References

1. H.-J. Hoehnke, Zur Theorie der Gruppoide. I, Math. Nachr. 24 (1962), 137168; III, Acta Math. 13 (1962), 91-100.
2. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I. 1961.

Tulane University

EVERY STANDARD CONSTRUCTION IS INDUCED BY A PAIR OF ADJOINT FUNCTORS

H. KLEISLI

In this note, we prove the converse of the following result of P. Huber [2]. Let $F: \mathfrak{K} \rightarrow \&$ and $G: \& \rightarrow \mathscr{K}$ be covariant adjoint functors, that is, functors such that there exist two (functor) morphisms $\zeta: I \rightarrow G F$ and $\eta: F G \rightarrow I$ satisfying the relations

$$
\begin{align*}
& (\eta * F) \circ(F * \zeta)=\imath * F, \tag{1}\\
& (G * \eta) \circ(\zeta * G)=\iota * G .
\end{align*}
$$

Then, the triple (C, k, p) given by

$$
C=F G, \quad k=\eta \quad \text { and } \quad p=F * \zeta * G
$$

is a standard construction in \mathcal{L}, that is, C is a covariant functor, $k: C \rightarrow I$ and $p: C \rightarrow C^{2}$ are (functor) morphisms, and the following relations hold:

$$
\begin{align*}
& (k * C) \circ p=(C * k) \circ p=\iota * C \tag{3}\\
& (p * C) \circ p=(C * p) \circ p \tag{4}
\end{align*}
$$

This standard construction is said to be induced by the pair of adjoint functors F and G. For further explanation of the notation and terminology, see [2], or the appendix of [1].

Theorem. Let (C, k, p) be a standard construction in a category \mathcal{L}. Then there exists a category \mathfrak{K} and two covariant functors $F: \mathcal{K} \rightarrow \mathcal{\&}$ and $G: \mathcal{L} \rightarrow$ K such that
(i) F is (left) adjoint to G,
(ii) (C, k, p) is induced by F and G.

[^0]The category \Re is given as follows. The objects of \mathcal{K} are the same as those of $£$. For each pair A, A^{\prime} of objects, we define

$$
\operatorname{Hom} \mathscr{K}\left(A, A^{\prime}\right)=\operatorname{Hom}_{\mathscr{L}}\left(C A, A^{\prime}\right) .
$$

For each triple $A, A^{\prime}, A^{\prime \prime}$ of objects, and each pair of morphisms $\alpha \in \operatorname{Hom}_{\mathcal{K}}\left(A, A^{\prime}\right)$ and $\alpha^{\prime} \in \operatorname{Hom}_{\mathcal{K}}\left(A^{\prime}, A^{\prime \prime}\right)$, the composition, $\alpha^{\prime} \cdot \alpha \in \operatorname{Hom}_{\mathfrak{K}}\left(A, A^{\prime \prime}\right)$ is given by

$$
\alpha^{\prime} \cdot \alpha=\alpha^{\prime} \circ C \alpha \circ p A
$$

The identity ${s_{A}} \in \operatorname{Hom}_{\mathscr{K}}(A, A)$ is defined by setting

$$
A_{A}=k A: C A \rightarrow A .
$$

The associativity and identity laws follow from (4) and (3). By (4), we have

$$
\begin{aligned}
\alpha^{\prime \prime} \cdot\left(\alpha^{\prime} \cdot \alpha\right) & =\alpha^{\prime \prime} \circ C\left(\alpha^{\prime} \circ C \alpha \circ p A\right) \circ p A \\
& =\alpha^{\prime \prime} \circ C \alpha^{\prime} \circ C^{2} \alpha \circ((C * p) \circ p) A \\
& =\alpha^{\prime \prime} \circ C \alpha^{\prime} \circ C^{2} \alpha \circ((p * C) \circ p) A \\
& =\left(\alpha^{\prime \prime} \circ C \alpha^{\prime} \circ p A^{\prime}\right) \circ C \alpha \circ p A=\left(\alpha^{\prime \prime} \cdot \alpha^{\prime}\right) \cdot \alpha .
\end{aligned}
$$

By (3), $\alpha \cdot \iota_{A}=\alpha \circ C k A \circ p A=\alpha \circ((C * k) \circ p) A=\alpha \circ(\iota * C) A=\alpha$, and, similarly, $i_{A} \cdot \alpha=\alpha$.

The functor C can be factored as follows:

where G and F are covariant functors given by $G A=A$ and $G \alpha=\alpha \circ k A$ for every object A and morphism α of $\mathfrak{£}, F B=C B$ and $F \beta=C \beta \circ p B$ for every object B and morphism β of \Re. The functor properties of G and F are immediate consequences of (3), (4) and of the definition of the identities in \mathcal{K}. The verifications are straightforward.

In order to show that F is (left) adjoint to G, and that (C, k, p) is induced by F and G, put $\eta=k$ and define $\zeta B=\iota_{C B}: C B \rightarrow C B$ for every object B of \mathcal{K}. The family $(\zeta B)_{B \in K}$ yields a (functor) morphism $\zeta: I \rightarrow G F$. Indeed, let $\beta \in \operatorname{Hom}_{\mathcal{K}}\left(B, B^{\prime}\right)$; then, $\zeta B^{\prime} \cdot \beta$ $=\iota_{c B^{\prime}} \circ C \beta \circ p B=C \beta \circ p B=C \beta \circ C_{\iota B} \circ p B=G F \beta \cdot \zeta B$. Clearly, $C=F G$, and by definition $k=\eta$. Moreover, for each object A of \mathcal{L},

$$
(F * \zeta * G) A=F_{\iota C G A}=C_{\iota C A} \circ p A=p A ;
$$

hence $p=F * \zeta * G$. Using (3), we obtain

$$
\begin{aligned}
((\eta * F) \circ(F * \zeta)) * G & =(\eta * F G) \circ(F * \zeta * G)=(k * C) \circ p \\
& =\iota * C=(\iota * F) * G .
\end{aligned}
$$

It is easily seen that the factor G may be cancelled. Thus, relation (1) holds. Furthermore, we have

$$
\begin{aligned}
F *((G * \eta) \cdot(\zeta * G)) & =(F G * \eta) \circ(F * \zeta * G)=(C * k) \circ p \\
& =\iota * C=F *(\iota * G) .
\end{aligned}
$$

Here, the factor F may be cancelled. Indeed, let β_{1} and β_{2} be elements of $\operatorname{Hom}_{\mathscr{K}}\left(B, B^{\prime}\right)$ such that $F \beta_{1}=F \beta_{2}$. By (3),

$$
\begin{aligned}
k B^{\prime} \circ F \beta_{1} & =k B^{\prime} \circ C \beta_{1} \circ p B=\beta_{1} \circ k C B \circ p B=\beta_{1} \circ((k * C) \circ p) B \\
& =\beta_{1} \circ(\imath * C) B=\beta_{1},
\end{aligned}
$$

and, similarly, $k B^{\prime} \circ F \beta_{2}=\beta_{2}$. Hence $\beta_{1}=\beta_{2}$. Therefore, relation (2) holds.

References

1. R. Godement, Theorie des faisceaux, Actualités Sci. Indust. No. 1252, Hermann, Paris, 1958.
2. P. Huber, Homotopy theory in general categories, Math. Ann. 144 (1961), 361385.

University of Ottawa

[^0]: Received by the editors March 2, 1964.

