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Abstract. In this paper, we present a new exponentiation architecture and mul-
tiplier/squarer which are the basic operations for exponentiation on GF(2"). The
proposed multiplier/squarer is used as kernal architecture of exponentiation and
processes the modular multiplication and squaring at the same time for effective
exponentiation on GF(2") using a cellular automata. Proposed architecture can
be used efficiently for the design of the modular exponentiation on the finite
field in most public key crypto systems such as Diffie-Hellman key exchange,
ElGamal, etc. Also, the cellular automata architecture is simple, regular, modu-
lar, cascadable and therefore, can be utilized efficiently for the implementation
of VLSIL

1 Introduction

For the past 30 years, studies on finite fields have been conducted in many areas, in-
cluding crypto systems[1], and most public key crypto systems, such as Diffie-
Hellman key exchange and ElGamal, are based on modular exponentiation computa-
tions in a finite field[2][3]. Such modular exponentiation uses a modular multiplier as
the basic structure for its implementation. The Elliptic Curve Cryptosystem is also
based on constant multiplication[4]. Examples of the algorithms used to implement
multipliers include the LSB-first multiplication algorithm[5], MSB-first multiplication
algorithm[6], and Montgomery algorithm[7]. Previous research and development on
modular multiplication is as follows: First, for a one-dimensional systolic array, in the
case of an LSB-first algorithm, the modular multiplication is performed within 3m
clock cycles using m cells[5]. While in the case of an MSB-first algorithm, the modu-
lar multiplication can be performed within 3m clock cycles using m cells[6]. With an
LFSR structure, the modular multiplication can be performed within 2m clock cycles
using m cells[10], the modular multiplication can be performed within m clock cycles
using m cells and the modular squaring can be performed within m clock cycles using
m cells[11]. The structures proposed in [5, 6, 10, 12] are simple modular multipliers.
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However, when computing exponentiation, such structures must be repeated twice for
modular multiplication and squaring. In case of [11], the structures of multiplication
and squaring must be used together to simultaneously perform the modular multipli-
cation and squaring.

The purpose of the current paper is to reduce the time and the space, and to investi-
gate and develop a simple, regular, modular, and cascadable architecture for the VLSI
implementation of exponentiation in GF(2") based on cellular automata, which is the
basic computation in any public key crypto system.

Accordingly, this paper proposes a fast exponentiation architecture over GF(2")
based on a cellular automata. The proposed architecture uses the basic architecture
that can simultaneously perform multiplication and squaring in m clock cycles using
3m-1 AND gates, 3m-1 XOR gates, and 4m-1 registers. Based on the properties of
LSB-first multiplication, the parts of modular multiplication and squaring that can be
performed in common are identified, then the remainder is processed in parallel. As a
result, the multiplication and squaring can be performed much more efficiently as
regards time and space compared to repeating the structure as proposed in [5, 6, 10]
and can be performed much more efficiently as regards space compared to repeating
the structure as proposed in [11,14]. Furthermore, the performance of the exponentia-
tion is much more efficient than that of the [16] as regards time and space.

The remainder of the paper is as follows: Chapter 2 gives an overview of the con-
cept of cellular automata, while Chapter 3 reviews the general exponentiation algo-
rithm in GF(2"). Chapter 4 introduces the structure of the proposed multiplier/squarer
for efficient exponentiation using a cellular automata. Chapter 5 gives the exponentia-
tion architecture over GF(2"). Finally, Chapter 6 offers some conclusions.

2 Cellular Automata(CA)

Cellular automata consist of numbers of interconnected cells arranged spatially in a
regular manner[8][9]. A cell of the CA has the “0” state or “1” state at a certain time.
The next state of a cell depends on the present states of ‘k’ of its neighbors, for a k-
neighborhood CA. The neighbor in CA means the cell which affect the state of cell
update. Fig.1 is the example of the two-way CA.

clock
L L L L
Cell 0 [ "] Cell 1 [ ™ ...” " cell m-2|_ Cell m-1

Fig. 1. m-cell two-way CA

The m-cell of the two-way CA is operated at the same time by a clock. The state of
a cell at time ¢ is determined by the states of the neighbors at time #-1. In this paper,
we assume that the leftmost cell and rightmost cell are adjacent.
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We use the modified CA which is the one-way CA(OCA) to solve the problem.
Fig.2 shows the OCA structure. It is the same as two-way CA in Fig.1 except that the
data stream is one-way.

clock

L L L L

Cell O <«— Cell 1 <«— ... «— Cell m-2 |= Cell m-1

Fig. 2. m-cell OCA

The characteristic matrix shows the entire rules of the CA. An example of the char-
acteristic matrix with 4-cell of which state is renewed by the state of its right adjacent
cell is as follows:

S O =
- o O

0
1
0

- o O O

(=)

00

In the above example, it is shown that element “1” of the matrix on the ith line of
the jth row shows that the ith cell is dependent on the neighbor of the jth cell.

3 General Algorithm for the Exponentiation over GF(2")

In this chapter, general algorithms for obtaining M(x) “ mod P(x) on GF(2") are illus-
trated[12].

Polynomial P(x) of arbitrary degree with coefficients from GF(2) is called an irre-
ducible polynomial if P(x) is not divisible by any polynomial over GF(2) of degree
greater than 0 but less than the degree of P(x) [1]. Let P(x)=x"+p, X"+ ... +p1x'+po
be an irreducible polynomial over GF(2) and a be a root of P(x).

Let’s suppose that A(x) and B(x) are the elements on GF(2™). Then two polynomi-
als A(x), B(x) are as follows:

AX)=a, X"+ ... +a;x"+a, )
B(x)=b, X"+ ... +bix'+by 2)

Firstly, computation of M(x) Emod P(x) is divided into the LSB-first method and
MSB-first method according to the method of processing of the exponent E, [e,,.;, €,.2,
...,e1, o], where the method of computation is as follows:

LSB-first exponentiation: Compute in the order of from ey to e,

€m-1

M(0)F=M@©" M) (MH7 (M0
MSB-first exponentiation: Compute in the order of from e, ; to e

M(x)" = (M) ) M (X)) .M (x)")* M (x)
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In this chapter, general algorithm for the method of LSB-first exponentiation is re-
viewed [13], the structure of a multiplier using the cellular automata that can perform
its computation efficiently is proposed in the next chapter.

Algorithm 1 : LSB-first Exponentiation Algorithm[13]
Input : A(x), E, P(x)

Output : C(x)=A(x)* mod P(x)

STEP 1: C(x)= ¢ T(x)=A(x)

STEP 2 : for i=0 to m-1

STEP 3: ife;==1 C(x)= T(x)C(x) mod P(x)

STEP4: T(x)=T(x)T(x) mod P(x)

The general method for implementation of Algorithm 1 is to design an exponentiation
architecture by using two multipliers, or to use one multiplier and one squarer. How-
ever, in the next chapter, an efficient multiplier/squarer is designed by identifying the
commonly computed part of two operations (modular multiplication and squaring)
perform it at the same time, and processing the remaining operation in parallel. Pro-
posed structure can perform exponentiation efficiently.

4 Multiplier/Squarer Using the Cellular Automata

In this chapter, we show the architecture that simultaneously process the modular
multiplication and squaring over GF(2™) in m clock cycles using a cellular auto-
mata[15].

According to Alg. 1 which is proposed in Chapter 3, in order to compute the LSB-
first exponentiation, it is necessary to compute M(x)= T(x)C(x) which is the modular
multiplication used in Step 4 and S(x)= T(x)T(x)which is squaring used in Step 3.

These two computations can be expressed in a recurrence form again[15]. First,
the recurrence form of the modular multiplication is as follows:

MO)=M"Dx)+ei, T “V(x), T?0)=T""(x)x mod P(x), for 1<i<m  (3)

where T”(x)=T(x), M (x)=0, M' i)(x)zcoT(x)+cl[T(x) x mod P(x)] + ¢,[T(x) X mod P(x)]
+ +c, [T(x)x" mod P(x)]. For i=m, M"(x)=M(x)=T(x)C(x) mod P(x). In equation 3,
two equations can be performed in parallel. And second, squaring can be also con-
verted into the LSB-first recurrence form similar to equation 3 as follows:

SD0)=S"P(x0)+1,,T “V(x), T?x)=T""(x)x mod P(x), for 1<i<m 4)

where 7()=T(x), S”(x)=0, $”(x)=t,T(x)+1,[T(x) x mod P(x)] + £[T(x) x* mod P(x)]
+ ...+ 114[T(x) X' mod P(x)]. For i=m, $"(x)=S(x)=T(x)T(x) mod P(x). In equation 4,
two equations can be performed in parallel.
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The following bit-wise LSB-first algorithm both modular multiplication and
squaring simultaneously can be derived from the above equation 3 and 4 :

Algorithm 2: MS(C(x), T(x), P(x))
Multiplication and Squaring Algorithm

Input : C(x), T(x), P(x)

Output : M(x)=C(x)T(x) mod P(x), S(x)=T(x)T(x) mod P(x)
Stepl : M (x)=0, TOx)=T(x), $Ox)=0

Step2 : for i=1tom

Step3:  T9(x)=T""(x)x mod P(x)

Stepd :  MO0)=M"" )+t T, SP0)=S""(x0)+1,.., TV (x)

Therefore, a structure in which the exponentiation can be computed efficiently on
GF(2™) by performing the modular multiplication and squaring simultaneously in the
same amount of time as that of modular multiplication by computing 7(x)=T""(x)x
mod P(x) for 1<i<m, which is the common part in equations 3 and 4, only once with-
out duplicate computation, using the result, and obtaining the remaining part of equa-
tions 3 and 4 in parallel was proposed in [15].

The characteristic matrix of the CA to operate the step 3 fo Algorithm 2 is as fol-
lows:

- o O O
S © o =
S O = O
S = O O

And the CA structure is in Fig.3.

clock

el e —
[ceno | | cent | ci2 | .. | [celim2] Cell -1 |

Fig. 3. OCA having the characteristic matrix D

The Fig.4 shows the entire suructure of common operation of multiplication and
squaring. It accomplish the step 3 of Algorithm 2.

Now, how to perform the modular multiplication and squaring simultaneously is
described. In order to perform step 4 of Algorithm 2, M”(x)=M""(x)+c, . T""(x) for
1<i<m, the ¢ T""(x) operation is reviewed firstly. For ¢ _ T“"(x) operation with

m-i-1 m-i-1
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1<i<m, the m bits obtained as a result of CA of Fig. 4 and c,, are inputted into m AND
gates at i" clock. The next result and M“"(x) are subject to XOR, and the result is

<initial value>

e —
h l\ini‘ Q @
1

‘Pm‘w ‘P”,,z ‘ ‘ Py ‘

Fig. 4. Structure of TV (x0)x mod P(x) operation

stored at M“"(x) again. The value of each M"(x) register at the beginning is initialized
to be 0. The structure for that is as shown in Fig. 5, which shows the computation in

the ith clock for 1<i<m:

<initial value>
b
1

fua

l/rH T — o <
V4 V; A4 A.
clock: I OCA | %? TT "

carry line
o T
%—l %—l EP—l \p,,,‘,\ [P [ 7]
M, , ‘ M, , ‘ ‘ M, ‘ M, ‘

Fig. 5. Structure of modular multiplication

For squaring operation in step 4 of Algorithm 2, the C(x), is substituted with 7(x).
So the structure in which the modular multiplication and squaring can be performed
simultaneously using CA, is shown in Fig. 6(at i" clock). Each initial value is as fol-
lows:

- Initial values of OCA T(X) =ty ...l by
- Initial values of the P register : P(x) =p,.1...P2P1Po
- Initial values of the S, M register : all 0
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j_ M(x)=C(x)T(x) mod P(x)
| 2 #

‘gj ‘ M, ‘ ‘ M, ‘ M, { ..................................
<initial value>
2 1
EA 3 v
c]ock*—»ﬂ OCA |
[ T ] f g}
‘ Do ‘

R oo : o

Fig. 6. Structure of simultaneously performing modular multiplication and squaring using CA

S Exponentiation Architecture Using Multiplier/Squarer over
GF(2")

Ordinary LSB-first exponentiation algorithm in [12] can be slightly changed to Algo-
rithm 3. Exponentiation algorithm which uses a new multiplication/squaring algo-
rithm, MS algorithms in chapter 4, as a sub function for exponentiation algorithm is as
follows:

Algorithm 3 : EXP(A(x), E, p(x))

Exponentiation Algorithm using MS Algorithm.
Input : A(x), E, P(x)
Output : C(x)=A(x)" mod P(x)
STEP 1: C(x)= o, T(x)=A(x)
STEP 2 : for i=0 to m-1
STEP3: ife; ==1 (CY" " (x), T (x))=MS(C(x), T"(x))

else C™*V(x)=C(x), T (x)= MS(CV(x), T(x).

In step 3, MS algorithm is called with two parameters C%x) and T%(x), and it re-
turns two computation results of multiplication, T90)C?”(x) mod P(x) and squaring
TPx)T(x) mod p(x). Square result is stored to 7*"(x). But, the variable C**"(x)
stores a value depends on the value e;.

If ¢; has value 1 then returned multiplication result is passed to C*Y(x), but the other
case, C(x) is passed to C™*P(x).
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eui [P e [Dmra]eg D) =

L SB-first
Exponentiation A
1 .
> »Register_1

A(x)
> & TRegister_2|—»] M S

P(x)
»

l
)

A(x)Emod P(xi

\ﬁ

— D(1)
(T:(x)% > C()T(x) mod P(x) .
— i
0 MS |+ 70070 mod Py

P(x) —»

C(x) M C(x), ife; =0
—>

U o "
:m clock delay buffer C(x)T(x) mod P(x) X C(OT(x) mod P(x), ife, =1

Fig. 7. A structure for performing an exponentiation using MS structure

Fig 7. represents a structure for performing an exponentiation using a new MS
structure in Fig.6, which operates Algorithm 3. In Fig.7, the architecture includes a
MS structure as its kernel architecture. This MS structure for multiplier/squarer is
described in Fig. 6. While the multiplier/squarer computes the multiplication opera-
tion, it also processed the squaring operation concurrently forming the square term.
The MUX depicted in Fig. 7 decides the multiplication result depends on the expo-
nent.

6 Analysis and Conclusion

In this paper, we propsed a new fast exponentiation architecture over GF(2") using a
cellular automata. The performance of the proposed archtecture is compared with that
of previous study. Table 1 shows the result.

In conclusion, the proposed structure in this paper is much more efficient than sys-
tolic structure in view of the space and time. And we generally consider construction
simplicity, defined by the number of transistors needed for its construction and the
time needed for the signal change to propagate through the gate[17]. So the compari-
son of area-time product[17] for LSB first exponentiation is shown in Table 2. In
Table 2, the proposed architecture in this paper is more efficient in view of the space
and time than that of [16]. Even if when m=512, the proposed architecture get 24%
speed up. In view of the space, the area complexity of the proposed architecture is
O(m’), but architecture based on systolic array is O(m’).

Architecture proposed in this paper can be efficiently compute the exponentiation
over GF(2") in public key cryptosystems.
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Table 1. Comparison of performance
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Structure Systo[l;%]a rray Proposed paper
Operation exponentiation exponentiation
NO. of basic components 2(m-1) multipliers 1 MS”

NO. of AND gates 4m*(m-1) 3m-1

NO. of XOR gates 4m*(m-1) 3m-1

NO. of one bit latches 14m*(m-1) m*+2m+1
NO.of MUXes m 1

NO.of registers 0 mbit 5 ‘ m-1 bit: 1
Execution time 5 5

(clock cycles) 2mm m+3m

* MS : Structure of simultaneously performing modular multiplication and squaring

Table 2. Comparison of Area-Time Product for LSB first exponentiation

Structure Systolic array [16] Proposed paper
2 (Bm-1)Asanp
4m~“(m-1)Asanp
2 +(3m-1)Aoxor
+4m (m— 1 )AZXOR
+Asmux
AREA +mA2MUX
3 5 +(6m-1)Arr
+(14m—14m ) AILATCH 2
+ (m +2m+1) AlLATCH
= (192m*-192 m*+20m ) ,
= (8m"+184m-10) ¢
TIME (2 +m)(2Toano+4Tox0r) (m2+3m)(T2AI§D+T2X0R+ Tipp)=
=(13.6 m+6.8 m)A (104 m+31.2m) A
AREA x (2611.2m-1305.6m™- (83.2m"+2163.2m*+5636.8m’-
TIME 1033.6m +136m%) oA 312m) OA
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