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EVERY STANDARD CONSTRUCTION IS INDUCED
BY A PAIR OF ADJOINT FUNCTORS

H. KLEISLI

In this note, we prove the converse of the following result of

P. Huber [2]. Let F: 3C—>¿ and G: ¿—♦X be covariant adjoint func-

tors, that is, functors such that there exist two (functor) morphisms

f : 7—>GF and r¡: FG—+I satisfying the relations

(1) (v » F) o (F * f) = i * F,

(2) (G * v) o (f * G) = t * G.

Then, the triple (C, k, p) given by

C = FG,       k = v   and   p = F * f * G

is a standard construction in ¿, that is, C is a covariant functor,

A: C—>Iandp: C-^C2are (functor) morphisms, and the following rela-

tions hold:

(3) (k * C) o p = (C * k) o p = i * C,

(4) (p * C) o p = (C * p) o p.

This standard construction is said to be induced by the pair of adjoint

functors F and G. For further explanation of the notation and

terminology, see [2], or the appendix of [l].

Theorem. Let (C, k, p) be a standard construction in a category £.

Then there exists a category X and two covariant functors F: 3C—>¿

and G: £—+3Z such that

(i)   P is (left) adjoint to G,
(ii) (C, k, p) is induced by F and G.
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The category X is given as follows. The objects of X are the same

as those of £. For each pair A, A' of objects, we define

Homx(A, A') = Hom£(C4, A').

For each triple A, A', A" of objects, and each pair of morphisms

aErlomyi(A, A') and a'EVÍomy¿(A', A"), the composition,

a''aErlomy¿(A, A") is given by

a   • a = a O Ca O pA.

The identity \AErlomy¿(A, A) is defined by setting

\a = kA:CA-^ A.

The associativity and identity laws follow from (4) and (3). By

(4), we have

a" • (a   • a) = a" O C(a' oCaO pA) O pA

= a" o Ca' o C2a o ((C * p) o p)A

= a" o Ca' o C2a o ((p * C) o p)A

= (a'oCa'opA')oCaOpA = (a" • a) • a.

By (3), a'iA=a o CkA 0 pA = a o ((C * A) o p)A =a 0 (i * C)A =a,
and, similarly, iA'a =a.

The functor C can be factored as follows :

C
£-»£,

G\    /F

where G and F are covariant functors given by G A = A and

Ga=a o kA for every object A and morphism a of £, FB = CB and

Fß=Cß o pB for every object B and morphism ß of X. The functor

properties of G and F are immediate consequences of (3), (4) and of

the definition of the identities in X. The verifications are straight-

forward.

In order to show that F is (left) adjoint to G, and that (C, A, p)

is induced by F and G, put 17 = A and define ÇB = icb'- CB—>CB for

every object B of 3C. The family (ÇB)Bex yields a (functor)

morphism f: I-^GF. Indeed, let ßEUom^B, B'); then, CB'-ß

= tCB' o Cß o pB = Cß o pB = Cß o Cicb o pB = GFß-$B. Clearly,
C=FG, and by definition A=rj. Moreover, for each object A of £,

(F*$*G)A= Ficga = Cica opA = pA;
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hence p = F * Ç * G. Using (3), we obtain

((ij * F) o (F * f)) * G = (jj * FG) o (F * f * G) = (k*C)op

= t * C = (t * P) * G.

It is easily seen that the factor G may be cancelled. Thus, relation (1)

holds. Furthermore, we have

F * ((G * v) ■ (f * G)) = (FG * r¡) o (F * r * G) = (C * k) o p

= L*C = F*(i*G).

Here, the factor P may be cancelled. Indeed, let ßi and ß2 be ele-

ments  of  HomK(P,  B')  such  that   Fßi = Fß2.   By   (3),

kB' o Fßi = ¿.B' o Cßi o pB = ßi o kCB o pB = ßio ((k *C)o p)B

= ßio(i* C)B =ßh

and, similarly, kB' o Fßi=ß2. Hence ßi=ß2. Therefore, relation (2)

holds.
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