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ABSTRACT

In this paper, we consider the problem of Pareto optimal allocation in a general
framework, involving preference functionals defined on a general real vector
space. The optimization problem is equivalent to a modified sup-convolution
of the different agents’ preference functionals. The results are then applied to
a multi-period setting and some further characterization of Pareto optimality
for an allocation is obtained for expected utility for processes.
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1. INTRODUCTION

The question of Pareto optimal exchange of risk has been extensively studied
in the insurance literature since the 1960s (see, for instance, the seminal papers
by Borch (1960a, 1960b, 1960c and 1962), Bühlmann (1970, 1980 and 1984),
Bühlmann and Jewell (1979), Gerber (1978), Raviv (1979), Wilson (1968)). This
problem can indeed be easily related to the standard issue of optimal policy
design in insurance: one agent is looking for an optimal “insurance” policy
to cover her risk. In this sense, she can be seen as the “insured”. On the other
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hand, another agent accepts to bear some risk, playing the role of “insurer”
for the first agent. Finding the optimal transfer of risk between the two agents
is equivalent to optimally design the insurance contract.

More recently, the question of optimal design of contracts has been raised
with a financial perspective, when considering derivatives written on a non-
tradable risk or on a highly illiquid underlying asset (see for instance Barrieu
and El Karoui (2005 and 2006), Jouini, Schachermayer and Touzi (2008),
Acciaio (2007)). This issue has become even more essential as a consequence
of both the recent development of insurance-linked securities (such as cat-
bonds, weather derivatives, or, even more recently, bonds based upon a mor-
tality or longevity index), and the greater sophistication of structured deals, as
in credit risk securitization or in bespoke transactions between a bank and
some hedge funds. Pricing is not the only issue any longer. The design of the
transaction could ensure its feasibility. However, transferring risk in insurance
and in finance is somehow different: risk in finance is taken in a wider sense
as it represents the uncertain outcome associated with a given financial position.
The sign of the realization does not a priori matter in the risk transfer design.
The derivative market can be seen as a good illustration of this aspect: indeed,
forward contracts, options or swaps have particular payoffs which are not
directly related to any particular loss of the contract’s seller.

The literature on Pareto optimal allocations of risk has focused so far on
specific preference functionals: the classical framework adopted in the insur-
ance literature (see for instance the seminal works by Borch (1962), Du Mouchel
(1968) or Gerber (1978) among many others) is that of expected utility; more
recently, the framework has been extended to convex risk measures (see for
instance Barrieu and El Karoui (2005 and 2006) or Jouini, Schachermayer and
Touzi (2008)). However, these two preference functionals are defined on some
space of random variables. In this paper, a more general result on the charac-
terization of Pareto optimal allocations is obtained for preference functionals
defined on a general vector space. This extension of classical results to a gen-
eral setting may have several possible applications. In particular, in this paper,
we extend the notion of Pareto-optimality to a multi-period setting, involving
risk streams taking place at different dates, and therefore potentially leading
to risk exchanges at different times. Considering a multi-period setting is par-
ticularly relevant when looking at the design of some financial and/or insur-
ance contracts based upon long-term risks such as longevity risk or climate risk.
A potential application of this study lies therefore in the characterization of
optimal features for the securitization process of such risks. The importance
of this type of issues has been recently confirmed by the failure of the longevity
bond issued by the European Investment Bank and BNP Paribas.

The rest of the paper is organized as follows. In Section 2, we briefly recall
the main results on Pareto optimality in a one-period setting. Then, in Section 3,
the key notions related to Pareto optimality are extended to a general frame-
work, involving preference functionals defined on a general vector space and
the characterization of optimal exchanges between two agents is obtained as
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a solution of a sup-convolution problem between their modified preference
functionals. Section 4 is dedicated to the multi-period setting, where general
necessary and sufficient conditions for Pareto optimality of a risk exchange are
obtained. In Section 5, the results are illustrated in different relevant examples,
where explicit characterizations of the transfer rule can be obtained. Finally,
some concluding comments are presented in the last section.

2. PARETO OPTIMALITY IN THE ONE-PERIOD CASE

In this section we review some well-known facts about Pareto optimal alloca-
tions between two agents in a one-period setting, i.e. when the exchange of
risk takes place at only one fixed time in the future. In particular, after defining
the notion of Pareto optimality for general preference functionals defined on
some subspaces of random variables, we characterize Pareto optimal alloca-
tions and determine the exchange rule in the expected utility framework.

2.1. Pareto optimal allocations

Let T > 0 be a fixed maturity, (W, F, �) be a standard probability space, where F
is the (common) information available to the different agents at time T.
Moreover, let L0 (resp. L1 and L3) be the space of all random variables (resp.
integrable and bounded random variables) defined on (W, F, �). Let L 1 L0 be
a subspace collecting all risks of interest, where a risk is an uncertain future
monetary payoff. We convene that a positive value of X means an income, while
a negative value means a loss. Finally, the expectation �� will be simply denoted
by � and every (in)equality involving random variables will be understood �-a.s.

In this framework, there are two agents, A and B, who want to partially
exchange their risks. The agents may simply be the two parties in a reinsurance
contract or in a OTC derivative contract. Therefore, it may not be always clear
which party acts as the seller or the buyer.

The agents’ preferences over future risks are described by two preference
functionals UA and UB. Here and in what follows, a preference functional is a
real valued functional U defined on a suitable subspace of random variables L
and such that 

X *i Y , Ui (X ) $ Ui (Y ),

where *i denotes the preference structure of the agent i (i = A,B) over risks in L.
A typical example of such preference functionals is the standard expected utility,
but also any monetary utility functional, the opposite of a convex risk measure,
or that of a cash sub-additive risk measure as introduced by El Karoui and
Ravanelli (2007). Some further assumptions on these functionals will be made later.

In our framework, both agents initially face some individual risks described
by the random variables XA, XB ! L, respectively; we denote the aggregated
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risk by X = XA + XB. They may design and enter a contract, through which
they may partially exchange some of their risks, in order to achieve better posi-
tions. It is however clear that the two optimization problems usually conflict
each other, since the aggregate risk must remain the same.

Definition 2.1 Let X ! L be an initial aggregate risk. An allocation of X between
agent A and agent B is a pair of risks (XA, XB) ! L ≈ L satisfying 

XA + XB = X.

The set of all possible allocations of X will be denoted by A (X ) and the pair
( XA, XB ) ! A (X ) will be called the initial allocation.

The following dominance relation combines the preferences of both agents.

Definition 2.2 Given two allocations (XA, XB) and (YA,YB) we say that the for-
mer dominates the latter if

UA(XA) $ UA(YA) and UB(XB) $ UB(YB),

i.e. if both agents weakly prefer the former allocation. The dominance is strict
if at least one of the two inequalities is strict.

It is then possible to introduce an optimality criterion for an allocation, in the
following classical sense:

Definition 2.3 An allocation (XA, XB ) ! A (X) is Pareto optimal if it is not
strictly dominated by another allocation in A (X).

Explicitly, an allocation (XA, XB) is Pareto optimal if for any (YA,YB) ! A (X)
the following two implications hold true:

UA(YA) > UA(XA) ( UB(YB) < UB(XB),

UB(YB) > UB(XB) ( UA(YA) < UA(XA).

Plainly, an agent will accept a risk allocation if this improves his initial situation,
that is if the new risk allocation dominates the initial one. Such a condition is
usually referred to as the rationality condition. Therefore, in addition to the
Pareto optimality condition, an optimal risk allocation should also satisfy indi-
vidual rationality conditions, ensuring the participation of the different agents.
However, Pareto-optimal allocations need not satisfy this rationality condi-
tion. In this paper, in order to preserve the clarity of our results, we focus on
the Pareto optimality condition only and therefore we do not address the issue
of rationality.

As Pareto optimality is a natural necessary condition for a risk exchange
to take place, a large body of literature has been devoted to obtain alternative
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characterizations and to state existence results for Pareto optimal allocations.
This paper is a contribution to the first problem, by considering this issue in
a (much) more general setting than the standard one we recall below.

A classical characterization of Pareto optimality is possible under the two
following assumptions. First UA and UB do not attain a maximum on L: this
assumption, referred to as the Non-Satiation Property (N S ), is rather natural
as it means that there is no “best” risk for the two agents, or in economic terms,
that the two agents are never satiated. Second, both UA and UB are supposed
to be concave, i.e.

U(aX + (1 – a)Y ) $ aU(X ) + (1 – a)U(Y ) 6X,Y ! L, a ! [0,1],

translating the idea of risk aversion.
In this case, the notion of Pareto optimality is closely related to the sup-

convolution of UA and lUB, for a given constant l > 0, i.e. to the following
optimization problem 

[UA ¡ lUB ](X) _
,

sup
( ) XY Y AA B ! ^ h

{UA(YA) + lUB(YB)}. (l-SC)

Plainly, we say that an allocation solves (l-SC) if the above supremum is
attained. Note that this optimization program involves a representative agent
of the market with the preference functional UX (Y ) = UA(Y ) + lUB( X –Y). More
precisely,

Proposition 2.4 Under the above assumptions for UA and UB, an allocation is
Pareto optimal if and only if it solves (l-SC) for some l > 0.

Proof. Gerber (1978) first proved this equivalence. This is however an imme-
diate corollary of the more general Theorem 3.2 to be proved below: therefore,
we omit its proof. ¡

2.2. The case of expected utilities

We now assume that the preference functionals of both agents can be written
in the form of expected utilities, i.e.

UA(X ) = �uA(X ) and UB(X ) = �uB(X ),

where uA and uB are two utility functions, in the following sense:

Definition 2.5 A utility function is a differentiable map u : � " � that is con-
cave and strictly increasing.

A typical example of utility function is provided by the exponential utility:
u (x) = – exp(–gx) for a fixed risk aversion coefficient g > 0.
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The domain of definition of UA and UB strongly depends on the utility
functions uA and uB and in general it is not a subspace. However, it surely con-
tains L3. Therefore we do not attempt to give a precise definition of L, but we
assume throughout this section that L3 3 L.

Note that it is possible to give a broader definition, where a utility function
is defined on a half-line like (0,+3); this wider class includes for instance the
logarithmic-type utilities. However, for the sake of clarity in the discussion,
we focus on utility functions defined on all the real line. The attitude towards
risk of any agent having a twice differentiable utility function u can be further
described by the Arrow-Pratt coefficient of absolute risk aversion, as follows:

Definition 2.6 Let u be a twice differentiable utility function. The Arrow-Pratt
coefficient of absolute risk aversion is defined as:

RA(x) = ,
u x
u x

-
�

�

^

^

h

h
x ! � .

This coefficient characterizes how the risk aversion of the agent changes as
his wealth increases. For the exponential utility function RA(x) / g is constant.

Finally, the following basic fact will be useful when characterizing Pareto
optimal allocations:

Lemma 2.7 If u is a utility function, S ! F and X ! L is such that IS u�(X – e) !
L1 for some e > 0, then the map h(a) _ �u (X + aIS) is differentiable at a = 0
and:

h�(0) = � [ISu�(X )].

Proof. As u is concave, we know that, for any x,y ! � :

|u (x + y) – u (x) | = u (x + y) – u (x) # yu�(x) = |y |u�(x) when y > 0.

and 

|u (x + y) – u (x) | = u (x) – u (x + y) # –yu�(x + y) = |y |u�(x + y) when y < 0.

Since u�> 0 it follows that for any y ! � :

|u (x + y) – u (x) | # |y | max{u�(x), u�(x + y)}. (1)

Consequently, for any a ! 0:

S
S S

S S S

,

,

max

max

a
a

a

a

u X u X
u X u X

u X u X L1

#

!

+ -
+

= +

� �

� �

I
I I

I I I

^ ^
^ ^

^ ^

h h
h h

h h

#

#

-

-
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Indeed since X $ X – e and, for |a| # e :

X + aIS $ X – e,

we have 0 # ISu�(X ), ISu�(X + aIS) # ISu�(X – e) ! L1 (u� decreasing) and then
both ISu�(X ), ISu�(X + aIS) are in L1 (and so is their max).

On the other hand, we have 

S

a
au X u X+ -I^ ^h h

" ISu�(X ) as a " 0.

Then, we conclude, using the bounded convergence theorem,

S S
S .lim lim

� �
� �a

a
a

a
h

u X u X u X u X
u X0

a a0 0
=

+ -
=

+ -
=

" "

� �
I I

I^
^ ^ ^ ^

^h
h h h h

h7 A

¡

2.2.1. A characterization of Pareto optimality

In view of the concavity and strict monotonicity of u, the functional U(·) = �u(·)
satisfies the assumptions of Proposition 2.4. In particular, U satisfies the Non-
Satiation Property (N S), as it cannot attain a maximum on L: for any X ! L,
�u(X + 1) > �u(X). In this setting, a further and more explicit characterization
of Pareto optimality can be obtained:

Theorem 2.8 Let (XA, XB) !A (X); then the following statements are equivalent:

1. (XA, XB) is Pareto optimal;

2. (XA, XB) solves (l-SC) for some l > 0;

3. The equality

u�A (XA) = lu�B(XB)

holds for some constant l > 0 (the same as at point 2).

Remark 2.9 The equivalence 1+ 3 was heuristically proved by Borch (1962) and
then more rigorously by Du Mouchel (1968). However, even this latter proof
required implicitly some integrability conditions for u�A (XA) and u�B(XB) that
we do not assume here.

Proof. 1. + 2. See Proposition 2.4 or, more generally, Theorem 3.2.
2. & 3. Let (XA, XB) be an allocation solving (l-SC) for some l > 0 and set for
simplicity 

WA _ u�A (XA) and WB _ u�B(XB).
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Note that WA,WB > 0 as both uA and uB are strictly increasing. For any k ! �,
any bounded interval C 1 � and any a ! � we can build the following admis-
sible allocation 

A A
S

B B
S

, ,

, , ,

a a

a a

Y k C X

Y k C X

,

,

k C

k C

/

/

+

-

I

I

^ ]

^ ]

h g

h g

*

where 

S (k,C ) _ {WA,WB # k, WA – lWB ! C} ! F .

Since (XA, XB) solves (l-SC), the map 

f (a) _ �uA(YA(a,k,C )) + l�uB(YB(a,k,C )), a ! �.

clearly attains a maximum at a = 0, for any fixed k and C. Moreover, by
definition of S (k,C), we have that IS(k,C ) u�(XA) ! L3; using continuity of u�,
it is immediate to check that for some (actually, for any) e > 0 it holds IS (k,C)

u�(XA – e ) ! L3 and thus Lemma 2.7 can be applied obtaining:

f �A (0) = � [IS(k,C )WA ],

where fA (a) _ �uA (YA(a, k,C )). In a similar way we prove that fB�(0) =
� [IS(k,C )WB ] , where fB(a) _ �uB(YB(a,k,C )). As a consequence, the map f is
differentiable at a = 0 and f �(0) = � [IS(k,C ) (WA – lWB)]. The first order condi-
tion for a maximum is then:

� [IS(k,C ) (WA – lWB)] = 0 6k,C.

For any fixed C, we have:

IS(k,C ) (WA – lWB) " I{WA – lWB ! C} (WA – lWB) �-a.s. as k "3.

Moreover,

| IS(k,C ) (WA – lWB) | # 1{WA – lWB ! C} |WA – lWB | ! L1.

Therefore, by using the bounded convergence theorem, we get 

� [I{WA – lWB ! C}(WA – lWB)] = lim
k "3

� [IS(k,C ) (WA – lWB)] = 0.

As C is a generic bounded interval, we can conclude that WA – lWB vanishes
�-a.s. and we obtain the desired result (statement 3).
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3.& 2. Let us now prove that if u�A (XA) = lu�B(XB), then (XA,XB) solves (l-SC).
If (YA,YB) is another allocation, then, by concavity of uA and uB we have:

uA(YA) # uA(XA) + u�A (XA) (YA – XA),

uB(YB) # uB(XB) + u�B (XB) (YB – XB).

Multiplying the second inequality by l > 0 and adding it to the first one, we obtain:

uA(YA) + luB(YB) # uA(XA) + luB(XB) + q,

where q = u�A (XA) (YA –XA) + lu�B(XB) (YB –XB) = u�A(XA) (YA +YB –XA –XB) = 0.
Therefore (XA,XB) solves (l-SC). ¡

Remark 2.10 If both uA and uB are linear utilities (in other words, when both
agents are risk-neutral), then any allocation (XA, XB) !A (X) is Pareto optimal.

Remark 2.11 The third statement of the theorem involves the following equal-

ity of the marginal utilities of both agents 
A

B
B

A

.l
X

X
=

u

u

�

�

_

_

i

i
Using the relationship

between marginal utility and state price density (see for instance Duffie (1996)),
we can reinterpret this condition as both agents agreeing on their pricing mea-
sure. This seems very intuitive: the beliefs of both agents on the distribution
of risks should coincide for the Pareto-optimal allocation.

2.2.2. Characterization of Pareto optimal allocation rules

After the general characterization of Pareto optimal allocations, we are now
interested in finding some rules on how to obtain these allocations. We need
first to establish what an appropriate rule should be.

Formally, the considered s-algebra F collects all the information available
to both agents at time T and the risk allocation structure must be based upon
this information. It is however often the case that the two agents seek for allo-
cations based only on the observation of the “realized” risks (XA, XB). This cor-
responds to setting F = s(XA, XB) = s(X, XA) and leads to new risk allocations
of the form 

AA

B A

, ,

,

X X

X

fX

X X

=

= -

a k

* (2)

for some measurable function ƒ : �2
" �. Note that F is also s(X, XB ) and

therefore both agents A and B play a perfectly symmetric role. More formally,

Definition 2.12 An allocation rule is a real valued measurable map ƒ = ƒ(x, xA)
of two real arguments. For any initial risks X (aggregated) and XA (for agent A),
the associated allocation is defined in (2).
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If ƒ does not depend on xA, then the associated allocation rule is called a pool
rearrangement or, particularly in the actuarial literature, a mutual reinsurance
treaty.

Definition 2.13 An allocation rule ƒ is said to be Pareto optimal if, for any
choice of X and XA, the associated allocation is Pareto optimal.

In the expected utility framework, it turns out that Pareto optimal allocations
come always in the form of pool rearrangements, and therefore do not depend
on the individual risk exposure of the different agents. Moreover, if u� exists,
such allocations can be expressed in terms of the Arrow-Pratt coefficients of
absolute risk aversion of the agents, previously introduced in Definition 2.6 and
denoted by RAi for i = A,B. The following proposition is due to Wyler (1990),
who extended a result of Borch (1960a) and Bühlmann (1984):

Proposition 2.14 If uA and uB are strictly concave utility functions, then the fol-
lowing are equivalent:

1. (XA, XB) is Pareto optimal;

2. XA = ƒ(X) where the map ƒ satisfies for some constant l > 0 :

u�A(ƒ(X)) = lu�B( X – ƒ(X)) ; (3)

3. Provided uA and uB are twice differentiable: XA = ƒ(X) where the map ƒ is
differentiable and solves for any x ! �:

ƒ�(x) = .
f f

f
RA x RA x x

RA x x

A B

B

+ -

-

^_ ^_

^_

hi hi

hi
(4)

Remark 2.15 In principle the allocation rule ƒ may depend on the distribution
of (X, XA). However, in the case of expected utilities, the above result shows
that the allocation rule is independent from the distribution of the risks.

Remark 2.16 Wyler (1990) also proved an existence and uniqueness result
for the equation (4) under the boundary condition ƒ(0) = constant. Thus, also 

equation (3) will have a unique solution provided l = A

B
.f

f

0

0

-u

u

�

�

]]

]]

gg

gg

3. A GENERAL RESULT ON PARETO OPTIMALITY ON A REAL VECTOR SPACE

In this section, we study the problem of Pareto optimality in a rather abstract
setting. The purpose of this section is to present a general mathematical result,
which will be especially useful in the next section where we will consider spaces
of processes in a multi-period framework. The interpretation of the abstract
result will be done later when considering potential applications. More precisely,
we now consider a general real vector space L and obtain a characterization
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result of “Pareto optimal allocations” as solutions of a sup-convolution prob-
lem, extending the equivalence between statements 1. and 2. of Theorem 2.8
and Proposition 2.4.

3.1. Framework and definitions

Let L be a real vector space whose elements x !L have to be interpreted in
this section as some sort of “risks”. We can formally generalize the concepts
introduced in Section 2. In particular, UA,UB : L " � are the preference func-
tionals of the agents in the sense that agent A (resp. agent B) weakly prefers
x over y (x, y !L) if and only if UA(x) $UA(y) (resp. UB(x) $UB(y)). More-
over,

Definition 3.1 1. Given an initial risk x !L, an allocation is a couple (xA, xB) !
L ≈ L such that xA + xB = x . The set A (x ) collects all allocations.

2. An allocation (xA, xB) ! A (x ) is said to be Pareto optimal if the following
two implications hold for any other allocation (yA, yB) ! A (x ) :

UA(yA) > UA(xA) ( UB(yB) < UB(xB) ,

UB(yB) > UB(xB) ( UA(yA) < UA(xA)

3. An allocation (xA, xB)!A (x) is said to solve the l-Sup Convolution problem
(l-SC) for a given l > 0 if:

UA(xA) + lUB(xB) = [UA ¡ lUB ] (x ) _ sup
( , ) xy y AA B ! ] g

{UA(yA) + lUB( yB)}

3.2. Pareto-optimal allocations

We now want to characterize Pareto-optimal allocations and prove the equiv-
alence between the properties 2. and 3. of the previous definition, thus gen-
eralizing Proposition 2.4. To do so, as in the standard setting described in
Paragraph 2.1, the two following additional requirements have to be imposed
on U = UA,UB :

• U satisfies the Non-Satiation Property (N S), i.e. supx ! LU(x) is not attained;

• U is a concave functional:

U(ax + (1 – a)y) $ aU(x) + (1 – a)U(y), 6x,y !L, a ! [0,1].

The first property simply states that there is no “best risk” in L, while the sec-
ond condition translates a broad notion of “risk aversion” of the associated
preferences. As we have already noted, if L is a space of random variables and
U(·) = �u(·) is an expected utility, then the two assumptions above are certainly
satisfied.
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Theorem 3.2 Assume that UA and UB satisfy the above two assumptions. An allo-
cation is Pareto optimal if and only if it solves (l-SC) for some l > 0.

Proof. “If” part. If (xA, xB) ! A (x ) is not Pareto optimal then there exists
another allocation (yA, yB) ! A (x) such that UA(yA) $ UA(xA), UB(yB) $ UB(xB)
and at least one of the two inequalities is strict. This plainly yields UA(yA) +
lUB(yB) > UA(xA) + lUB(xB) 6l > 0, i.e. (xA, xB) cannot solve (l-SC).

“Only if” part. Let (xA
*
, x

*
B) ! A (x ) be a Pareto optimal allocation and set 

(qA
*
, q

*
B) _ (UA(xA

*
),UB(x

*
B)) ! �2.

Then, define the three following subsets of �2:

Q _ {(qA, qB) = (UA(xA),UB(xB)) : (xA, xB) ! A (x )},

P _ Q – �
2
+ = {(pA,pB) : pA # qA, pB # qB for some (qA,qB) ! Q},

S _ {(qA
*
, q

*
B)} + �

2
++ = {(sA, sB) : sA $ qA

*
, sB $ q

*
B,} 5 {(qA

*
, q

*
B)}.

We observe that

(a) P has non-empty (algebraic) interior as it contains, for instance, the open
ball of radius 1 and center (qA

*
– 1, q

*
B – 1).

(b) P and S are disjoint: if P + S ! 0, then it would easily follow that Q +
S ! 0 and this would be in contrast to the Pareto optimality of the allo-
cation (xA

*
, x

*
B).

(c) Both P and S are convex: S is convex by definition and P by concavity of
the functions UA and UB. Indeed, if (p1

A, p1
B ), (p2

A,p2
B ) ! P, then 

A A

,

x

x

x

x

p

p

p

p

A A

B
B

B

A A

B
B

B

1 1

1 1

2 2

2 2

#

#

#

#

U

U

U

U

a

a

a

a

k

k

k

k

Z

[

\

]]

]]

Z

[

\

]]

]]

for two allocations (x1
A, x1

B) and (x2
A, x2

B). From the concavity of UA and UB,
we obtain for any a ! (0,1):

,

.

a a a a a a

a a a a a a

x x x x

x x x x

p p

p p

1 1 1

1 1 1

A A
A

A
A

A
A

A A

B B
B

B
B

B
B

B B

1 2 1 2 1 2

1 2 2 2 2 2

$ $

$ $

+ - + - + -

+ - + - + -

U U U

U U U

^ a ^ a ^a

^ a ^ a ^a

h k h k h k

h k h k h k

Z

[

\

]]

]]

Since (ax1
A + (1 – a)x2

A, ax1
B + (1 – a)x2

B) ! A (x ), it follows that 

(ap1
A + (1 – a)p2

A, ap1
B + (1 – a)p2

B) ! P,

i.e. P is convex.
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We may then apply the algebraic Hahn-Banach Theorem (see for instance
Aliprantis and Border (1999), Theorem 5.46) to the couple of sets P and S and
state the existence of a pair (aA, aB) ! �2 5 {(0,0)} such that 

aApA + aBpB # aAsA + aBsB, 6(pA, pB) ! P, (sA, sB) ! S.

Since (qA
*
, q

*
B) ! P and both (qA

*
+ 1, q

*
B), (qA

*
, q

*
B + 1) ! S, it follows from the

previous inequality that aA, aB $ 0. As (aA, aB ) ! (0,0), at least one of the
two inequalities has to be strict: without any loss of generality we assume that
aA > 0. For any e > 0, (qA

*
+ e,q

*
B) ! S and therefore 

aAqA + aBqB # aAqA
*

+ aBq
*
B + aAe, 6(qA, qB) ! Q.

Letting e 4 0 we obtain:

aAqA + aBqB # aAqA
*

+ aBq
*
B, 6(qA, qB) ! Q,

i.e. (xA
*
, x

*
B) solves the optimization program:

sup
( , ) xx x AA B ! ] g

{aAUA(xA) + aBUB(xB)}.

Let us now prove that aB > 0. If aB = 0 then, reminding that A (x) = {(x, x – x)!
L2 : x ! L}, the optimization program above would become:

sup
( , ) xx x AA B ! ] g

aAUA(xA) = aA sup
x L!

UA(x),

which has no solution in view of property (N S ) for UA. By setting l = aB/aA > 0
we readily obtain the desired result. ¡

Remark 3.3 The above Theorem is related to the existing literature and can be
seen as a generalization of various results. More precisely,

i) it extends Proposition 2.4 and Theorem 2.8, but also some more recent
results on convex risk measures (see Barrieu and El Karoui (2005 and 2006))
or on monetary utility functions (see Acciaio (2007) or Jouini, Schachemayer
and Touzi (2008)). Moreover, while the previous results refer to some specific
preference functionals defined on some spaces of random variables, Theorem 3.2
is more general as it holds for any concave preference functionals defined on
a general vector space. Therefore, its scope is wider, and in particular it can be
applied to a multi-period setting as we will see in the next section.

ii) Our result can also be seen as a generalization of Proposition 10C of Duffie
(1996) in two different aspects: the set of conditions and the space of risks that
is considered. Indeed, while Duffie required as condition for the result to hold
true the strict increasing monotonicity of the preference functional U, we ask
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for the weaker condition of Non-Satiation property (which is implied by the
strict increasing monotonicity but does not imply it). Moreover, while Duffie
considered as space of risks that of non-negative adapted square integrable
processes, our result is obtained on a real vector space. His result is stated for
m $ 2 agents, but the extension of our result to m agents is straightforward.

iii) There is a wide economic literature on the notion of Arrow-Debreu equi-
librium. In particular, Mas-Colell (1986) gives (Theorem 2 therein) a necessary
condition for an allocation to be Pareto optimal, interpreting the value of the
sup-convolution of the utilities (multiplied by suitable positive weights) as a sup-
porting price functional. This result, that can be viewed as an abstract Kuhn-
Tucker criterion, is surely linked to our Theorem 3.2 above. However there
are some substantial differences. On the one hand, the framework Mas-Colell
considers is in a sense more general as it involves an arbitrary (but finite) num-
ber of agents and distinguishes between consumers and producers, while we
consider only two consumers. On the other hand, his setting is less general
than ours as the space of commodities (our general vector space L) is assumed
to be an ordered locally convex vector space and the utility functionals are
assumed to be affine and continuous. Moreover, in Mas-Colell (1986) the pri-
mary focus is in obtaining the existence of (linear and continuous) pricing
functionals ensuring a general equilibrium, while in the present paper we are
interested in the optimal allocation rules between two agents, with no particu-
lar interest in general equilibrium issues.

4. APPLICATION TO THE MULTI-PERIOD SETTING

We now consider a multi-period setting where the risks, i.e. uncertain future
monetary cash flows are possibly spread over N$ 2 different future dates and
are not concentrated at a single maturity any longer. Introducing several possi-
ble dates is rather natural, as the different agents may have different investment
time horizons, but also each agent may have a stream of risks, or various cash
flows, occurring at different possible times. In these situations, considering one-
period agreements is of course a possibility but the agents may prefer to sign
a long-term agreement, or multi-period agreement, with another agent instead
to doing a “roll-over” of a single period agreement with the counterpart and
re-negotiating it at each time-step. Agents may also prefer to deal with the risk
when it occurs rather than waiting for a further time horizon (which could
have potentially no particular economic significance for them) as this would
be the case when considering a unique possible risk exchange date in the future,
corresponding to the furthest date in this study. This is especially true in the
case of long-term risks, such as longevity risk. Exposed agents, such as pen-
sion funds, might prefer to receive some form of compensation periodically over
a long period of time rather than wait for a far away maturity date to get com-
pensated.
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4.1. Notation and Pareto optimal allocations

There are now N$ 2 future times (tn)1# n#N, with tn >tn – 1 and t1 > 0. We natu-
rally add to the probability space ( W, F, �) a filtration � = (Fn )n # N, where
Fn1F is the information up to time tn. For any n, let L0

n _L0(W,Fn, �) be the space
of Fn-measurable random variables, describing the risks occurring at time tn.
The subspaces of integrable (resp. bounded) random variables will be denoted
with L1

n (resp. L3
n ). More precisely, Xn is the cumulated risk over (tn –1, tn]. There

is no overlapping between the different risks and the first component of a risk
stream occurs at time t1. The space of all possible risk streams is then 

L0 _ {X = (Xn)1 # n # N : Xn ! L0
n,6n}.

In a similar way we denote the subspace of integrable (resp. bounded) risk
streams as L1 (resp. as L3). Finally, 0 = (0, …,0) will denote the null process and,
1n is the process having 1 in the n-th place (for a fixed n # N ) and 0 otherwise.

Let L 3 L0 be a generic subspace that collects all the risk streams that interest.
Note that L is a particular example of the general real vector space L intro-
duced in the last section. Therefore, we can use the general definitions previously
introduced. More precisely, the agents now initially face the risk streams 

X 3A = (XA
n )1 # n # N ! L and X 3B = (XB

n )1 # n # N ! L .

The aggregate risk stream is X 3 = X 3A + X 3B, or explicitly:

Xn = XA
n + XB

n 6n.

The set of all possible allocations is therefore 

A (X 3) = {(XA, XB) ! L ≈ L : XA + XB = X 3}.

If the preferences of the agents over risk streams in L are described by two pref-
erence functionals UA,UB : L "�, then an allocation (XA, XB) ! A (X 3) is Pareto
optimal if for any other allocation (YA,YB) ! A (X 3) it holds

UA(YA) > UA(XA) ( UB(YB) < UB(XB),

UB(YB) > UB(XB) ( UA(YA) < UA(XA).

As this multi-period setting is a particular case of the general framework pre-
viously described in Section 3, we immediately obtain the following corollary
of the general Theorem 3.2:

Corollary 4.1 Assume that both functionals UA and UB are concave and satisfy
the Non-Satiation Property (N S ). Then an allocation (XA,XB)!A (X 3) is Pareto
optimal if and only if it solves, for some l > 0, the (l-SC) problem:
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[UA ¡ lUB ] (X 3) _ sup
( , )Y Y XAA B ! ] g

{UA(YA) + lUB(YB)}. (5)

The corollary gives a partial extension of the Theorem 2.8. More precisely the
equivalence between statements 1. and 2. is extended here to the multi-period
setting. However, to obtain a full generalization, an equivalent of statement 3.
has to be found. To do so, we specify a class of preference functionals defined
on L and consider expected utilities for processes.

4.2 Expected utilities for processes

In the rest of the paper, we are interested in further characterizing Pareto optimal
allocations and allocation rules under some particular choices for the preference
functionals of both agents. More precisely, we introduce a fairly general class
of such functionals, by considering those which can be represented as expected
utilities for processes, and derive the related necessary and sufficient conditions
for Pareto optimality. In the later sections we illustrate these results to some
relevant cases.

Definition 4.2 A utility function for processes is a differentiable map w : �N "�
that is strictly increasing in at least one variable and concave. We further assume
that all its partial derivatives are continuous.

Definition 4.3 An expected utility for processes is any preference functional U :
L " � of the form:

U(X1, …, XN) _ �w(X1, …, XN),

for some utility function for processes.
Any expected utility for processes is plainly concave as w is concave. It also

satisfies the Non-Satiation Property (N S ): indeed if w is strictly increasing in
xn (such an index n exists by definition), then U(X1, …, XN) < U(X1, …, Xn +
1, …, XN) for any X ! L. For similar reasons as in the one-period case (see the
discussion after Definition 2.5) we do not further specify the space L, but we
assume throughout this section that L3 3 L.

Assume now that the preferences of both agents are represented by an
expected utility for processes, i.e. UA(X) = �wA(X) and UB(X) = �wB(X) for two
utility functions for processes wA and wB.

In order to characterize Pareto optimal allocations, we will need the following
straightforward generalization of Lemma 2.7 that we state here without the proof.

Lemma 4.4 Let w be a utility function for processes and fix n !{1, …, N}. If X!L
and S !Fn are such that

S x
w LX e1

n
n

1

2
2

!-I ^ h
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for some e > 0, then the map h(a) _ �w (X1, …, Xn + aIS, …, XN), a ! �, is dif-
ferentiable at a = 0 and 

S .�h x
w X0

n2
2

=� I^ ^h h< F

It is possible to obtain necessary and/or sufficient conditions for Pareto opti-
mality, partly generalizing Theorem 2.8. However, contrary to Theorem 2.8,
some additional conditions are needed and everything depends on the consid-
ered space of risks, as we will see in the three following paragraphs. The under-
lying logic of the different results (Theorems 4.5, 4.6 and 4.7) is however very
similar to that of Theorem 2.8. In particular, the interpretation in terms of
pricing measures is still valid: the agents should agree on the pricing measure.
However, because of the multi-period framework, this condition has to hold
true at any time n (n = 1, 2, ...N ), taking into account the arrival of new infor-
mation (which is expressed in terms of measurability, or conditional expected
value of the marginal preferences). Moreover, since the decision of the allo-
cation of risk is taken at time 0 but implies risk exchanges at various times
n = 1, ...N in the future, the relationship between the beliefs of the agents for the
optimum has to be robust over time (which is expressed by the constant l ) to
ensure the existence of an initial agreement between them.

4.2.1. Pareto optimality for bounded risks

We first consider the question of Pareto optimality for bounded allocations,
i.e. when L = L3. In this case it is possible to state a necessary and suffi-
cient condition for Pareto optimality, which fully generalizes the one-period
result.

Theorem 4.5 An allocation (XA, XB) ! L3 ≈ L3 is Pareto optimal if and only if
there exists a constant l > 0 such that for any n =1, ... N :

n n
A Bl .� �x xX XF F
n

A

n

B

2
2

2
2

=
w w

a ak k= =G G (6)

Proof. “Only if ” part. The proof is similar to that of Theorem 2.8 (2 & 3), the
idea being to focus on the n-th component of the allocation (for any fixed n).
We report it for completeness. Since both preference functionals UA and UB are
concave and satisfy the Non-Satiation Property (N S ), we can apply Corollary 4.1.
Therefore (XA, XB) solves (l-SC) for some l > 0. Let us fix n ! {1, …, N} and
set for the sake of simplicity 

WA _ n
A� x X F
n

A

2
2w

a k= G and   WB _ n .� x X F
n

B B

2
2w

a k= G
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By assumption both WA and WB are bounded. For any bounded interval C1�
and any a ! �, we can build the following admissible allocation:

n N

n N

S

S

, , ..., , ...,

, , ..., , ..., ,

a a

a a

C X X X

C X X X

Y

Y

A A A
C

A

B B B
C

B

1

1

= +

= -

I

I

^ ]a

^ ]a

h g k

h g k

Z

[

\

]]

]]

where 

S(C ) _ {WA – lWB ! C} ! Fn. (7)

Since (XA, XB) solves (l-SC), for any fixed C the map:

f (a) _ �wA(YA(a,C )) + l�wB(YB(a,C )), a ! � .

clearly attains a maximum at a = 0. Since XA is bounded and the partial deriv-
atives of wA are continuous, it follows that A

xn2

2w (XA – e1n) is bounded for some
(actually, any) e > 0. Therefore we can apply Lemma 4.4, obtaining:

f �A(0) = A
A

S S
A ,� �xC

n
C2

2
=XI I

w
W] a ]g k g= 8G B

where fA(a) _ �wA(YA(a,C)). In a similar way we prove that f �B (0) = � [IS(C)WB]
where fB(a) _ �wB(YB(a,C )). As a consequence the map f is differentiable at
a = 0 and f �(0) = � [IS(C) (WA – lWB)]. The first order condition for a maximum
is then:

� [I{WA – lWB !C}(WA – lWB)] = 0 6C. (8)

As C is a generic bounded interval, we can conclude that WA – lWB vanishes
�-a.s. and we obtain (6).

“If ” part. Let (XA, XB) ! A (X 3) be an allocation satisfying (6) and let us consider
another possible allocation (YA, YB). Since both wA and wB are concave, we have:

wA(YA) # wA(XA) + n n
AA A AY X x

n

N

n1
2
2

-
=

X
w

! a ak k

and 

wB(YB) # wB(XB) + n n
BB B .Y X x

n

N

n

B

1
2
2

-
=

X
w

! a ak k

Multiplying the second inequality by l > 0 and adding it to the first one we
obtain:

wA(YA) + lwB(YB) # wA(XA) + lwB(XB) + C, (9)
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where n n n n
A BA A B B BA .Y X x Y X xlC
n nn

N

1 2
2

2
2

= - + -
=

X X
w w

! a a a ak k k k= G

As every random variable involved in the definition of C is bounded, we can
compute its expectation:

n n n n

n n n n

n n n n

n

n n

n

A B

A B

A

A A B B

A A B B

A A B B

A

A

A

� � �

� � �

� �

Y X x Y X x

Y X x Y X x

Y X Y X x

l

l

C F

F F

F

n n

B

n

N

n n

B

n

N

nn

N

1

1

1

2
2

2
2

2
2

2
2

2
2

= - + -

= - + -

= - + -

=

=

=

X X

X X

X

w w

w w

w

!

!

!

a a a a

a a a a

a a

k k k k

k k k k

k k

=

= =

=

G

G G

G

)

)

)

3

3

3

The first equality is the tower property of conditional expectations, the second
one follows from the fact that, for any n, YA

n – XA
n and Y B

n – XB
n are bounded,

while the last one is a direct consequence of (6). Since, for any n, XA
n + XB

n =
Xn = YA

n + YB
n it readily follows �C = 0. Therefore, taking the expected value

on both sides of the inequality (9), we obtain 

UA(YA) + lUB(YB) # UA(XA) + lUB(XB)

and we conclude that (XA, XB) solves (l-SC), hence it is Pareto optimal. ¡

4.2.2. Pareto optimality for general risks

In this section, we drop the hypothesis of bounded risks and simply consider
L such that L3 3 L. We can derive some conditions for Pareto optimality under
various assumptions on the expected utility for processes we consider.

Pareto optimality under a measurability condition. Let us focus on the expected
utilities for processes w such that:

xn2
2w depends only on xn, 6n. (10)

Note that this condition is trivially satisfied in the one-period framework.
In the present multi-period setting, it is satisfied in particular by all time-additive
preference functionals (see Subsection 5.1). Note that this property implies that
for any allocation (XA, XB),

xn

i i

2
2

X
w

a k is Fn-measurable, 6n, i = A,B (11)

and this is the key property to prove the following result.
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Theorem 4.6 Assume that wA and wB satisfy the measurability condition (10).
Then an allocation (XA, XB) is Pareto optimal if and only if there exists a con-
stant l > 0 such that, for any n = 1, ..., N

A BBA .x xl
n n2

2
2
2

=X X
w w

a ak k (12)

Proof. The proof is similar to that of Theorem 4.5, and therefore, we use the
same notation. However, due to the difference in the hypotheses we make, there
are some important modifications that we highlight below.

In the “only if” part we can set, for a fixed n,

WA _ n
A A

x F
n2

2
!X

w
a k and WB _ n

B ,x F
n

B

2
2

!X
w

a k

instead of considering the conditional expected values, because of the measura-
bility condition. Define, for a bounded interval C and k ! �

S(C,k ) _ {|WA |, |WB | # k, WA – lWB ! C},

and the risk allocations 

n N

n N

S

S

, , , ..., , ...,

, , , ..., , ..., .

a a

a a

C k X X X

C k X X X

Y

Y

A A A
C

A

B B B
C

B

1

1

= +

= -

I

I

^ ]a

^ ]a

h g k

h g k

Z

[

\

]]

]]

Proceeding as in Theorem 2.8 and using Lemma 4.4 we obtain the first order
conditions:

� [IS(C,k) (WA – lWB)] = 0, 6C,k.

Through the same limiting procedure in k used in Theorem 2.8, we then obtain:

� [IS(C ) (WA – lWB)] = 0, 6C,

where, as before, S(C) _ {WA – lWB !C}! Fn. We conclude that WA – lWB = 0.
The proof of the “if part” is very similar to the corresponding part in

Theorem 4.5. However, using (12), it is possible to prove that the random
variable C appearing in (9) vanishes �-a.s., and not only after taking the
expectation. ¡

Pareto optimality under an integrability condition. A preference functional
which is not time-additive in general does not satisfy the measurability condi-
tion (11) (see Subsection 5.2). Therefore, the last Theorem does not necessarily
hold true in these cases. It is however still possible to prove a necessary condition
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for Pareto optimality of an allocation (XA, XB) under the following integrability
condition:

xn

i i

2
2

X
w

a k ! L1, 6n, i = A,B. (13)

Theorem 4.7 Let (XA, XB) be an allocation satisfying the integrability condition
(13). If it is Pareto optimal then there exists a constant l > 0 such that 

n n
A BA B ,� �x xlF F
n n2

2
2
2

=X X
w w

a ak k= =G G 6n . (14)

Proof. The proof of this result is identical to the corresponding “only if” part
in Theorem 4.6. The only difference is that we now set WA _ n

A A( )� Fx
w

n2

2 X: D

and WB _ n
B( ) ,� Fx

w

n

B
2

2 X: D as in Theorem 4.5. ¡

Remark 4.8 In this case it is not possible to prove that the condition (14) is also
sufficient for Pareto optimality. Indeed, in this case we are no longer able to
write:

n nn n ,� �X x X xF F
n n2

2
2
2

=X Xw w
^ ^h h< <F F

as Xn is not bounded and therefore the left hand side may not be well defined.
This fact prevents us from using the same argument for the “if” part in Theo-
rem 4.5.

5. SOME RELEVANT EXAMPLES

We now apply the previous results to some relevant examples of expected utili-
ties for processes. We focus only on bounded allocations, in order to fully exploit
the results of the previous section. In other words we set L = L3 throughout
this section, and Theorem 4.5 holds true. Also, for the sake of clarity we shall
state the results only in a 2-period model (i.e. N = 2). The main focus of this
study is really on passing from one to two periods. The extensions of the results
to the case (N $ 3) is straightforward, but sometimes heavy in terms of for-
mulae. As a consequence we will present general formulations of the results only
in the exponential utility framework, when they are still sufficiently clear.

In the next paragraph we consider time-additive preference functionals, both
in their classical (i.e. “state-independent”) formulation and in a “state-depen-
dent” one, in which the subjective decay factors are allowed to depend on past
risks. In the subsequent paragraph, a simple example of a non time-additive
functional is treated. Finally, in the last paragraph we illustrate these results
by considering exponential utility functions. We will see in particular that in the
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example we consider, every Pareto optimal allocation can be written in terms
of an allocation rule extending the former Wyler’s results (Proposition 2.14)
to a multi-period setting.

5.1. Functionals of time-additive type

5.1.1. The classical “state-independent” case

A (classical) time-additive preference functional for processes comes, by definition,
in the form 

U(X ) = b n

n

N
1

1

-

=

! �u(Xn) = �u (X1) + b�u(X2) + … + bN –1�u(XN),

where u is a (classical) utility function and b > 0 a constant called subjective
decay factor. Usually b ! (0,1] and is related to a discount factor involving real
interest rates. However the interpretation of b is not really our focus here, and
the result below holds for b >1 as well. The functional U is an expected utility
for processes as U(X) = �w(X), where 

w(x1, …, xN) = b n

n

N
1

1

-

=

! u(xn),

and this last map is clearly concave and strictly increasing in each variable.
We now focus on a 2-period model and assume that the agents A and B have

preference functionals of the following type 

Ui (X1, X2) _ �ui (X1) + bi �ui(X2), i =A,B (15)

for two utility functions uA and uB and two decay factors bA, bB > 0.

Proposition 5.1 Under the above specification for UA and UB, the following state-
ments are equivalent:

1. The allocation (X1
A, X2

A) is Pareto optimal;

2. X1
A = ƒ1( X1) and X2

A = ƒ2( X2), where the maps ƒ1 and ƒ2 satisfy, for some
constant l > 0,

u�A(ƒ1( X1)) = lu�B(X1 – ƒ1(X1)), (16)

bAu�A(ƒ2( X2)) = lbB u�B(X2 – ƒ2(X2)); (17)

3. X1
A = ƒ1(X1) and X2

A = ƒ2(X2), where the maps ƒ1 and ƒ2 are differentiable
and solve for any (x1, x2) ! �2

ƒ�1(x1) = ,
f f

f
RA x RA x x

RA x x

A B

B

1 1 1 1 1

1 1 1

+ -

-

^_ ^_

^_

hi hi

hi
(18)
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ƒ�2(x2) = ,
f f

f
RA x RA x x

RA x x

A B

B

2 2 2 2 2

2 2 2

+ -

-

^_ ^_

^_

hi hi

hi
(19)

where RAi denotes the Arrow-Pratt coefficient of absolute risk aversion
agent i (i = A,B ).

Proof. The equivalence 1.+2. is partly a consequence of the previous Theorem 4.5.
Indeed, we know that an allocation (XA, XB) is Pareto optimal if and only if

u�A(X1
A) = lu�B(X1

B),

bAu�A(X2
A) = lbB u�B(X2

B),

for some l > 0.
It remains to prove that the optimal allocations are pool rearrangements.

Proposition 2.14 ensures that X1
A = ƒ1(X1) and X2

A = ƒ2(X2) where ƒ1 and ƒ2

satisfy (16). Moreover, since the utility functions uA and uB are twice differentiable
by assumption, ƒ and ƒ2 are also differentiable and solve the system (18).

Note that the appropriate constant l is given in this case by l = A

B ( ( ))
( ( ))

f
f

u
u

0
0

- 1

1
�

� =
A

B
.( ( ))

( ( ))
f

f
u
u

0
0

B

A

2

2
-b

b
�

� ¡

Remark 5.1 In this setting, if (XA, XB) is a Pareto optimal allocation, then 

1

1

B

A

u X

u X
l

B

A
=

�

�

a

a

k

k

and
2

2

B

A

A

B .
u X

u X
l

B

A
=

�

�

b
b

a

a

k

k

Therefore, at each time, the ratio of the agents’ marginal utilities is constant
and independent of the risks. Moreover, the evolution of the marginal utility
ratio over time is fully characterized by the ratio of the decay factors and it
does not depend on the risks.

Remark 5.2 At any time, any Pareto optimal allocation depends only on the
total aggregated risk of that particular time. This characterization is similar to
that of Borch in the one-period setting for expected utility (see Proposition 2.14).
As a consequence, there is no intertemporal exchange of risk between the two
agents. This result appears to be quite natural given the type of the utility
functionals considered. The assessment of the risk is indeed specific to each time
period and the aggregation comes only after the assessment.

5.1.2. State-dependent case

We now consider a generalization of the previous model in which the decay
factor b > 0 is allowed to depend on the risk experienced in the past. In other
words, in a 2-period setting we replace the characterization (15) with 
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Ui(X1,X2) _ � [ui(X1) + bi (X1) ui(X2)], i =A,B (20)

where uA and uB are two utility functions and bA, bB : � " (0,3) are two twice
differentiable maps describing how the decay factors depend on the past risks.
For instance, a natural dependency structure may be a decreasing relationship
between the decay factor and the risk at time 1: experiencing a “bad” risk at
time 1 can create a greater concern for the potential experience at time 2 and
therefore a larger decay factor.

This model can be seen as a two-stage backward procedure when assessing the
global utility of a stream (X1, X2). At time 1, once the first risk X1 has been expe-
rienced, the (conditional expected) utility of the remaining part X2 is computed:

U1(X2|X1) = b(X1)� [u(X2) |X1],

where b(X1) is a subjective weight. At the same time, the (contingent) utility
of the first part is of course u(X1). Going backward, at time 0 the agent com-
putes the expectation of the overall utility at time 1, i.e.

U(X1, X2) = � [u(X1) + U1(X2|X1)] = � [u(X1) + b(X1)u(X2)] .

Note that this state-dependent case is simple as we assume an explicit separa-
tion of the impact of the first risk experience on the assessment of the risk at
the second time through this multiplicative factor b. The weight put by the
agent on the risk he will experience at time 2 is all the more important so since
his experience at time 1 has been damaging. Another possibility would be to
let the coefficient characterizing the risk aversion of the agent depend on the
previous risk experience. This would however require an explicit formulation
of the utility function we consider.

The preference functionals in (20) may be written as U(X1,X2) = �w(X1,X2),
where 

w(x1,x2) = u(x1) + b(x1) u(x2). (21)

We note that w is not necessarily increasing in the first variable, but it is surely
strictly increasing in the second one, as 2w/2x2 = b(x1) u�(x2) > 0; therefore
the functional U satisfies the Non-Satiation Property (N S). Regarding the con-
cavity of w (and consequently that of U ), the following Lemma provides the
necessary framework ensuring that this property holds true, and therefore that
the previous results on Pareto optimality can be applied:

Lemma 5.3 If u and b are twice differentiable and satisfy:

(u �(x1) + b �(x1)u(x2))b(x1) u �(x2) – 2(b�(x1)u�(x2))
2 $ 0, 6(x1, x2) ! �

2 (22)

then the map w defined in (21) is concave.
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Proof. If u and b are twice differentiable, then it is easy to prove that the map
w is twice differentiable. Computing its Hessian matrix Hw, it easily turns out
that condition (22) is necessary and sufficient for Hw to be positive semi-definite,
which implies the concavity for w. ¡

In this state-dependent setting, under the above conditions, it is possible to obtain
a characterization of Pareto optimal allocations. However, the first order con-
ditions become quite involved as we can see in the following proposition:

Proposition 5.2 Under the above specifications for UA and UB and assuming that
condition (22) holds true, a (bounded) allocation (XA, XB) is Pareto optimal if
and only if there exists some constant l > 0 such that:

A A

A

B B

BA B

1 1 2 1 1 2

1 2 1 2
B .

� �u X X X u X X X

X u X X u X

b l b

b lb

F FA A
A

A B B
B

B

A A B

1 1+ = +

=

� � � �

� �

uua a a a a ab

a a a a

k k k k k k l

k k k k

: :D D

Z

[

\

]]

]]
(23)

Proof. Since the functionals UA and UB satisfy the Non-Satiation Property
(N S) and are concave (thanks to condition (22)), Theorem 4.5 remains valid.
Computing the partial derivatives of w, it can be easily verified that the two
equations (6) in this case become (23). ¡

5.2. An example with a non time-additive utility functional

We now consider an example of a preference functional which is not time-
additive. Let u be a utility function and b > 0 a subjective decay factor and
consider the following preference functional:

U (X) = �u nb n

n

N
1

1

-

=

X!e o = �u(X1 + bX2 + … + bN – 1XN).

In this case U (X) = �w (X), where 

w(x1, …, xN) = u nxb n

n

N
1

1

-

=

!e o

is a standard utility function for processes. This map is clearly concave and
strictly increasing in each variable.

Contrary to the previous specifications, the agent first cumulates the sub-
jectively discounted risks and then computes the expected utility of the result.
As a consequence, the subjective decay factors b appearing in the two models
have different meanings and cannot be directly compared.
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Focusing on a 2-period model, the two agents A and B are now character-
ized by the following preference functionals:

Ui (X1,X2) = �ui(X1+ biX2), i = A,B. (24)

for two utilities uA and uB and two fixed decay factors bA, bB > 0. The corre-
sponding utility functions for processes are:

wi (x1, x2) = ui(x1 + bi x2), i = A,B.

The preference structure defined by this type of functional is a priori not time-
consistent in the sense of Kreps and Porteus (1978) or Johnsen and Donaldson
(1986). Moreover, this is not really a proper multi-period example as it could
be seen as a simple one-period equivalent: the agents are indeed simply inter-
ested in their aggregated risks. They do as if there was a single cash-flow at
time t2. Therefore, it is not surprising to find the following results in terms
of optimal allocations. The condition on the decay factor is however not so
obvious.

Proposition 5.3 Under the above specification for UA and UB ,

1. If bA ! bB then there is no Pareto optimal allocation;

2. If bA = bB _ b, the following statements are equivalent:

(a) The allocation (X1
A, X2

A) is Pareto optimal;

(b) X1
A + bX2

A = c(X1 + bX2) where the map c satisfies for all x ! �, for
some constant l > 0

u�A(c(x)) = lu�B(x – c(x)); (25)

(c) X1
A + bX2

A = c(X1 + bX2) where the map c is differentiable and solves
for any x ! �

c�(x) = ,
RA x RA x x

RA x x
c c

c

A B

B

+ -

-

^_ ^_

^_

hi hi

hi
(26)

where RAi denotes the Arrow-Pratt coefficient of absolute risk aversion
agent i ( i = A,B).

Proof. The proof of this result is very similar to that of Proposition 5.1. There-
fore we omit it. Note simply that in this case the appropriate choice of the
constant l is l = A

B
.( ( ))

( ( ))
u
u

c
c

0
0

-�

� ¡

Remark 5.4 In this framework, the variables that matter are the cumulated
risks of each agent, capitalized up to the last maturity date. Therefore, it is quite
natural that the Pareto optimality of an allocation (XA, XB) is determined only
by the cumulated capitalized variables (X1

A + bX2
A, X1

B + bX2
B ).
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Remark 5.5 The obtained result is similar to Wyler’s one in the one-period
case (Proposition 2.14), replacing the aggregated risk with the cumulation of the
aggregated risks. It is however impossible to specify explicitly the allocation rule
at time 1 and at time 2, only the aggregate rule c can be characterized, which
is not surprising given the considered preference criterion. Note also that, on
the contrary to the previous situation with cumulated discounted expected util-
ities, even if the cumulated allocation rule c does not depend on the original
risks, the individual Pareto optimal rules (at each intermediate date) may
depend on the original individual risks.

Remark 5.6 The fact that when the agents do not agree on their decay factors,
no Pareto-optimal risk allocation is possible between them is rather interest-
ing, and may appear at first counter-intuitive. However, in this case, the agents
do not agree on the risk they have to share, as only the cumulated risk
matters and they use different cumulation rules. This disagreement on the
decay factor may be the consequence of differences in the agents’ anticipa-
tions or beliefs but also of some information asymmetry. In this latter situ-
ation, one can also think of the standard Principal-Agent problem in the
insurance and economic literature: moral hazard or adverse selection have to
be taken into account when designing a contract, as the buyer could have
an impact on the considered risk (for more details, among a wide literature,
refer for instance to the two papers on the relation Principal-Agent by Rees
(1985a and 1985b)).

5.3. Examples with exponential utilities

We assume now that the (classical) utility functions entering the previous
specifications given in Equations (15) and (24) are of exponential type, i.e.
u (x; g) = – exp(–gx), x ! �, where g > 0 is the risk aversion coefficient.

5.3.1. State-independent time additive case

The agents are characterized by the preference functionals:

Ui (X1, X2) = �u(X1; gi) + bi �u(X2; gi), i = A,B,

where bA, bB > 0 are the subjective decay factors and gA, gB > 0 are the risk aver-
sion coefficients.

Proposition 5.4 Under the above specification an allocation (XA, XB) is Pareto
optimal if and only if:

1X cA

A B

B
1=

+
+g g

g X (27)
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2 ,logX c1A

A B

B

A B B

A
2=

+
+

+
+g g

g
g g b

bX (28)

for some constant c ! �.

Proof. In this case, the necessary and sufficient conditions in Part 1 of Propo-
sition 5.1 for Pareto optimality become:

gA exp(–gA X1
A) = lgB exp(–gB X1

B) (29)

bAgA exp(–gA X2
A) = lbB gB exp(–gB X2

B), (30)

for some l > 0. If we set 

,logc l
1

A B A

B=
+g g g

g
e o (31)

then an easy computation shows that (29) (resp. (30)) is equivalent to (27)
(resp. to (28)) under the identity X1 = X1

A + X1
B (resp. X2 = X2

A + X2
B ). Finally,

note that (31) provides a one-to-one correspondence between l in (0, +3) and
c in �. ¡

Remark 5.7 In this particular situation, the risk sharing at both dates is pro-
portional and the coefficient of proportionality 

A B

B
+g g
g is the same at both times:

Agent A will bear the same ratio of the aggregated risk at each individual
time. The agents’ respective risk aversion does not evolve over time and the
decay factor does not play any role in the risk sharing rule.

However, the decay factor does have a specific role through the correction
term, i.e. the constant that also appears in the allocation rule. This correc-
tion term, which is not random, can be compared with an exchange of cash
occurring at the same time as the exchange of risk, and therefore a natural
interpretation is that of forward price, or cash adjustment (for swaps for
instance).

At time 2, the correction term is composed of two parts, the first part is
the same as for time 1, but there is an additional term, which depends on the
decay factor and acts as a modification of this “cash adjustment”. Therefore,
as far as the “price” or “risk assessment” is concerned, the decay factor plays
a similar role to the risk aversion coefficient for time 2, and acts as a modifier
of how risk averse the agent becomes between time 1 and time 2. The greater
(in relative value) the decay factor is, the more risk averse the agent becomes,
and the less the agent wants to “pay” for this risk exchange. This is in line with
the economic literature, where the discount factor, or more generally the decay
factor, is seen as a parameter translating the preference for the present, and
therefore the aversion for the future.
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Remark 5.8 Proposition 5.4 can be easily extended to the general case of N$ 2
times. A Pareto optimal allocation can simply be written as:

Xn
A =

A B

B

+g g
g Xn + (n – 1) b + c, n # N

where c is an arbitrary constant and .logb 1
A B B

A=
+g g b

b

5.3.2. Non time additive case

The agents are characterized by the preference functionals:

Ui (X1, X2) = �u(X1 + biX2; gi), i = A,B,

where bA, bB > 0 are the subjective decay factors and gA, gB > 0 are the risk aver-
sion coefficients. We know from Proposition 5.3 that if bA ! bB, then there does
not exist any Pareto optimal allocation: we therefore assume bA = bB _ b

Proposition 5.5 Under the above specification, an allocation is Pareto optimal if
and only if:

X1
A + bX2

A =
A B

B

+g g
g

( X1 + b X2) – c,

for some constant c ! � .

Proof. Once we set c = ,logg g g
g1

A B A

B
+ b l the proof is a consequence of Proposi-

tion 5.3 and the identities X1 = X1
A + X1

B and X2 = X2
A + X2

B. Note that there is
a one-to-one correspondence between l in (0,+3) and c in �. ¡

The allocation rule is quite interesting: the risk sharing of the aggregated risks
of time 1 and time 2 is proportional, which is not surprising since we are
assuming an exponential utility function.

Remark 5.9 A simple consequence of the above proposition is the fact that an
allocation is Pareto optimal if and only if:

2 1
A A ,X X c1

A B

B

A B

B
2 1=

+
+

+
- -g g

g
g g

g
b b

X X
^

e
h

o

for some constant c ! � .
Therefore, the allocation of risk at time 1 can be completely arbitrary

while the allocation at time 2 simply has to satisfy the above condition. The
risk allocation at time 2 is of proportional type, coming in the form X2

A =
g g

g
A B

B
+ X2 – c, as in the previous case (with the same coefficient of proportionality).

However, in the present case the correction term c is no longer a constant but
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does depend on the aggregated risk and the allocation at time 1. The decay fac-
tor plays an important role here since it reduces the inter-temporal impact.
The higher the decay factor, the “more unrelated” the two risk allocations of
time 1 and time 2 are.

Remark 5.10 The above proposition can be easily extended to the general case
of N $ 2 times. A Pareto optimal allocation can simply be written as:

n n
A ,X cb bn

n

N

A B

B n

n

N
1

1

1

1

=
+

-
-

=

-

=
g g

g X! !e o n # N

where c is an arbitrary constant.
Again, the aggregated Pareto optimal allocation does not depend on the ini-

tial risk allocations. However, each Pareto optimal allocation for each time n,
Xn

A, can depend on the original initial risks.

6. CONCLUDING COMMENTS

In this paper, we have considered the problem of Pareto optimal allocations in
a general framework, when each of the two agents involved in the transaction
is characterized by a general preference functional defined on a real vector
space. The optimization problem is equivalent to a modified sup-convolution
problem of the agents preference functionals. An immediate application of
these results is the multi-period setting, involving risk streams taking place at
different dates and potentially leading to risk exchanges at different dates.
Some further characterization of Pareto optimality is then obtained for the
wide class of expected utilities for processes. A potential applications of these
results is the design of contracts depending on some long-term risks such as
longevity risk.

The characterization of Pareto optimal allocations obtained on a real
vector space can also be applied to the design of hybrid transactions based
upon different types of risks. This may have some interesting implications
in credit risk securitization for instance, or in bespoke transactions (such as
the cession of some parts of a bank’s portfolio to a hedge fund), for which
the underlying risk has several components, including systematic and specific
components.

Some further extensions of these results seem to be rather natural: in par-
ticular, studying the situation, where more than two agents are involved, can
help to better understand the mechanisms behind some illiquid markets. This does
not appear to be fundamentally different and one may expect the same type
of results to hold true. The study of other economically relevant examples
would also be extremely interesting: for instance the case of recursive utilities,
as in Epstein and Zin (1989), or habit formation as in Dunn and Singleton
(1986) or Ryder and Heal (1973).

134 P. BARRIEU AND G. SCANDOLO

0587-07_Astin38/1_06  02-06-2008  12:08  Pagina 134

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0515036100015087
Downloaded from https://www.cambridge.org/core. IP address: 207.241.231.83, on 26 Jul 2018 at 16:29:26, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0515036100015087
https://www.cambridge.org/core


Finally, an interesting question could be the inference of the preference
functionals of the different agents from existing transactions, in the spirit of
the studies of Chiappori, Ekeland, Kubler and Polemarchakis (2002) or Dybvig
and Rogers (1997). Given some past transactions (OTC contracts or reinsur-
ance treaties for instance), what can we deduct from the preferences of the
counterpart and how can this impact further transactions with this particular
agent? This question is essential when considering the design of future deals
as to ensure the feasibility of these transactions, and this will be the topic for
further research.
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