
Trusted Identity and Session Management

Using Secure Cookies

Joon S. Park and Harish S. Krishnan

Laboratory for Applied Information Security Technology (LAIST),
Syracuse University, Syracuse, NY 13244-4100

{jspark, hskrishn}@syr.edu

Abstract. The concept of federated identity management is increas-
ingly coming to use in order to bring Service Providers closer to cus-
tomers. Users are being provided an enriched experience while carrying
out business on the Web at reduced overhead and improved customer
service. The idea of maintaining a single profile and gaining access to
multiple services has been accepted well by the customers. However, the
benefits of breaking through just one set of credentials to gain access
to multiple services has made the concept of Federated Identity Man-
agement of high interest to malicious users. In this paper, we analyze
the structure of a generic Federated Identity Management System and
explore the .NET Passport framework in depth. We explore the cur-
rent security mechanisms adopted by the .NET Passport and identify
potential security weaknesses. We then propose our new approaches to
enhance the security services in .NET Passport by using Secure Cook-
ies. Our approaches are transparent to and compatible with the current
.NET Passport server. Finally, we prove the feasibility by implementing
our ideas in a real system.

Keywords: Cookies, Identity Management, .NET Passport.

1 Introduction

In the world of ever growing businesses it has become important to provide re-
sources and services ubiquitously. This has lead to making businesses available
through the Web. No doubt that the enabling of services or resources on the
Web has opened up a gallery of opportunities, it has also brought along a wide
range of security concerns. Providing services through the Web has enriched
the experience of conducting business for the customers. However, this enriched
experience is packaged with fears of compromising sensitive information to ma-
licious subjects who intend to break through week security perimeters and gain
access to unauthorized resources. One of the main security concerns while making
businesses Web-enabled is Identity Management (IM [GC02, NRC02]). By Iden-
tity Management we mean capturing and storing of User identities, managing
the identities of Users, and authenticating Users based on their identities. Once
authenticated, the User has gained access into the system, but access control
policies determine what parts of the system the User has access to. A strong and

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 310–324, 2005.

c© IFIP International Federation for Information Processing 2005

Trusted Identity and Session Management Using Secure Cookies 311

effective access control mechanism should provide fine grained and scalable ser-
vices [KPF01, PCZG04, PKF01]. Such mechanism can protect sensitive identity
information from reaching malicious hands but still continue to provide Users
with an enjoyable experience of conducting business on the Web [AAM, Cla94].
In this paper, we are first going to explore the ongoing efforts in Federated Iden-
tity Management. We examine the security strengths and potential weaknesses
in one of the most popular IM models, namely .NET Passport [MNP04, Pass05].
We then go on to propose a possible solution to strengthen the current mech-
anism by extending our previous work, Secure Cookies [PSG99, PS00], within
the .NET Passport framework. Our work is both transparent to and compatible
with the current .NET Passport framework.

2 Related Work

In this section we discuss a generic identity management framework and explore
the .NET Passport framework [MNP04, Pass05] and Liberty Alliance Project
[ILAIA03, ISLSI03] in detail. In a later section we are going investigate the .NET
Passport Service and explore the current security features of the framework. We
go on to suggest mechanisms to improve on the exiting security features of .NET
Passport. Although we have been working with the .NET Passport frame in this
paper, we believe that our work can be applied to other Identity-Management
systems including Liberty Alliance.

2.1 .NET Passport

Passport is a Web-based authentication service that helps Users and service pro-
vides use the Internet faster and easier. One of the largest online authentication
systems in the world,.NET Passport provides Users with Single-Sign-in (SSI)
services, reducing the amount of information the User needs to remember or
resubmit to various sites. For businesses, Passport helps make their websites
easier for visitors and customers to use and also helps reduce the costs asso-
ciated with resetting forgotten User passwords. By helping Users to connect
easily to websites, Passport also makes it easy for businesses to recognize their
customers and deliver consistent, valuable services no matter how or where cus-
tomers are connecting. Passport can help companies allow customers to easily
identify themselves across all applications offered by a website, so that Users can
go to the company website, interact with all of their account information, pay
bills, and get the kind of experience they want. In this paper we first investigate
the identity management capabilities of Passport and discuss the authentication
mechanism used by it. We then investigate the impending threats in such form
of authentication and propose feasible solutions.

2.2 Liberty Alliance

The Liberty Alliance Project aims at reducing the differences between various
businesses of the networked world and providing a framework for different Web-

312 J.S. Park and H.S. Krishnan

enabled services and resources to interact across boundaries in way that respects
privacy of the participating entities and enables security of shared identity in-
formation. The Liberty Alliance divides any Web-enabled business that requires
authentication into 3 basic entities, namely - Identity Provider, Service Provider,
and Principal. The Identity Provider is a Liberty-enabled entity that creates,
maintains, and manages identity information or Users and provides Principal
(User) Authentication to other Service Providers within a circle of trust. A Ser-
vice Provider is an entity that provides different services to the Users. Finally,
the Principal is an entity that can acquire a federated identity that is capable of
making decisions and to which authenticated actions are done on its behalf. The
Liberty-Alliance proposes the construction of a Circle-of-Trust between Service
Providers (SP) and Identity Providers (IP), such that all authentications carried
by the IP for a Principal is readily accepted by the SPs that require carrying
out business with the Principal.

As it can be seen there are a number of similarities between the .NET Pass-
port framework and the Liberty Alliance Project. Both of them have a single
authority that provides authentication information based on which the other
participating sites authenticate the User. Both IM systems provide capability
for the User to login just once and access services across multiple providers who
are all united in a circle of trust. Similarly, a single log-off request would invali-
date the Users’ identity across all partner Service Providers. The .NET Passport
and the Liberty Alliance differ in the way they share the User authentication
information within the circle of trust. The .NET Passport uses Cookie based au-
thentication mechanisms that we explore in detail in later sections. The Passport
Sign-in Server does not directly communicate with any of the other Passport-
enabled sites to convey User authentication information. On the other hand,
in the Liberty Alliance project, when a User authenticates with the Identity
Provider, the Identity Provider federates the User Sign-in credentials with the
Service Providers within the Circle of Trust. Here the User (actually the Web-
Client) does not act as a medium to convey the authentication information.

3 Federated Identity Management (FIM)

A single customer may have transactions with many businesses that are Web-
enabled and hence each business maintains the identity information of the User
required to authenticate the User. The User has to also remember his/her au-
thentication credentials (such as User-ID and Password) for each of the ser-
vices/resources that are to be accessed through the Web. It is quite often the
case that Users tend to forget their credentials and request for resetting this
information. It lies in the interest of the service/resource providers to find a way
to avoid the overhead and extra costs associated with resetting the authentica-
tion credentials frequently. In an attempt to address this issue, we look at the
concept of Federated Identity Management. We investigate its use in the .NET
Passport framework and in the Liberty Alliance Project.

Trusted Identity and Session Management Using Secure Cookies 313

By federation we mean the setting up of a trust relationship between two or
more entities for a more tightly integrated approach to business. The members
of one of the participating entities can freely access the resources or services pro-
vided by the other entities of the federation [PCND04]. Managing federations
in essentially about a) Managing trust relationships between the participating
entities and b) Managing identities of Users across the partners of the federa-
tion. Trust relationships between the participating entities of a federation can
be achieved by pre-established legal agreements and implemented by the means
by cryptographic techniques such as encryption/decryption and signatures. We
discuss federated identity management in detail as below.

Federated Identity Management provides a mechanism for identity manage-
ment across boundaries of the participating entities in the federation. One of the
federation partners acts as an Identity Provider for all Users in the federation and
other partners accept the authentication decisions made by the Identity Provider
and allow authenticated Users to access the resources or services offered. The
Identity Provider and other partners exchange User handles by means of a chan-
nel that is independent of the services offered by the partners, typically this is
achieved through XML [XML] based SOAP [SOAP] messages. Once a circle of
trust is established between a set of partners that includes at least one Identity
Provider, the access of services or resources by a User can be carried out in two
distinct ways. Firstly, the User creates an account with the Identity Provider
and then goes on to access the services or resources offered by other partners
of the federation. Alternatively, the User directly access any of the services or
resources hosted on one of the Service Providers of the federation which directs
the User to set up an account with the Identity Provider and then re-direct back
the User to the Service Provider. Both of these scenarios are depicted in Figure 1
and Figure 2. The architecture for the Liberty Alliance is very similar to the
described scenarios of Figure 1 and Figure 2. The User is termed as Principal
and the federation of identities is achieved through the exchange of SOAP mes-
sages. The architecture of .NET Passport also resembles Figure 1 and Figure 2.
However, the names by which Microsoft calls these entities of a circle of trust
are Passport Sign-in Server (Identity Provider) and Service Providers config-
ured with Passport Manager Objects (Service Providers). The .NET Passport
has marked difference in the way it achieves federation of identities. Passport
transfers it’s identity management information via cookies [ES96, KM00]. The
User sets up what is known as the Passport Profile with the Passport Sign-in
Server. At this time the Sign-in Server creates a set of cookies. Using these
cookies the User is authenticated at various Passport enabled Service Providers.
By Passport-enabled we mean those Service Providers that have the Passport
Manager installed on their systems that are responsible for authenticating Users
based on Passport User-ID (PUID). In the Passport framework, the Passport
Sign-in Server is essentially the Identity Provider and other Passport enabled
sites are Service Providers and communication between the Identity Provider
and Service Providers is achieved through exchange of cookies. Later on in this
paper we discuss in detail the authentication mechanism adopted by Passport.

314 J.S. Park and H.S. Krishnan

Identity with Service Providers

1. User creates an account

2. Identity Provider federates

resources offered by Partner−Entities
3. User can access the services or

with Identity Provider

User

Service Provider 2Service Provide 1

Identity Provider

Federation (Circle of Trust)

Fig. 1. User establishes Identity with Identity Provider before accessing ser-

vices/resources of the federation

Federation (Circle of Trust)

Identity Provider

Service Provide 1 Service Provider 2

User

Identity Provider to create an account

resources offered by Service Provider 1
1. User tries to access services or 5. User can access resources or

services of other Partner Entities

2. Service Provider 1 redirects User to the

4. Identity Provider establishes Identity
and redirects User to Service Provider 1

3. Identity Provider federates
Identity with Service Providers

Fig. 2. User attempts to access services/resources of the federation and is directed to

the Identity Provider to set up an account and then is allowed access

In the next section we look at the authentication activities involved when an
existing User tries access a resource or service in the federation and how a single
time signing-in provides access across the federation

Trusted Identity and Session Management Using Secure Cookies 315

4 Analyses of Authentication Mechanisms in .NET
Passport

As we discussed briefly in the previous sections, the Passport framework uses
“cookie-based authentication” mechanisms to convey identity related informa-
tion to other Passport enabled sites and acquire service access for Users. This
form of authentication is useful because, cookies are lightweight and convenient
to store and forward. They involve very less processing overhead. In order to
understand how .NET Passport uses cookies to authenticate Users with partner
sites we analyze the mechanism in this section.

Figure 3 provides an overview of the authentication process. Before we dive
into the details of the User authentication and service access mechanism, we
briefly discuss the components of the Passport architecture. The Passport Sign-
in Server provides authentication mechanism by which a User can be established
as a trusted User among the Passport enabled sites. It takes the help of a User
Authentication Database to authenticate any given User. On the other end, a
Web-server serves the specific service that the User wants to access. The Service
Provider is configured with a Passport Manager that is responsible for verifying
the authenticity of the User.

The User starts by accessing the website that provides the desired service. It
is assumed that the website is Passport enabled; by this we mean that the site
has agreed to be a member of the federation of all Service Providers accepting the
.NET Passport as a central identity manager and authenticator. The Web-server
of the Service Provider, checks for available cookies issued by the Passport server,
and if it cannot find any, it redirects the User to the Passport Sign-in server.
(If Cookies are available on the Users system, probably saved from the previous
access made to the Service Provider, then the process from step 7 of Figure 3
will be executed.) The User forwards his/her Sign-in credentials such as the
email-address and password to the server. The server verifies these credentials of
the User against the database and notifies the User of successful authentication.
At this time the Passport login server places its cookies into the User’s browser.
Using these cookies the User is authenticated at various Passport enabled Service
Providers. Having embedded the cookies in the browser the User is redirected to
the Passport-enabled site where the Web-server extracts the cookies and forwards
it to the Passport manager component. The Passport manager then verifies the
User as already authenticated and signed-in and notifies the Web-server of the
authenticity of the User. The Web-server then grants the User the permission to
access the services provided. The site also records its URL in one of the cookies
to reflect the visit of the User to that site. If the User goes on to access other
Passport enabled sites, since he/she already has the required cookies embedded
in the browser, the User can do so without any extra interaction either with the
Passport Sign-in Server or the Service Provider.

It is however important to note here that, the Passport Manager on each
Passport-enabled Service Provider only checks that the browser of the User ac-
cessing the website is embedded with the Passport Cookies. It does not in any
way try to establish a link between the Cookies in the browser and the User

316 J.S. Park and H.S. Krishnan

MANAGER

1. User visits a Site

5. Notification against

Sign−In 6. Places Passport Cookies

enabled site

by Passport Server
8. Forwards Passport Cookies

for Authentication

9. Notification of
Authentication

to access services offered by web−ste
10. Grants user the permission

2. Site redirects User to

Passport Sign−in Server

7. Extracts Cookies issued
into the User’s’ browser and

redirects User to Passport

3. User provides Email

−address and Password

User Authentication Database
4. User is authenticated against

AUTHENTICATION

DATABASE

PASSPORTUSER PASSPORT

SIGN−IN

SERVER

BROWSER

AT

CLIENT

WEB

SERVER

Fig. 3. Cookie-based authentication mechanism used by .NET Passport

whose browser is presenting the cookies to the Web-server. This is one of the
main vulnerabilities in the current .NET Passport system that we discuss in the
next sections.

5 Security Concerns in Conventional Cookies

Having stated that .NET Passport uses cookies for authentication, we briefly
look at what cookies really are and discuss the security concerns associated with
them.

Cookies are basically text files that were used to enhance stateless-HTTP by
introducing what is known as a Session in HTTP. By this we mean that cookies
are text files containing information that can be used to achieve continuity while
surfing the internet. Cookies often contain information that was previously en-
tered by a surfer, but they can also contain information added by Web-servers.
A site stores cookies on the User’s machine that it retrieves on subsequent visit
to the site. The information contained in the cookies is what the User or the
Web-server entered during the Users’s previous visit to the site and the site
extracts the corresponding cookies to obtain information.

There are no direct threats posed by cookies if they are used to store non-
confidential User information. However, there are situations when a site might
need to store some sensitive information such identity, passwords, etc. It is then
that cookies become point of interest to malicious users. We now look at the pos-
sible security threats to cookies [PS00]. These threats can be classified into the
following groups: Network Threats, End-System Threats, and Cookie-Harvesting
Threats. As cookies are transmitted in clear text, Network Threats are imple-
mented by snooping and replay with or without modification. One easy solution
to thwarting Network-Threats on cookies is to use the “secure” flag field in the
cookie. Setting the flag ensures that those cookies are transmitted only on SSL
[WS96] so that the cookies are protected on the network. However, this does not
mean that the cookies are protected in the end-systems, since SSL does not work
in end-systems. The second type of threat is the End-System Threats. Cookies

Trusted Identity and Session Management Using Secure Cookies 317

reside in the Users systems as plain text files. These cookies are open to be
modified or copied to other systems with or without User consent. This gives
rise to impersonation by identity forging. Actually, this is a serious drawback
in the current .NET Passport authentication. One good example of the End-
System Threat is the Cookie-Poisoning Attack [Kle]. In this form of attack, a
malicious user modifies the contents of a Cookie to gain the identity of a genuine
User and gain unauthorized access. The Cookie-Poisoning Attack is a Parame-
ter Tampering Attack that involves the tampering of cookie parameters. Lastly,
we have the Cookie-Harvesting Threat, where a malicious user collects User’s
cookies by claiming to be a site that accepts User cookies. The attacker then
goes on to use these harvested cookies to gain access to the sites that actually
accept these cookies. A good example of the Cookie-Harvesting threat is the
Cross-Site Scripting attack. In this form of attack a malicious user can exploit
the vulnerabilities of a Website that displays data, provided by a User, which has
underlying malicious intent. For example, a malicious user could embed a script
in a URL and place it in a Discussion Forum, Website, Web message board, or
email. The underlying script could be activated when the User comes across the
hyperlink and decides to follow it. The script would then copy all the cookies
in the User’s machine and relay they back to the malicious user for use with or
without modification.

In all of the above cases it is seen that there is no means by which a site can
establish a strong link between the cookies and the User providing the cookies.
Furthermore, cookies do not provide confidentiality or integrity of their contents.
All these attacks use the weak assumption made by a cookie-accepting site that
the User providing the cookies is the actual owner of those cookies.

6 Security Vulnerabilities in .NET Passport Cookies

The .NET Passport uses a number of cookies that each carries state information
for various tasks to be carried out by the Passport Sign-in Server and the partici-
pating Passport-enables sites. These cookies are divided into two groups, namely
the “Domain Authority Cookies” and “Participating Site Cookies”. Cookies that
are written to the .Passport.com domain cannot be directly accessed by a par-
ticipating site. On the other hand the Participating Site Cookies are written
to the participating domain site and in path to which the participating site’s
Passport Manager Object is configured and enable the User to sign in at any
Passport participating sites during a browser session. The cookies written in the
passport.com domain are encrypted with the Passport key. The cookies writ-
ten to the participating sites domain are encrypted with the participating sites’
Passport key. Most of the Passport Cookies are temporary cookies and are not
stored in the User’s browser after each session. When a User signs out of ei-
ther the Passport site or one of the participating sites, all Passport Cookies are
deleted. By deleting the cookies at the end of each session, the possibility of end-
system threats is thwarted. However, every session requires a new set of cookies
from the User’s browser, which is inconvenient to the User. It would make it

318 J.S. Park and H.S. Krishnan

much easier if the Users could preserve their cookies that provide automatic au-
thentication each time the User uses the Passport site or any Passport-enabled
site in the future. Technically, it should be possible to configure the Passport
server to store its cookies in the User’s browser after each session. However,
this is not recommended because of the security vulnerabilities in the current
Passport Cookies, although it could provide more transparent services to Users.
We will discuss in the following sections how to solve this problem by using our
Secure Cookies.

The Passport Cookies currently have two security features: namely the en-
cryption using Passport Key and transmitting the cookies using SSL. The en-
cryption provides protection against unauthorized disclosure. Setting the Secure
flag in the cookie makes sure that it is transmitted over SSL thus giving away
possibility of network-threats by malicious user. However, these features are not
sufficient to protect the cookies in the User’s machines(discussed in Section 5).

Furthermore, the current cookies don’t have a mechanism to associate them
with their actual owners. The cookies don’t have a mechanism by which it can be
established that the person forwarding the cookies is necessarily the owner of the
cookies. This weakness can be exploited by steeling the cookies and reusing the
cookies without modification before the cookies expire. In this way a malicious
user pretends to be the cookie-owner and gains unauthorized access. Once any
User signs in at the Passport Sign-in Server, that server places required cookies in
the User’s system to be used for authentication with Passport enabled sites. Any
malicious user can carry out an end-system attack in order to obtain the cookies
and use them as its owner. Therefore, we believe the current .NET Passport
IM system shouldn’t not store it’s cookies in Users machines, even though it is
technically possible and would be more convenient to Users.

7 Secure Cookies for .NET Passport Framework

We now look into the aspect of enhancing the security services in the Passport
framework. We propose the use of Secure Cookies to improve the security of the
cookies used in the current .NET Passport framework.

7.1 Cooking Secure Cookies

Secure Cookies provide three types of security services: authentication, integrity,
and confidentiality. Authentication verifies the cookie’s owner. Integrity protects
cookies against unauthorized modification. Finally, confidentiality protects cook-
ies against being revealed to an unauthorized entity. Detailed descriptions about
Secure Cookies are available in [PS00].

Since typical cookies do not support authentication, a malicious user can
simply snatch cookies from other Users and impersonate the real owner to the
server that accepts those cookies. To solve this problem, we introduce three possi-
ble authentication methods for cookies. Authentication cookies can be address-
based (IP Cookie), password-based (Pswd Cookie), or digital-signature-based

Trusted Identity and Session Management Using Secure Cookies 319

(Sign Cookie). To prohibit individuals, perhaps even the cookie owner, from
reading sensitive information in cookies, the Web-server can encrypt the con-
tents of the cookies such as, names, roles [PSA01], credit card numbers, and so
on. We use the Key Cookie, to store an encrypted session key, which is used to
encrypt sensitive information in other cookies. The session key can be encrypted
either by the proper public or secret key. Finally, the Seal Cookie determines
if cookies have been altered. The Seal Cookie’s contents depend on the cryp-
tographic technologies used - essentially, either a public- or secret-key-based
solutions (e.g. digital signatures, message authentication codes).

As a result, Secure Cookies can be stored in the User’s computer, even when
it is off, after each session. This is possible because the Secure Cookies can be
provided integrity and authentication services as well as encryption. Therefore,
once the User obtains Secure Cookies, the information in the cookies can be used
until the cookies expire. This approach completely solves the stateless problem
of HTTP and security problems in typical cookies used in .NET Passport.

7.2 Enhanced Passport Architecture with Secure Cookies

Before we talk about the effect of using Secure Cookies, we describe the archi-
tecture that supports the use of Secure Cookies. In order to support the use of
Secure Cookies we propose Proxy-Authentication architecture that is both trans-
parent to and compatible with the current .NET Passport framework. Figure 4
is a schematic representation of the same. Figure 4 depicts the use of a Proxy-
Authenticator to generate Secure Cookies from Passport Cookies. We have not
shown the User Authentication Database and Passport Manager entities in Fig-
ure 4 as they do not form the core of the Proxy-Authentication architecture that
we propose. However, these entities are required in the overall system. If this ar-
chitecture is compared to the existing Passport architecture, we can clearly see
that the User is no more talking directly to the Passport Sign-in Server. Instead
the User provides the credentials to the Proxy and Proxy signs into Passport

1. User attempts to accessfor email−ID and password
3. Proxy Authenticator requests

4. User provides Passport
email−ID and password

5. Proxy−Authenticator forwards

credentials to Passport Sign−In Server

Passport Cookies to the

Proxy−Authenticator

7. Sign−In Server forwards the

Passport Cookies to the

Service provider

10. User forwards Secure

11. Service provider provides

access to the authenticated

User

2. Service Provider redirects User
to Proxy−Authenticator

6. Sign−In Server authenticates the user
 and generates cookies and encrypts them

8. Proxy−Authenticator uses Passport
Cookies and generates Secure Cookies

9. Passport forwards Secure
Cookies to the User

Service Provider

PASSPORT

SIGN−IN

SERVER AUTHENTICATOR

PROXY

BROWSER

AT

CLIENT

SERVICE

PROVIDER

(WEB−

SERVER)

Fig. 4. Proxy Authenticator used to provide security to Passport Cookies by generating

Secure Cookies

320 J.S. Park and H.S. Krishnan

on the behalf of the User. The key role of the Proxy is to receive the post au-
thentication Passport Cookies from Passport Sign-in Server, and to generate
the Secure Cookies using them and forward them to the User. The Proxy thus
wraps the less secure Passport Cookies in a secure envelop that is difficult to
break. The User can then use these cookies for gaining access at each Passport
partner site. The architecture also requires that the partner Service Providers
possess the capability to unwrap the Passport Cookies from the Secure Cookie
envelop. Hence each Service Provider needs to be configured not only with the
Passport Manager Module but also a Secure Cookie Unwrapping module that
extracts Passport Cookies and forwards them to the Passport Manager Module
for verification. (This module is not shown in the architecture diagram pre-
sented in Figure 4). Furthermore, by using the proposed Proxy-Authenticator,
our approach is still transparent to, and compatible with existing .NET Pass-
port servers. Our approach does not require any change in the .NET servers.
Instead, in our experimentation, we successfully changed the original content
of the cookies issued by the Passport Server for our purposes. Actually, .NET
Passport does not have any idea about the content change. Although changing
the original cookie contents is not for a malicious purpose in this case, it clearly
indicates that we can break the integrity of the original .NET Passport Cookies
because they are insecure.

7.3 Operational Scenario

Having described the role of Proxy, we now present the detailed discussion on
the sequence of the steps that take place for a User trying to gain access into a
partner Service Provider that is Passport enabled. The User starts by trying to
access the Service Provider and requests for the desired resource. The Service
Provider does not find the required cookie in the User’s Web-client and hence
redirects the User to the Proxy to Sign-in to the Passport. At this time the User
is interacting with the Proxy-Authenticator and not the Passport Sign-in server.
However, this difference is transparent to the User. The User provides the Sign-in
credentials just as he/she would interact with the Passport Sign-in server. The
Proxy collects these credentials and forwards it to the Sign-in Server and signs
in on behalf of the User. At this point a successful Sign-in would result in the
User’s Passport Cookies being written to the Proxy. The Proxy then generates
a set of Secure Cookies for the User by wrapping all the Passport Cookies.
These Secure Cookies are transferred to the User’s Web-Client. The User is now
redirected to the Service Provider that he/she initially tried to access. Now the
Service Provider finds the valid cookies that it can use to verify the User and
grant access. It is important to point out here that when the Secure Cookies are
read by the service the User will be prompted for a password that is stored in
the Hashed Format in the Authentication Cookie of the Secure Cookies (if the
authentication mechanism in the Secure Cookie is implemented using Digital
Signature or IP, then the verification mechanism is oblivious to the User). If
the User provides the correct password then the Service Provider successfully
verifies the User and strips the Passport Cookies from the Secure Cookies set

Trusted Identity and Session Management Using Secure Cookies 321

and presents it to the Passport Manager Module. Based on the credentials in
the Passport Cookies the Service Provider offers a range of services to the User.

7.4 Advantages

Having discussed the sequence of interactions in the new architecture we now
shift our discussion towards the strengths of the proposed architecture. In spite of
introducing a new component between the User and the Passport Sign-in Server,
the amount of overhead is very little. In fact the overhead incurred is all on the
Proxy and nothing on the User. The User still signs in at only one place. However
there is one more level of communication behind the Proxy (between Proxy and
Passport Sign-in Server) but this is transparent to the User. Again when the
User’s Web-client presents the Service Provider with the Secure Cookies (instead
of the Passport Cookies as per the existing system) it is the Service Provider
that first strips the outer Secure Cookie set and then the Passport Manager
consumes the Passport Cookies. The Proxy based architecture is also robust as
it does away with the Single-Point failure. The current Passport framework has
a single Sign-in Server and can fall victim to single point failure. There could be
multiple proxies thus eliminating single point failure for the signing-in part. The
use of a Proxy is also secure in the sense that, the Proxy does not see the contents
of the Passport Cookies as the cookies are already encrypted with the Passport
Key when they arrive at the Proxy. It just adds another layer of security on the
cookies making them more secure. Also the cookies are not stored at the Proxy,
after creating them, the Proxy forwards them to the User. This eliminates any
possibility of an end-system attack on the Proxy.

The use of Secure Cookies itself adds a number of advantages to the .NET
Passport framework. Primarily the authentication cookie of the Secure Cookie
set helps establishing a link between the Cookies and the Owner. If the au-
thentication mechanism chosen is a Pswd Cookie then the User incurs a minor
overhead of having to remember a password to be provided at each Service
Provider. Using Digital-Signature will also incur some amount of overhead as
there needs to be a secure channel set up to exchange Security Keys and also
each time the User needs to intervene in the process. However, if IP-based based
authentication is used then there is no overhead for the User and the authen-
tication mechanism is transparent to the User. Also we can incorporate access
control mechanism by using the Secure Cookies. Secure Cookies can be stored on
the User’s system without concern of being tampered upon. Any unauthorized
change to the contents of Secure Cookies would result in invalid cookies and
denial of access. Also, if Secure Cookies comprising of Passport Cookies is stolen
by a malicious user and used, the cookie will not be successfully validated as
the malicious user has to know the password of the actual owner of the cookie.
We can optionally add another cookie (e.g. Role Cookie) to the Secure Cookie
envelop that has defines access rights of the User. This concept can be further
extended by using Role-Based Access Control (RBAC [PSA01, SCFY96]). We
can include a Role Cookie into the Secure Cookie envelop that caries the User’s
Role in it. This role information can be used by each of the Service Provider to

322 J.S. Park and H.S. Krishnan

make access decisions regarding User’s request for services/resources. In such a
scenario the Service Provider maintains a mapping between the defined Roles
and corresponding access permissions. Thus Secure Cookies not only strengthen
the existing Passport Cookies but also can provide a great deal of extended
capability to them such as scalable access control.

7.5 Implementation

We carried out our implementation on Windows systems. We used the .NET plat-
form for our development. We developed an initial version of Proxy Authentica-
tor using ASPX and hosted it on IIS. We used the System.Security.Cryptography
library to perform the necessary encryption, decryption and Digital Signing of
the cookie contents. We use C# to implement the logic required by Proxy as well
as the module on the Service Provider that performs the unwrapping of Secure
Cookies to get the Passport Cookies.

In order to test the strength of the Passport Cookies we signed into Passport
with the “sign me in automatically” option selected. This gave us access to the
Passport Cookies that were written to the User’s Web-client. We then accessed
msn.com and selected the Passport “Sign-in” option and we were silently signed
into the site. We then opened up the Passport Cookies stored on the system and
modified a numerical value field in the MSPAuth cookie. We saved the changes
and once again accessed the msn.com site. On clicking the Sign-in options for
Users with Passport identities, we were silently authenticated and granted access
to the site instead of being directed to the Passport Sign-in server for re-signing
in. Keeping these changes intact we further modified the cookies by changing
a similar numerical value field in the MSPProf cookie. We then accessed expe-
dia.com (another Passport enabled site) and we were silently signed-in. Similar
behaviors was seen when modifications were made to the MSPPre and MSPSec
cookies. Hence this led us to conclude that there are points of vulnerabilities in
the current Passport Cookies that can be exploited. It is this kind of attacks
that the Secure Cookies look to thwart.

8 Conclusions and Future Work

In this paper, we analyze the structure of a generic Federated Identity Manage-
ment System and explore .NET Passport framework in depth. We explore the
current security mechanisms adopted by .NET Passport and identify potential
security weaknesses. We then propose our new approaches to enhance the se-
curity services in .NET Passport by using Secure Cookies. Our approaches are
transparent to and compatible with the current .NET Passport server. Finally,
we prove the feasibility by implementing our ideas in a real system.

In our future work we intend to add a Role Cookie in the set of cookies that
forms a set of Secure Cookies to enable Role-Based Access Control that provides
strong and scalable access control mechanisms. We intend to equip Proxy with
capability to determine a role for the User who wants to Sign-in to Passport and

Trusted Identity and Session Management Using Secure Cookies 323

add a Role Cookie to reflect this information. We will be enabling the Service
Providers with ability to map Roles to Permissions, so that on receiving the
Secure Cookies from the User the Service Provider can not only get the Passport
Cookies but also have access to a role cookie. This Role Cookie can be used to
determine the set of permissions that the User has while touring the Service
Provider’s website. The set of roles can be fixed but the access permissions
associated to each role are flexible and the Service Providers can autonomously
determine the set of permissions for each role. In this way we are able to embed
RBAC mechanism into .NET Passport framework.

References

[AAM] American Association of Motor Vehicle Administrators (AAMVA). Identifica-
tion Security. http://www.aamva.org/IDSecurity/

[Cla94] R. Clarke. Human Identification in Information Systems: Management Chal-
lenges and Public Policy Issues. Information Technology and People 7(4): 6-37,
1994.

[ES96] Easonn Sullivan. Are Web-based cookies a treat or a recipe for trouble? PC
Week, June 26, 1996.

[GC02] Greenwood, D., D. Combs, et al. Identity Management: A White Paper. Lex-
ington, KY, National Electronic Commerce Coordinating Council: 68, 2002.

[ILAIA03] Liberty Alliance Project. Introduction to the Liberty Alliance
Identity Architecture. Identity Architecture Whitepaper. March, 2003.
http://www.projectliberty.org/resources/whitepapers/LAP

[ISLSI03] Liberty Alliance Project. Identity Systems and Liberty
Specification Version 1.1 Interoperability. February 14, 2003.
https://www.projectliberty.org/resources/whitepapers/Liberty and 3rd Party
Identity Systems White Paper.pdf

[Kle] A. Klein. Hacking Web Applications Using Cookie Poisoning Sanctum Inc.
http://www.cgisecurity.com/lib/CookiePoisoningByline.pdf

[KM00] D. Kristol and L. Montulli. RFC 2965, HTTP State Management Mechanism.
Network Working Group, October 2000.

[KPF01] Myong H. Kang, Joon S. Park, and Judith N. Froscher. Access Control Mech-
anisms for Inter-Organization Workflow. Proceedings of the 6th ACM Symposium
on Access Control Model and Technologies (SACMAT), Chantilly, Virginia, May
3-4, 2001.

[MNP04] Microsoft .NET Passport. Review Guide. January 2004.
http://www.microsoft.com/net/services/passport/review guide.asp

[NRC02] Computer Science and Telecommunications Board, N. R. C. IDs - Not That
Easy: Questions about Nationwide Identity Systems. Washington, DC, National
Academy of Sciences, 2002.

[PCND04] Joon S. Park, Keith P. Costello, Teresa M. Neven, and Josh A. Diosomito. A
Composite RBAC Approach for Large, Complex Organizations. Proceedings of the
9th ACM Symposium on Access Control Models and Technologies (SACMAT),
Yorktown Heights, New York, June 2-4, 2004.

[PCZG04] Joon S. Park, Pratheep Chandramohan, Artur Zak, and Joseph Giordano.
Fine-Grained, Scalable, and Secure Key Management Scheme for Trusted Mili-
tary Message Systems. Proceedings of The Military Communications Conference
(MILCOM), Monterey, CA, October 31-November 3, 2004.

324 J.S. Park and H.S. Krishnan

[PKF01] Joon S. Park, Myong H. Kang, and Judith N. Froscher. A Secure Workflow
System for Dynamic Cooperation. Proceedings of the 16th International Confer-
ence on Information Security (IFIP/SEC 2001), Paris, France, June 11-13, 2001.

[Pass05] .NET Passport. http://www.passport.NET
[PS00] Joon S. Park and Ravi Sandhu. Secure Cookies on the Web. IEEE Internet

Computing, Volume 4, Number 4, July-August 2000.
[PSA01] Joon S. Park, Ravi Sandhu, and Gail-Joon Ahn. Role-Based Access Control

on the Web. ACM Transactions on Information and System Security (TISSEC),
Volume 4, Number 1, February 2001.

[PSG99] Joon S. Park, Ravi Sandhu, and SreeLatha Ghanta. RBAC on the Web by
Secure Cookies. Proceedings of the 13th IFIP WG 11.3 Working Conference on
Database Security, Seattle, Washington, July 26-28, 1999.

[SCFY96] R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role Based Access
Control Models. IEEE Computer 29 (2), February 1996.

[SOAP] Simple Object Access protocol. Version 1.2 Specification. June 24, 2003
http://www.w3.org/TR/soap/

[WS96] D. Wagner and B. Schneier. Analysis of the SSL 3.0 Protocol. Proc. Second
Usenix Workshop on Electronic Commerce, Usenix Press, Berkeley, Calif., Nov.
1996, pp. 29-40.

[XML] Extensible Markup Language. www.w3.org/XML/

	Introduction
	Related Work
	.NET Passport
	Liberty Alliance

	Federated Identity Management (FIM)
	Analyses of Authentication Mechanisms in .NET Passport
	Security Concerns in Conventional Cookies
	Security Vulnerabilities in .NET Passport Cookies
	Secure Cookies for .NET Passport Framework
	Cooking Secure Cookies
	Enhanced Passport Architecture with Secure Cookies
	Operational Scenario
	Advantages
	Implementation

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

