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Abstract. – Financial markets can be seen as complex systems in non-equilibrium steady
state, one of whose most important properties is the distribution of price fluctuations. Recently,
there have been assertions that this distribution is qualitatively different in emerging markets
as compared to developed markets. Here we analyse both high-frequency tick-by-tick as well as
daily closing price data to show that the price fluctuations in the Indian stock market, one of the
largest emerging markets, have a distribution that is identical to that observed for developed
markets (e.g., NYSE). In particular, the cumulative distribution has a long tail described by a
power law with an exponent α ≈ 3. Also, we study the historical evolution of this distribution
over the period of existence of the National Stock Exchange (NSE) of India, which coincided
with the rapid transformation of the Indian economy due to liberalization, and show that this
power law tail has been present almost throughout. We conclude that the “inverse cubic law”
is a truly universal feature of a financial market, independent of its stage of development or
the condition of the underlying economy.

Introduction. – Financial markets are paradigmatic examples of complex systems, com-
prising a large number of interacting components that are subject to a constant flow of ex-
ternal information [1, 2]. Statistical physicists have studied simple interacting systems which
self-organize into non-equilibrium steady states, often characterized by power law scaling [3].
Whether markets also show such behavior can be examined by looking for evidence of scaling
functions which are invariant for different markets. The most prominent candidate for such an
universal, scale-invariant property is the cumulative distribution of stock price fluctuations.
The tails of this distribution has been reported to follow a power law, Pc(x) > x−α, with the
exponent α ≈ 3 [4]. This “inverse cubic law” had been reported initially for a small number
of stocks from the S&P 100 list [5]. Later, it was established from statistical analysis of stock
returns in the German stock exchange [6], as well as for three major US markets, including
the New York Stock Exchange (NYSE) [7]. The distribution was shown to be quite robust,
retaining the same functional form for time scales of upto several days [7]. Similar behavior
has also been seen in the London Stock Exchange [8]. An identical power law tail has also
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been observed for the fluctuation distribution of a number of market indices [9, 10]. This
apparent universality of the distribution may indicate that different markets self-organize to
an almost identical non-equilibrium steady state. However, as almost all these observations
are from developed markets, a question of obvious interest is whether the same distribution
holds for developing or emerging financial markets. If the inverse cubic law is a true indicator
of self-organization in markets, then observing the price fluctuation distribution as the mar-
ket evolves will inform us about the process by which this complex system converges to the
non-equilibrium steady state characterizing developed markets.

However, when it comes to empirical reports about such emerging markets there seems
to be a lack of consensus. The market index fluctuations in Brazil [11] and Korea [10] have
been reported to follow an exponential distribution. On the other hand, the distribution for an
Indian market index, over approximately the same period, was observed to be heavy tailed [12].
It is hard to conclude about the nature of the fluctuation distribution for individual stock
prices from the index data, as the latter is a weighted average of several stocks. Therefore, in
principle, the index can show a distribution quite different from that of its constituent stocks
if their price movements are not correlated.

Analysis of individual stock price returns for emerging markets have also not resulted in
an unambiguous conclusion about whether such markets behave differently from developed
markets. A recent study [13] of the fluctuations in the daily price of the 49 largest stocks in an
Indian stock exchange has claimed that the distribution has exponentially decaying tails. This
implies the presence of a characteristic scale, and the breakdown of universality of the power
law tail for the price fluctuation distribution. On the other hand, it has been claimed that
this distribution in emerging markets has even more extreme tails than developed markets,
with an exponent α that can be less than 2 [14]. More recently, there has been a report of the
“inverse cubic law” for the daily return distribution in the Chinese stock markets of Shanghai
and Shenzhen [15]. These contradictory reports indicate that a careful analysis of the stock
price return distribution for emerging markets is extremely necessary. This will help us to
establish definitively whether the “inverse cubic law” is invariant with respect to the stage of
economic development of a market.

All the previous studies of price fluctuations in emerging markets have been done on
low-frequency daily data. For the first time, we report analysis done on high-frequency tick-
by-tick data, which are corroborated by analysis of daily data over much longer periods. The
data set that we have chosen for this purpose is from the National Stock Exchange (NSE) of
India, the largest among the 23 exchanges in India, with more than 85% of the total value
of transactions for securities in all market segments of the entire Indian financial market in
recent times [16]. This data set is of unique importance, as we have access to daily data right
from the time the market commenced operations in the equities market in Nov 1994, upto
the present when it has become the world’s third largest stock exchange (after NASDAQ and
NYSE) in terms of transactions [17]. Over this period, the market has grown rapidly, with the
number of transactions having increased by more than three orders of magnitude. Therefore,
if markets do show discernible transition in the return distribution during their evolution,
the Indian market data is best placed to spot evidence for it, not least because of the rapid
transformation of the Indian economy in the liberalized environment since the 1990s.

In this paper, we focus on two important questions: (i) Does an emerging market exhibit a
different price fluctuation distribution compared to developed markets, and (ii) if the market is
indeed following the inverse cubic law at present, whether this has been converged at starting
from an initially different distribution when the market had just begun operation. Both of
these questions are answered in the negative in the following analysis.
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Data description. – We have looked at two data sets having different temporal resolu-
tions: (i) The high-frequency tick-by-tick data contains information about all transactions
carried out in the NSE between Jan 2003 and Mar 2004. This information includes the date
and time of trade, the price of the stock during transaction and the volume of shares traded.
This database is available in the form of CDs published by NSE. For calculating the price
return, we have focused on 489 stocks that were part of the BSE 500 index (a comprehensive
indicator for the Indian financial market) during this period. The number of transactions for
each company in this set is ∼ 106, on the average. The total number of transactions for the
489 stocks is of the order of 5 × 108 during the period under study. (ii) The daily closing
price of all the stocks listed in NSE during its period of existence between Nov 1994 and May
2006. This was obtained from the NSE website [18] and manually corrected for stock splitting.
For comparison with US markets, in particular the NYSE, we have considered the 500 stocks
listed in S&P 500 during the period Nov 1994 - May 2006, the daily data being obtained from
Yahoo! Finance [19].

Results. – To measure the price fluctuations such that the result is independent of the
scale of measurement, we calculate the logarithmic return of price. If Pi(t) is the stock price
of the ith stock at time t, then the (logarithmic) price return is defined as

Ri(t, ∆t) ≡ lnPi(t + ∆t) − lnPi(t). (1)

However, the distribution of price returns of different stocks may have different widths, owing
to differences in their volatility, defined (for the i-th stock) as σ2

i ≡ 〈R2

i 〉− 〈Ri〉
2. To compare

the distribution of different stocks, we normalize the returns by dividing them with their
volatility. The resulting normalized price return is given by

ri(t, ∆t) ≡
Ri − 〈Ri〉

σi

, (2)

where 〈· · ·〉 denotes the time average over the given period.
For analysis of the high-frequency data, we consider the aforementioned 489 stocks. Choos-

ing an appropriate ∆t, we obtain the corresponding return by taking the log ratio of consec-
utive average prices, averaged over a time window of length ∆t. Fig. 1 (left) shows the
cumulative distribution of the normalized returns ri with ∆t = 5 mins for five stocks, arbi-
trarily chosen from the dataset. We observe that the distribution of normalized returns ri

for all the stocks have the same functional form with a long tail that follows a power-law
asymptotic behavior. The distribution of the corresponding power law exponent αi for all the
489 stocks that we have considered is shown in Fig 1 (right).

As all the individual stocks follow very similar distributions, we can merge the data for
different stocks to obtain a single distribution for normalized returns. The aggregated return
data set with ∆t = 5 mins has 6.5×106 data points. The corresponding cumulative distribution
is shown in Fig. 2 (left), with the exponents for the positive and negative tails estimated as

α =

{

2.89 ± 0.09 (positive tail)
2.52 ± 0.03 (negative tail).

(3)

From this figure we confirm that the distribution does indeed follow a power law decay, albeit
with different exponents for the positive and negative return tails. Such a difference between
the positive and negative tails have also been observed in the case of stocks listed in the
NYSE [7]. To further verify that the tails are indeed consistent with a power law form, we
perform an alternative measurement of α using the Hill estimator [20,21]. We order the returns



10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Normalized price returns

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

ACC

BHEL

DABUR

RELIANCE

TATAPOWER

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

Exponent α
i

F
re

qu
en

cy

Fig. 1 – (Left) Cumulative distribution of the positive tails of the normalized 5-min returns distribution
of 5 stocks chosen arbitrarily from those listed in the NSE for the period Jan 2003 to March 2004.
The broken line indicates a power law with exponent α = 3. (Right) The histogram of the power-law
exponents obtained by regression fit for the positive tail of individual cumulative return distributions
of 489 stocks. The median of the exponent values is 2.85.

in a decreasing order such that r1 > · · · > rn and then obtain the Hill estimator (based on the

largest k+1 values) as Hk,n = 1

k

∑k

i log ri

rk+1
, for k = 1, · · · , n−1. The estimator Hk,n → α−1

when kn → ∞ and kn/n → 0. For our data, this procedure gives α = 2.97 and 2.56 for the
positive and the negative tail respectively, which are consistent with (3).

Next, we extend this analysis for longer time scales, to observe how the nature of the
distribution changes with increasing ∆t. As has been previously reported for US markets, the
distribution is found to decay faster as ∆t becomes large. However, upto ∆t = 1 day, i.e., the
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Fig. 2 – (left) Cumulative distribution of the negative and (inset) positive tails of the normalized
returns for the aggregated data of 489 stocks in the NSE for the period Jan 2003 to Mar 2004. The
broken line for visual guidance indicates the power law asymptotic form. (Right) Probability density
function of the normalized returns. The solid curve is a power-law fit in the region 1 − 40. We find
that the corresponding cumulative distribution exponent, α = 2.89 for the positive tail and α = 2.52
for the negative tail.
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Fig. 3 – Cumulative distribution of the positive (left) and negative (right) tails of the normalized
returns distribution for different time scales (∆t ≤ 1 day).

daily closing returns, the distribution clearly shows a power-law tail (Fig. 3). The deviation is
because of the decreasing size of the data set with increase in ∆t. Note that, while for ∆t < 1
day we have used the high-frequency data, for ∆t = 1 day we have considered the longer data
set of closing price returns for all stocks traded in NSE between Nov 1994 to May 2006.

To compare the distribution of returns in this emerging market with that observed in
more advanced markets, we have considered the daily return data for the 500 stocks from
NYSE listed in S&P 500 over the same period. As seen in Fig. 4, the distributions for NSE
and NYSE are almost identical, implying that the price fluctuation distribution of emerging
markets cannot be distinguished from that of developed markets, contrary to what has been
claimed recently [13].

We now turn to the second question, and check whether it is possible to see any discernible
change in the price fluctuation distribution as the stock market evolved over time. For this
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Fig. 4 – Comparison of the (left) positive and (right) negative tails of the cumulative normalized daily
returns distribution for all stocks traded at NSE (◦) and 500 stocks traded at NYSE (⋄) during the
period Nov 1994 to May 2006.
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Fig. 5 – The (left) positive and (right) negative tails of the cumulative normalized daily returns
distribution for all NSE stocks traded during the periods 1994-1996 (�), 1997-1999 (▽), 2000-2002
(⋄) and 2003-2005 (◦).

we focus on the daily return distribution for all stocks that were traded during the entire
period of existence of NSE. This period is divided into four intervals (a) 1994-1996, (b) 1997-
1999, (c) 2000-2002, and (d) 2003-2006 [22], each corresponding to increase in the number of
transactions by an order of magnitude. Fig. 5 shows that the return distribution at all four
periods are similar, the negative tail even more so than the positive one. While the numerical
value of the tail exponent may appear to have changed somewhat over the period that the
NSE has operated, the power law nature of the tail is apparent at even the earliest period
of its existence. We therefore conclude that the convergence of the return distribution to a
power law functional form is extremely rapid, indicating that a market is effectively always
at the non-equilibrium steady state characterized by the inverse cubic law.

We have also verified that stocks in the Bombay Stock Exchange (BSE), the second largest
in India after NSE, follow a similar distribution [23]. Moreover, the return distribution of sev-
eral Indian market indices (e.g., the NSE Nifty) also exhibit power law decay, with exponents
very close to 3 [24]. As the index is a composite of several stocks, this behavior can be under-
stood as a consequence of the power law decay for the tails of individual stock price returns,
provided the movement of these stocks are correlated [7, 23]. Even though the Indian market
microstructure has been refined and modernized significantly in the period under study as a
result of the reforms and initiatives taken by the government, the nature of the return dis-
tribution has remained invariant, indicating that the nature of price fluctuations in financial
markets is most probably independent of the level of economic development.

Discussion and Conclusion. – Most of the previous studies on emerging markets had
focussed on either stock indices or a small number of stocks. In addition, all these studies
were done with low-frequency daily data. This means that the number of data points used
for calculating the return distribution were orders of magnitude smaller compared to ours.
Indeed, the paucity of data can result in missing the long tail of a power law distribution
and falsely identifying it to be an exponential distribution. Matia et al [13] claimed that
differences in the daily return distribution for Indian and US markets were apparent even
if one looks at only 49 stocks from each market. However, we found that this statement is
critically dependent upon the choice of stocks. Indeed, when we made an arbitrary choice of
50 stocks in both Indian and US markets, and compared their distributions, we found them
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to be indistinguishable. Therefore, the results of analysis done on such small data sets can
hardly be considered stable, with the conclusions varying depending on the particular sample
of stocks.

In this study, we have shown conclusively that the inverse cubic law for price fluctuations
holds even in emerging markets. It is indeed surprising that the nature of price fluctuations is
invariant with respect to large changes in the number of stocks, trading volume and number of
transactions that have all increased significantly at NSE during the period under study. The
robustness of the distribution implies that it should be possible to explain it independent of
the particular features of different markets, or the various economic factors underlying them.
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