitude processing when accessed via 

symbolic and non-symbolic notations see e.g., Bulthé, De Smedt, & Op de Beeck (2014), 

Fias, Lammertyn, Reynvoet, Dupont, & Orban (2003), Libertus, Woldorff, & Brannon 

(2007), Piazza, Pinel, Le Bihan, & Dehaene (2007).  
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Studies using electroencephalography (EEG) have shown that magnitudes presented 39	

in different formats are processed similarly over time (Dehaene, 1996; Temple and Posner, 40	

1998; Libertus, Woldorff, and Brannon, 2007). These studies have used univariate analyses 41	

to examine magnitude processing over time, averaging activity over many trials to find global 42	

activation differences between different stimuli in single EEG channels. A more sensitive 43	

approach is multivariate pattern analysis (MVPA), which allows comparison of activity 44	

patterns (Carlson, Schrater, & He, 2003; Cox & Savoy, 2003; Edelman, Grill-Spector, 45	

Kushnir, & Malach, 1998; Haxby et al., 2001; Kamitani & Tong, 2005; Kriegeskorte, 46	

Goebel, & Bandettini, 2006; Tong & Pratte, 2012). This approach can test the 47	

representational overlap between different symbolic formats of magnitude and, with MEG, 48	

how it unfolds over time (Raizada, Tsao, Liu, & Kuhl, 2009). The current study uses MVPA 49	

for the time-series neural data (Grootswagers, Wardle, & Carlson, 2016), a novel approach 50	

for the field of numerical cognition. We use MEG, which has high temporal resolution, to 51	

investigate the timecourse of processing magnitude when accessed via two different symbolic 52	

formats: digits and dice. Applying MVPA to time-series neural data allows us to answer the 53	

following questions: (1) Is magnitude information conveyed by different symbols (digits and 54	

dice) processed in a similar way over time? and (2) can a classifier trained on one numerical 55	

symbol successfully generalise to another symbol? Such a finding would be strong evidence 56	

in favour of a shared representation of magnitude regardless of notation. 57	

An inherent challenge in studying magnitude processing is the control for visual 58	

confounds, because there are unavoidable differences in stimuli representing different 59	

magnitudes (e.g., Bulthé et al., 2014; Eger et al., 2009). In our design, we aimed to address 60	

this challenge in three ways. First, we presented stimuli in different locations on the screen to 61	

add variability to the low-level signals and minimise retinotopic differences between stimuli. 62	

Second, we modelled the effects of low-level features to quantify inevitable low-level 63	
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stimulus differences which could then be regressed out from the magnitude analysis. Third, 64	

we drew all of our main conclusions concerning magnitude based on similarities of 65	

processing magnitude when accessed via two different symbolic notations: digits and dice. 66	

As the low-level features of dice do not vary in the same way as those of digits, the key 67	

results cannot be driven by low-level features. Using these careful controls to minimise the 68	

effects of visual feature differences, we addressed the key question of whether there is a 69	

shared representation of magnitude across symbolic notations.  70	

 71	

Methods 72	

Participants. Twenty participants (14 female, mean age = 28.5 years, SD = 8.6, age 73	

range: 20 – 51 years) completed the study. All participants reported normal or corrected-to-74	

normal vision. Participants gave informed consent before the experiment and were 75	

reimbursed with $20/hour. During MEG recording, participants were asked to complete a 76	

magnitude 1-back task (see below) to ensure they attended the stimuli. One participant 77	

performed more than two standard deviations below the group mean in this task and was 78	

therefore excluded from analysis, leaving 19 participants in total (13 female, mean age = 28.5 79	

years, SD = 8.8; age range: 20 – 51 years). The study was approved by the Macquarie 80	

University Human Research Ethics Committee. 81	

Procedure. Participants completed 8 blocks of a 1-back task (Figure 1) while lying in 82	

a dimly lit magnetically shielded room (MSR) for MEG recordings. Each block contained 83	

216 trials. In each trial, participants were presented with a black fixation cross and four black 84	

outlined squares as placeholders around it. The presentation duration of the fixation screen 85	

varied on a trial-to-trial basis between 900 and 1200ms. Then, a black numerical symbol 86	

appeared in one of the four placeholders while the fixation cross and four squares remained 87	

visible. The squares surrounding each stimulus were at 2.85 degrees visual angle.  The 88	
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horizontal and vertical distances between these squares were at 6.9 and 8.8 degrees visual 89	

angle, respectively. We used two different numerical symbols as format (dice or digits) with 90	

magnitudes 1 to 6. Overall there were 48 different stimuli (4 locations, 2 formats, 6 91	

magnitudes) which were repeated 32 times throughout the experiment. Stimuli remained on 92	

the screen for 83ms. Participants were asked to push a button if the same magnitude repeated, 93	

regardless of location (four squares) or numerical format (digits or dice). There were 24 such 94	

repeat-trials per block in which participants were meant to press the button. These trials were 95	

excluded from analysis. Response time was limited to a maximum of 800ms after stimulus 96	

onset. Participants received feedback on their accuracy after each block. Participants were 97	

instructed to fixate on the fixation cross throughout the experiment. 98	

 99	

Figure 1: On every trial participants were presented with a magnitude between 1 and 6 100	
in one of two different numerical symbols (digits or dice) in one of four locations. The 101	
possible locations were framed in black. Then a fixation screen was presented for a 102	
variable duration between 900 and 1200ms. The fixation duration was sampled at 103	
random from a uniform distribution. The task was to press a button when the same 104	
magnitude repeated on consecutive trials. During the post-stimulus fixation period, 105	
participants had a maximum of 800ms to respond.  106	

 107	

Apparatus and Pre-processing. Before the MEG recordings, participants’ head shapes 108	

were measured using a digitiser pen (Polhemus Fastrak, Colchester, USA). We used the 109	

digitiser pen to register three reference locations (left and right preauricular and nasion) and 110	
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the locations of five marker coils. Participants wore an elastic cap with the marker coils 111	

throughout the session to measure the head position before and after the experiment. During 112	

the MEG recording, stimuli were projected onto a translucent screen mounted in the MSR. 113	

MATLAB with Psychtoolbox extension (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) 114	

was used for stimulus presentation. Button presses were recorded with a Bimanual 4-Button 115	

Fiber Optic Response Pad (Current Designs, Philadelphia, USA). Participants held one of the 116	

response pads in their hands and were instructed to press the button with their thumb. The 117	

neuromagnetic recordings were obtained with a whole-head axial gradiometer MEG (KIT, 118	

Kanazawa, Japan). The system has 160 axial gradiometers and recorded at 1000Hz. An 119	

online low-pass filter of 200Hz and a high-pass filter of 0.03Hz was used. We determined 120	

stimulus onsets with a photodiode that detected light change when a number stimulus came 121	

on the screen. We used FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011) for all pre-122	

processing steps. Trials were epoched from -100 to 800ms relative to the onset of the 123	

stimulus and downsampled to 200Hz (5ms resolution). Next, to the reduce dimensionality of 124	

the data, we used principal component analysis (PCA) and retained the principal components 125	

that explained 99% of the variance in the data for each participant. Following a standard 126	

analysis pipeline by Grootswagers et al., (2016), we performed no further pre-processing 127	

steps (e.g., channel selection, artefact correction). This maintains the data in the rawest 128	

possible form.  129	

Pattern Classification. We used both a decoding analysis approach and 130	

representational similarity analysis (RSA, Kriegeskorte, 2011; Kriegeskorte & Kievit, 2013; 131	

Kriegeskorte, Mur, & Bandettini, 2008) to decode magnitude over time. In the following, we 132	

address each approach in turn.  133	

Decoding Analysis. For a decoding analysis, patterns of brain activity for each participant are 134	

extracted across all MEG channels (components after PCA). A linear discriminant classifier 135	
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is trained to distinguish between brain activity patterns evoked by all stimuli. Then an 136	

independent subset of data from the same participant is used to test whether the classifier can 137	

predict which stimulus evoked a certain pattern of activity. The training and testing steps are 138	

repeated at every time-point. If the prediction is above chance at a given time we can infer 139	

that the information the classifier had in the training phase is relevant for the prediction at 140	

that time-point.  141	

We used random-effect Monte-Carlo cluster statistics corrected for multiple 142	

comparisons (as implemented by CosmoMVPA toolbox, (Oosterhof, Connolly, & Haxby, 143	

2016; Maris & Oostenveld, 2007) to determine whether the classifier performed above 144	

chance. Threshold Free Cluster Enhancement (TFCE, Smith & Nichols, 2009) was used as a 145	

cluster-forming statistic. The TFCE statistic represents the support from neighbouring time 146	

points, allowing optimal detection of sharp peaks, as well as sustained weaker effects. To 147	

correct for multiple comparisons, the Monte-Carlo technique used by CosmoMVPA performs 148	

a sign-permutation test, swapping the signs of the decoding results of all participants at 149	

random at each time point and recomputes the TFCE statistic. This is repeated 10,000 times 150	

to obtain a null distribution at each time point. Then the most extreme value of each null 151	

distribution is taken in order to construct an overall null distribution across the time-series. 152	

The 95th percentile of this overall null distribution is used when we compare the real 153	

decoding results and the null hypothesis providing a p-value (a = 0.05) which is corrected for 154	

multiple comparisons.  155	

We ran two decoding analyses: within-format and between-format classification. For 156	

the within-format classification, we trained a classifier on magnitude (values 1-6) using a 157	

subset of digit trials and then tested the classifier on digit trials of independent data (chance 158	

level = 16.67%). We repeated the same process for the dice stimuli. In the 32-fold cross-159	

validation, each fold contained data corresponding to 24 individual stimuli: Each magnitude 160	
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(1-6) was repeated 4 times, once in each of the four locations (top right, top left, bottom right, 161	

bottom left). Each of the folds served as independent test data once while all other folds were 162	

used for classifier training. For the between-format analysis, we trained the classifier on 163	

magnitude (values 1-6) in all digit trials and then tested its performance on data from the dice 164	

trials and vice versa.   165	

It is important to note that the within-format classifiers can make use of magnitude 166	

and visual information to predict which magnitude evoked a given pattern of brain activity. 167	

To decrease the contribution of low-level visual differences we presented the stimuli in four 168	

different locations and hence reduced retinal overlap. While this approach increases the 169	

variability in the stimuli there is still a considerable degree of low-level feature similarity in 170	

the stimuli (e.g., total density, edges, orientation, curves). That means we cannot draw 171	

definite conclusions about magnitude processing from the within-format analysis. In 172	

comparison, the classifier in the between-format analysis was trained on magnitude in one 173	

notation (e.g., digits) and tested on the other notation (e.g., dice). That means the between-174	

format classifier can only rely on magnitude information, making this the strongest test of the 175	

hypothesis that there is a representation of magnitude that does not depend on the specific 176	

symbol of presentation.  177	

Representational Similarity Analysis (RSA). Using RSA (Kriegeskorte, 2011; Kriegeskorte & 178	

Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 2008), we quantified the similarity between 179	

brain activity patterns evoked by different stimuli. First, we averaged the trials corresponding 180	

to the 48 unique trials (i.e., unique combinations of format, location, magnitude) and 181	

correlated these average trials with one another. High correlations indicate that the evoked 182	

activity is similar for a given pair of stimuli and therefore harder to distinguish. We 183	

correlated all possible stimulus pairs at each time-point and thus ended up with a total of 180 184	

representational dissimilarity matrices (RDMs, see Figure 2). We then constructed five 185	
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different model RDMs, two conceptually based (Magnitude Model, Label Model) and three 186	

visually-based models (Location Model, Silhouette Model, and Format Model). We tested 187	

whether these models could capture the differences in the neural MEG RDMs by correlating 188	

Figure 2: Panel A depicts stimuli seen in two separate trials. Panel B shows the recorded MEG 
signal in response to these stimuli. The signals from both trials are then correlated at each 
timing window (e.g., t1). The correlation values of each stimulus pair are then inserted into the 
dissimilarity matrix of the corresponding timing window (Panel C). This process is repeated for 
all stimulus pairs and every time window to create a time series of dissimilarity matrices (Panel 
D).  
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these models to the neural RDMs. In the same way as for the decoding analysis, significance 189	

was tested with the Monte-Carlo cluster statistics corrected for multiple comparisons. 190	

Our key model was the Magnitude Model (Figure 3A). The Magnitude Model is 191	

based on the theory that magnitudes are represented on a mental number line (Moyer & 192	

Landauer, 1967; Restle, 1970). The Magnitude Model hence predicts that correlations of 193	

stimulus pairs that are closer together in magnitude (e.g., 1 and 2) will be higher than 194	

correlations of stimuli that are farther apart (e.g., 1 and 5). In the Magnitude Model, location 195	

and format are irrelevant, the prediction depends solely on magnitude.  196	

The Label Model (Figure 3B) served as a control model. As participants were 197	

required to detect when a magnitude repeats, it is plausible that correlations of the neural 198	

MEG RDMs and the Magnitude Model RDM could be driven by a verbal labelling strategy 199	

of participants. The Label Model coded for such strategy by predicting that data evoked by 200	

stimuli with the same verbal labels (e.g., 1 presented in both numerical formats) would have a 201	

high correlation while stimuli with different verbal labels (e.g., 1 presented as a digit in the 202	

top left and 2 presented as a dice in the bottom right) would have a low correlation. This 203	

model assumes that all number pairs that do not have the same verbal label are equally hard 204	

to distinguish.  205	

We constructed the visually-based models to examine what part of the correlations 206	

between the MEG RDMs can be explained by inevitable low-level visual differences between 207	

the stimuli. The Location Model (Figure 3C) models in which of the four squares the 208	

stimulus was presented. The Location model ignores magnitude and format and predicts that 209	

correlations of stimuli presented in the same location are higher than correlations of stimuli 210	

which were presented in different locations. The Silhouette Model (Figure 3D) compares 211	

visual overlap between the stimuli (Jaccard, 1901). The prediction for the visual model is that 212	

the brain activity pattern evoked by stimuli which have more pixel overlap also have a higher 213	
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correlation than patterns evoked by stimuli that do not have as much visual overlap. Lastly, 214	

the Format Model (Figure 3E) predicts that data of trials in which the numerical format is the 215	

same (e.g., digits and digits) will correlate stronger than data of trials with different numerical 216	

format (e.g., digits and dice). The Format Model ignores location and magnitude and solely 217	

codes for format.  218	

	219	

Results 220	

 In the 1-back task, participants accurately detected 82.2% (SD = 8.3%) of the 221	

repeat-trials. To analyse the MEG data, we ran a decoding analysis and RSA. We will first 222	

present the results from the decoding analysis and then the results from the RSA.  223	

Decoding Analysis. For the within-format decoding, the classifier was trained and 224	

tested on stimuli of the same numerical format and hence can be driven by both visual and 225	

Figure 3: The model Representational Dissimilarity Matrices (scaled). The top row shows the 
conceptually based Magnitude and Label Models (Panels A and B, respectively). The bottom row 
shows the visually-based Location, Silhouette, and Format Model (Panels C-E). Each square 
represents the predicted dissimilarity between a stimulus pair where 1= highly dissimilar and 0 = 
highly similar. 
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magnitude information. The classifier was able to predict the numerical value above chance 226	

for a cluster stretching from 120 to 740ms relative to stimulus onset for dice and from 145 to 227	

475ms for digits. The within-dice classifier performance is above chance for a longer period 228	

of time in comparison to the within-digit classifier performance (Figure 4), presumably 229	

reflecting the stronger visual differences present in the dice stimuli from 1-6. This means that 230	

when the classifier is trained on magnitudes of the same numerical format, it is able to 231	

distinguish the classes above chance for a substantial period of the time series. Even though 232	

stimuli were presented in different locations (right/left, bottom/top), visual features such as 233	

Figure 4: Classification accuracy over time for within-format decoding of dice (light blue) and 
digits (dark blue). Shading indicates standard error around the mean. The dashed horizontal line 
shows chance level while the dotted vertical lines show the stimulus duration. The coloured dots 
indicate classification accuracy that is significantly above chance (p<0.05, corrected for multiple 
comparisons). Under the graph are the sensor contributions (arbitrary units) to the decoding 
results. 
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shape will contribute to classifier performance. This is in line with the finding that classifier 234	

performance for dice is more accurate than for digits: dice have a more distinct visual pattern 235	

than digits, and more visual information corresponds to a higher magnitude value, 236	

confounding possible coding of magnitude with visual differences.  237	

In the between-format decoding, we trained a linear discriminant classifier on the 238	

magnitude (values 1-6) of one format (e.g., dice) and tested its performance on the other 239	

format (e.g., dice) and vice versa. In comparison to the within-format decoding, there are no 240	

reliable visual differences between stimuli in the between-format decoding analysis that 241	

could predict above chance classification, making this a strong test of the hypothesis that a 242	

shared representation of magnitude exists. The results for the between-format decoding 243	

(Figure 5) show that there is cluster of classifier performance above chance stretching from 244	

410 to 435ms when the classifier was trained on dice and tested on digits. When the classifier 245	

was trained on digits and tested on dice, it performs significantly above chance in a cluster 246	

between 390 and 485ms. As low-level features such as density do not vary systematically for 247	

digits, classification is most likely driven by magnitude demonstrating a shared 248	

representation of magnitude accessed via digits and dice.  249	
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The significant between-format classification suggests that there is overlap in the 250	

representation of digits and dice. We now compare the relative time it takes to access 251	

magnitude information from the two formats using a time-generalisation technique. It is, for 252	

example, possible that one format is processed faster than the other one and we have only 253	

captured a slight overlap between their processing time-windows with the between-format 254	

decoding. To test this possibility we examined whether the between-format decoding 255	

generalises over time (Carlson, Hogendoorn, Kanai, Mesik, & Turret, 2011; King & 256	

Figure 5: Classification accuracy over time for between-format magnitude decoding when the 
classifier is trained on dice and tested on digits (light blue) and vice versa (dark blue). Shading 
indicates standard error around the mean. The dashed horizontal line shows chance level while 
the dotted vertical lines show the stimulus duration. The coloured dots indicate classification 
accuracy that is significantly above chance (p<0.05, corrected for multiple comparisons). Under 
the graph are the sensor contributions (arbitrary units) to the decoding results.  
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Dehaene, 2014). We trained the classifier on trials of one numerical format (e.g., digits) at 257	

each time point of the time-series and then tested the classifier on the other numerical format 258	

(e.g., dice) at every possible time point (Figure 6A). To test this difference statistically, we 259	

conducted a random-effect Monte-Carlo statistic that is corrected for multiple comparisons to 260	

find which time points in the time-generalisation matrix have classification that is above 261	

chance. This allows us to see whether a brain activity pattern that was observed for digits at a 262	

given time point appeared in a similar way for dice at a later or earlier time point (or vice 263	

versa). The results for the time-generalisation analysis are summarised in Figure 6. The red 264	

line (Figure 6B) indicates the expected between-format decoding if training and testing time 265	

correspond perfectly (no temporal asynchrony in processing digits and dice). However, visual 266	

inspection suggests that, relative to this diagonal, there is a rightward shift when we train on 267	

dice and test on digits, and a leftward shift when we train on digits and test on dice. We then 268	

calculated the distance between the significant time points to the red diagonal reference line 269	

that indicates a perfect one-to-one temporal mapping. The results show that the time 270	

generalisation of the classifier performance is shifted later by a median of 40ms when we 271	

trained on dice and tested on digits, and 45ms earlier when we trained on digits and tested on 272	

dice (Figure 6C). This shows that there is indeed a time shift between the processing speed of 273	

magnitudes presented as digits and dice: When training the classifier on dice we are able to 274	

generalise to digits earlier and vice versa, suggesting that access to magnitude information 275	

occurs earlier for digits than dice. However, it is important to note that magnitudes accessed 276	

via digits and dice must be similar as the between-format classification is possible. From the 277	

decoding analysis, we can hence conclude that there is a representational overlap between 278	

accessing magnitude from digits and dice, but that digits appear to be accessed slightly faster 279	

than dice.  280	
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 281	

Figure 6: Time generalisation for between-format decoding. Row A shows the classification 
accuracy across training and testing time when the classifier is trained on dice and tested on 
digits (left) and vice versa (right). The diagonal line in row B indicates what exact temporal 
mapping between training and testing time would look like. The white points are train- and test-
time combinations where classification is significantly above chance (p<0.05, corrected for 
multiple comparisons). Row C shows the time-shift from the diagonal of all significant timepoint 
combinations.  

 

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/249342doi: bioRxiv preprint first posted online Jan. 23, 2018; 

http://dx.doi.org/10.1101/249342


16	
	

	
	

Representational Similarity Analysis (RSA). RSA allows us to compare the overall 282	

similarity of the brain activity corresponding to all of our stimuli instead of only comparing 283	

stimulus pairs. We constructed five different models that we compare to the neural MEG 284	

RDMs at every time point (Figure 3). This enables us to model what type of information is 285	

most prevalent in the signal at a given time. We first correlated the model RDMs with the 286	

MEG RDMs at every time point using Spearman’s Rank Correlation. We then used random-287	

effect Monte-Carlo cluster statistics to quantify whether the correlations were significantly 288	

above zero. The results of the RSA are summarised in Figure 7. Stimulus onset and offset are 289	

shown by the vertical lines. The black dotted line shows the lower bound of the noise ceiling 290	

(Nili et al., 2014), defined as the average correlation between individual subject RDMs and 291	

the mean of all other subject RDMs. The noise ceiling is an estimation of how well the true 292	

model could perform given the noise in the data (Nili et al., 2014). The noise ceiling 293	

highlights that we can expect the maximum correlations between any model RDM and the 294	

data to be relatively low just before and after stimulus onset (i.e., more noise in the data) and 295	

at the end of the time-series. The noise ceiling peaks at 150ms after stimulus onset indicating 296	

that there is less noise in the data at that time point in comparison to earlier or later time 297	

points. As a consequence, models that explain the data well in that time frame will have 298	

higher correlations compared to models that perform well a little later. This is clearly the case 299	

when we look at the correlation between the MEG RDMs and the visually-based models (i.e., 300	

Location Model, Visual Model, and Format Model). Visual stimulus characteristics that 301	

allow our visual system to distinguish stimuli by features such as shape and location are 302	

available relatively early (Ramkumar, Jas, Pannasch, Hari, & Parkkonen, 2013; VanRullen & 303	

Thorpe, 2001), leading to high correlations between the visually-based model RDMs and the 304	

MEG RDMs early in the time-series. The correlation between the MEG RDMs and the 305	

Location Model approaches the noise ceiling early and stays significantly above chance for 306	
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almost the whole time-series (significant cluster of time points from 55 to 800ms). The 307	

Silhouette Model codes for the shape of the stimuli by comparing pixel overlap. The 308	

Silhouette Model correlates strongly with the MEG RDMs and peaks at the same time as the 309	

Location Model at around 150ms after stimulus onset. The Format Model that codes for 310	

whether the magnitude was conveyed by a digit or die correlates significantly above zero 311	

with the MEG RDM at a cluster stretching from 145 to 800ms after stimulus onset. The 312	

correlation between the Format Model and the MEG RDMs peaks later than the other two 313	

visually-based models at 255ms after stimulus onset.   314	

Our key Magnitude Model is an ordinal model predicting that data evoked by stimuli 315	

with numerical values that lie closer together (e.g., 1 and 2) should correlate more than data 316	

evoked by stimuli with numerical values that are farther apart (e.g., 1 and 6). The Magnitude 317	

Figure 7:  Spearman’s Rank Correlation of all Model Representational Dissimilarity Matrices 
(RDMs) and the MEG RDM over time. The vertical dotted lines indicate how long the stimulus 
was on the screen. Each coloured line depicts the correlation of a Model RDM and the MEG 
RDM. Shades around lines depict standard errors. Coloured dots indicate correlations that are 
significantly (p<0.05, corrected for multiple comparisons) above zero. 
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Model has a correlation larger than zero with the MEG RDMs in a cluster stretching from 318	

365 to 455ms after stimulus onset. This onset corresponds to the significant time windows of 319	

the between-format decoding analysis. Note that the correlation between Magnitude Model 320	

and MEG data at the significant time points is much lower than for the visually-based 321	

models. This also matches the results of the decoding analysis which showed that the mainly 322	

visually-driven within-format classification is more accurate than the between-format 323	

decoding. There may be several reasons for the absolute difference between visual and 324	

magnitude effects. First, as the magnitude effect appears later than the visual effects, the 325	

correlation will always be weaker because the data are much noisier by that stage relative to 326	

the strong early effects (compare the noise ceiling at these time points; Figure 7). Second, 327	

magnitude effects are likely to be more strongly influenced by individual differences than 328	

visual effects, as more processing is required to access magnitude than the low-level early 329	

sensory signals. Importantly, despite the absolute differences, our results suggest that 330	

magnitude is represented independently of location and format. 331	

One possible alternative interpretation of the correlation of the MEG RDMs and the 332	

Magnitude Model is that participants internally labelled the stimuli (e.g., “one” regardless of 333	

whether dice or digit was presented) to assist with completion of the 1-back task. To test this, 334	

we also used a Label Model coding for same versus different verbal label. Although the 335	

correlation between the MEG data and the Label Model follows the shape of the Magnitude 336	

Model, it does not reach significance at any point throughout the time-series. To test whether 337	

the Magnitude Model explains more of the variance than the Label Model, we tested for 338	

differences between the correlations of the data with the Magnitude and Label Model. 339	

Perhaps not surprisingly given how close the models are to chance, the difference between 340	

Magnitude and Label Model did not reach significance at any point in the time-series. 341	

Therefore, we cannot rule out a contribution of labelling in the correlation of the Magnitude 342	
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Model with the MEG data. What we have, however, is evidence that the Magnitude Model 343	

explains a significant portion of data variance, in the absence of such evidence for the Label 344	

Model (which could reflect insufficient power or an actual lack of an effect). 345	

The initial RSA analysis shows that visual information is strongly correlated with the 346	

data but that magnitude information arises in the signal at a later point in the time-series. 347	

Looking more closely at the Magnitude Model, we see that in the beginning of the time-series 348	

there is a negative correlation between model and MEG data. This negative correlation 349	

coincides with the time-point at which the Location and Visual Model peak. That indicates 350	

the Location and Silhouette Models account for variance for which the Magnitude Model 351	

cannot account. In the next step, we regress out the variance explained by the Location and 352	

Silhouette Model and look at the Magnitude Model again (Figure 8). This effectively 353	

removes the visual "noise" from the Magnitude Model correlation. Regressing out the 354	

Figure 8:  Spearman’s Rank Correlation of the Magnitude Model RDM and the MEG RDM over 
time when variance explained by the location and silhouette model are regressed out (blue and 
orange line, respectively) versus when nothing is regressed (purple line). Shading represents 
standard errors. Coloured dots indicate correlations that are significantly (p<0.05, corrected for 
multiple comparisons) above 0. 
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Location and Silhouette Model improves the Magnitude Model correlation early in the time-355	

series. This improvement is more pronounced when the Location Model is removed 356	

compared to the Silhouette Model (reflecting the greater correlation between the data and the 357	

Location Model compared with the Silhouette Model). Importantly, there is a significant 358	

correlation between the Magnitude Model and the MEG data regardless of whether any visual 359	

information is regressed out.  360	

After regressing out the variance accounted for by the Location Model we looked at 361	

the Magnitude Model correlation in more detail. The Magnitude Model predicts data evoked 362	

by stimuli with numerical values close to one another to be more similar than data evoked by 363	

stimuli with numerical values farther apart independent of location and format. That means 364	

the model contains both within-format and between-format correlations. Before drawing 365	

 
Figure 9: Spearman's Rank Correlation for different parts of the Magnitude Model 
Representational Dissimilarity Matrix (RDM) and the MEG RDM when variance explained by 
the Location Model is regressed out. Shading represents standard errors. Coloured dots indicate 
correlations that are significantly (p<0.05, corrected for multiple comparisons) above 0. 
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conclusions about the representation of magnitude then, it is important to test whether the 366	

correlation of the Magnitude Model and the MEG data could be driven by only the within-367	

format correlations, which we know are influenced by visual features. In the next step, we 368	

therefore looked at the Magnitude Model separated into three parts: within-digits, within-dice 369	

and between-format correlations. The results (Figure 9) show that there is a significant 370	

correlation for all three.  371	

Supporting the results of the decoding analysis, the within-dice part of the Magnitude 372	

Model has the highest correlation with significant clusters stretching over most of time-series 373	

(140ms – 735ms relative to stimulus onset). The within-digits part of the Magnitude Model 374	

also significantly correlates with the data at several clusters throughout the time-series 375	

(225ms – 420ms relative to stimulus onset). Again, it is important to note that most of these 376	

correlations are due to visual features and it is not possible to determine any effect of 377	

magnitude information alone from these within-format contrasts. In comparison, the 378	

between-format part of the Magnitude Model only predicts similarity between data evoked by 379	

a certain magnitude in one format (e.g., digit 3) and the same magnitude in the other format 380	

(e.g., die 3), thus containing similarities based on magnitude only. This between-format part 381	

of the Magnitude Model correlates significantly with the data at a cluster stretching from 382	

360ms to 450ms relative to stimulus onset. This time-window is consistent with the results of 383	

the between-format decoding analysis. Thus, these results suggest that magnitude is 384	

represented in a similar way when accessed via digits and dice.  385	

 386	

Discussion 387	

 In this study, we examine whether there is a common representation of magnitude 388	

regardless of symbolic notation (digits and dice). Consistent across two different analysis 389	

methods, our results suggest that there is a shared brain representation of magnitude for these 390	
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symbolic formats. We also see a time difference in the access to this magnitude 391	

representation, with digits being processed slightly earlier than dice. In addition, we showed 392	

that activation patterns evoked by stimuli closer in numerical value are more similar than of 393	

stimuli farther apart, providing neural underpinnings for an ordinal component of magnitude 394	

representation.  395	

Previous studies examining magnitude representation have mostly focussed on 396	

whether magnitudes presented in different numerical formats are processed in the same brain 397	

area (e.g., Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003; Naccache & Dehaene, 2001; 398	

Pinel, Dehaene, Rivière, & LeBihan, 2001). In the current study, we used a time-series 399	

decoding approach to investigate the temporal unfolding of magnitude processing. Our 400	

results show that digits and dice are processed in a sufficiently similar way over time to allow 401	

for cross-generalisation and that digits and dice which represent closer magnitudes are more 402	

similar in neural activity than those that are farther apart. This is in line with behavioural 403	

findings such as the numerical distance effect (Moyer & Landauer, 1967) which has been 404	

shown to occur independent of numerical format (Schwarz & Ischebeck, 2000). 405	

In addition to similarities in magnitude representation of digit and dice stimuli over 406	

time, our results show that there is a temporal shift when comparing the processing of 407	

magnitude in these formats. Magnitude from digit stimuli seems to be accessed earlier than 408	

for dice. This corresponds to previous behavioural findings by Buckley and Gillman (1974) 409	

showing that reaction times to digits are faster than to dots in a regular, known composition. 410	

In previous EEG studies, digits have also been shown to be processed slightly earlier than 411	

number words (Dehaene, 1996) and dots in random configurations (Temple and Posner, 412	

1998). Similarly, the results of the time-series decoding analysis suggest that magnitude 413	

information from digits is accessed slightly earlier than in dice. 414	
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Evidence for a similar pattern in processing of magnitude across formats has 415	

previously been taken as evidence for abstract magnitude representation (see for example 416	

Cohen Kadosh & Walsh, 2009). In the context of numerical cognition, “abstract 417	

representation” means that magnitude is accessed via a transformation of numerical stimuli to 418	

a format-independent, continuous quantity (Dehaene, Dehaene-Lambertz, & Cohen, 1998). 419	

This is one possible interpretation of our findings: it may be that digits and dice are both 420	

converted into a completely abstract representation of magnitude. The delay between 421	

accessing magnitude for dice stimuli in comparison to digits could then be attributed to a 422	

difference in conversion speed. It may be that it is faster to access abstract magnitude from 423	

digits than it is from dice, presumably reflecting the relative frequency and familiarity of the 424	

stimuli. Alternatively, numerical formats could activate magnitude information in a shared 425	

but not necessarily abstract format. The delay for accessing magnitude information when 426	

presented with dice would then be attributed to the time it takes to convert the dice into the 427	

shared representation, potentially of digits. Disentangling these two alternatives is difficult. 428	

The current data show that there is sufficient similarity in processing of digits and dice to 429	

allow for cross-generalisation, but we cannot tell whether this is a different representation 430	

from either notation directly. We are hence cautious with the term abstract here and interpret 431	

the current data as evidence for a shared representation of magnitude for digit and dice 432	

stimuli. This interpretation allows for both explanations, an abstract representation or a 433	

representation in one numerical format only.  434	

We have to be cautious when interpreting our data as it is hard to infer the source of 435	

the decodable signal (Coltheart, 2006; Henson, 2005). Our results show that it is possible to 436	

represent magnitude in a format-independent fashion but we cannot be certain whether this 437	

format-independent representation is necessary for normal number processing (Seron & Fias, 438	

2006). It is, for example, possible that the task we asked participants to do resulted in the 439	
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format-independent magnitude effect. Participants completed a 1-back task on magnitude 440	

which required them to think of the stimuli as representing magnitude. In future studies, it 441	

may be interesting to see whether magnitude can be decoded even if the task is completely 442	

orthogonal to magnitude processing, demonstrating whether attention to magnitude is a 443	

crucial aspect for such apparent shared representation. 444	

Another caveat relates to the potential for covert semantic labelling to contribute to 445	

the magnitude effects. The Label Model was designed to account for task effects related to 446	

this. There was no time point at which this model correlated significantly with the data 447	

(Figure 7), but this is a null effect, and so we must be cautious in our inference. As there was 448	

no significant difference between the correlations of the data with the Magnitude Model and 449	

the Label Model, we cannot rule out a contribution of semantic labelling. However, the 450	

observation that the Magnitude Model provided a significant account of the data suggests that 451	

the ordinal structure in the model provided explanatory power, whereas we have no such 452	

clear information regarding the Label Model.  453	

 With our analysis, we are able to distinguish purely visual from higher-cognitive 454	

magnitude effects. The visual effects were much stronger and easier to decode than anything 455	

related to magnitude across our analyses. This is not surprising given the reliability of low-456	

level visual signals, the time-locked nature of such signals to the stimulus, and the greater 457	

variability in individual processing times (even on a trial to trial basis) of higher-level 458	

cognitive functions. Looking at these visual effects, we also showed that dice produce a much 459	

stronger and clearer visual signal than digits. This again is not surprising given the visual 460	

dissimilarity within the non-symbolic stimuli such as dice: total luminance, for example, is 461	

lower for larger magnitudes than for smaller ones. In comparison, for digits the amount of 462	

visual information is relatively consistent across stimuli. This corresponds to results from 463	

previous fMRI MVPA studies consistently showing that non-symbolic stimuli (e.g., dots) 464	
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resulted in higher magnitude decoding accuracy across the whole brain (Bulthé et al., 2014) 465	

and in the parietal lobes (Damarla & Just, 2013; Eger et al., 2009) than symbolic stimuli (i.e., 466	

digits). Bulthé et al. (2014) and Eger et al. (2009) controlled for some low-level visual 467	

features of the non-symbolic displays such as individual dot size, space between dots, total 468	

luminance, and total area of the stimuli. While controlling for these features limits the 469	

problem of visual dissimilarity across stimulus classes, some visual differences remain. For 470	

example, symbolic stimuli always consist of one item on the screen while non-symbolic 471	

stimuli consist of multiple items. These visual differences between stimulus classes may have 472	

led to higher decoding accuracy for dice than for digits in our study and previous studies. Our 473	

main results cannot be driven by such inevitable visual differences, as the key comparisons 474	

we make are based on a comparison across two different notations.      475	

 To our knowledge, the current study is the first to take a time-series decoding 476	

approach in the field of numerical cognition. Our results show that current analysis tools of 477	

MEG decoding are sensitive enough to distinguish between magnitudes. These methods offer 478	

many future avenues for the field of numerical cognition, as well as providing proof-of-479	

concept that the methods can be applied to higher-level cognitive processes. 480	

 In summary, the results of the current study suggest that there is a shared magnitude 481	

representation regardless of symbolic notation. We also showed that there is a time shift in 482	

processing magnitude of different symbolic numerical formats with digits being accessed 483	

slightly earlier than dice. Although within-format classification is driven strongly by visual 484	

effects, we found that magnitude information across numerical formats can be decoded at a 485	

later stage in processing. By showing that magnitude is decodable, our study highlights that 486	

applying decoding to time-series data can be a useful approach for the field of numerical 487	

cognition.   488	
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