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ABSTRACT

On the basis of realistic simulations, we propose a hybrid method to reconstruct the lensing potential power spectrum, directly on
Planck-like cosmic microwave background frequency maps. This involves the use of a large Galactic mask and the treatment of strong
inhomogeneous noise. For � � 100, we show that a full-sky inpainting method, which was previously described, still allows a minimal
variance reconstruction, with a bias that must be accounted for by a Monte Carlo method but that does not couple to the deflection
field. For � � 100, we develop a method based on tiling the cut-sky with local 10◦ × 10◦ overlapping tangent planes (referred to in
the following as patches). We tackle various issues related to their size/position, non-periodic boundaries, and irregularly sampled
data of the planes after the sphere-to-plane projection. We show that the predominant noise term of the quadratic lensing estimator
determined from an apodized patch can still be recovered directly from the data. To prevent any loss of spatial accuracy, we developed
a tool that allows the efficient determination of the complex Fourier series coefficients from a bi-dimensional irregularly sampled
dataset, without performing any interpolation. We show that our multi-patch approach enables the lensing power spectrum to be
reconstructed with a very small bias, thanks to the omission of a Galactic mask and smaller noise inhomogeneities, as well as an
almost minimal variance. At each stage, the data quality can be assessed and simple bi-dimensional spectra compiled, which allows
the control of local systematic errors.
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Introduction

Experiments have now reached the sensitivity, in terms of both
resolution and noise, to detect the tiny deflection of the cosmic
microwave background (CMB) photons (σd � 2.7′) by the irreg-
ular distribution of matter, in their journey from the last scatter-
ing surface to Earth. First results on the power spectrum of this
deflection field have been reported by the ACT (Das et al. 2011)
and SPT (van Engelen et al. 2012) collaborations. The Planck
spatial mission should soon provide firm measurements. This
information provides access to a new cosmological observable
that is sensitive to an epoch (1 � z � 3) much more recent than
the CMB decoupling one (z � 1100), giving us a lever-arm to
lift the so-called geometrical degeneracy (Stompor & Efstathiou
1999), but using one single consistent data-set. In particular, it
probes the matter density fluctuations, on scales where the free-
streaming of massive neutrinos significantly erases the power
spectrum of these fluctuations (Lesgourgues & Pastor 2006), and
is expected to help us to determine their total mass by means of
global cosmological fits.

On statistical grounds, the properties of the (nearly) optimal
quadratic estimator for lensing power reconstruction are now
well-understood, both in the (infinite) flat sky limit and across
the complete sphere (Hu & Okamoto 2002; Okamoto & Hu
2003).

However, real data are affected by contaminants, mostly
Galactic dust and point sources in the case of CMB frequency
maps, requiring a revised means of lensing reconstruction on
a cut-sky, which is a non-trivial task. In addition, the scanning
strategy of the specific instrument, particularly in the case of
Planck, induces some strong spatial-noise inhomogeneities that
are not taken into account in the classical estimator of lens-
ing, and must be corrected for by Monte Carlo simulations. In
the general case, both effects cannot be distinguished during the
reconstruction process.

In a previous study (Perotto et al. 2010), we optimized a
sparse inpainting procedure to restore the missing data inside
the mask, without significantly biasing the lensing results. We
however neglected the noise inhomogeneity. Furthermore, the
work was oriented toward component-separated maps, so that
the mask to be filled was rather small (about 10% of the sky).

However, before having to adopt a component separation
method that mixes different maps, we wish to investigate in this
paper whether the lensing potential can be reconstructed more
directly in individual intensity CMB maps, which is indeed a
necessary step in assessing the possible systematic errors. For
Planck, the channels under consideration correspond to 100,
143, and 217 GHz (Planck Collaboration 2005). This requires
the treatment of much larger masks. We will also consider the
strong spatial-noise inhomogeneities induced by the scanning
strategy.
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We revisit the sparse inpainting method in this new config-
uration (a 30% mask + inhomogeneous noise) and show that
i) the estimator under these conditions is strongly biased and
ii) a Monte Carlo approach can be used to correct for this bias.
We also propose an alternative method (multi-patch) that al-
lows us to completely avoid the Galactic region, during the de-
velopment of which we solved a number of issues related to the
pixelized-sphere to plane projection.

After rapidly reviewing the various noise contributions to the
quadratic estimator (QE) in Sect. 1, and the common simulations
used in Sect. 2, we update our full-sky inpainting analysis (here-
after denoted FS-inpainting) in Sect. 3. Most of the paper
in Sect. 4, then deals with resolving issues related to the pro-
jection of a non-periodic signal from a pixelized sky onto a lo-
cal patch. In particular, we present a new algorithm (detailed in
the Appendix) that allows a fast reconstruction of band-limited
Fourier series coefficients from irregularly sampled data, without
performing any interpolation. We then compare both methods,
optimize the results in Sect. 5, and argue that a hybrid recon-
struction is the most appropriate. In this hybrid approach, the
full sky lensing reconstruction presented in Perotto et al. (2010)
is used at low �, with an additive Monte Carlo bias correction,
while at high �, the new multi-patchmethod is advocated.

This method allows the direct reconstruction of lensing sig-
nal from Planck-like CMB frequency maps (namely those at the
100, 143, and 217 GHz). While it would be premature to de-
cide today whether performing a multi-map component separa-
tion provides a more accurate recovery of the lensing signal, we
give some elements of the discussion in the conclusion.

1. A brief review of the quadratic estimator

The gravitational lensing potential φ is a scalar isotropic field
(for a review, see e.g. Lewis & Challinor 2006) that spatially
remaps the CMB photons according to

T (n) = TCMB(n+ d(n)), (1)

where d = ∇φ is the deflection field, which has a power spec-
trum on the sky Cd

� = �(� + 1)Cφ� , or Cd
K = k2CφK in the flat sky

limit. This process slightly breaks the Gaussianity of the CMB
field, and estimators have been searched for in order to extract
the lensing information using its very local properties

The quadratic estimator was proposed by Hu & Okamoto
(2002). For CMB temperature anisotropies, it consists in tak-
ing the (weighted) convolution of the observed Fourier modes
according to

φ̂(K) = AK

∫
d2k1

(2π)2
T (k1)T (K − k1)F(k1, K − k1), (2)

where the normalization AK and filter F are determined by re-
quiring the estimator to be un-biased and have a minimum vari-
ance at the leading noise order (so-called N(0)). For an idealized
experiment, one gets

AK =

(∫
d2k1

(2π)2
f (k1, K − k1)F(k1, K − k1)

)−1

F(k1, k2) =
f (k1, k2)

2Ck1
totCk2

tot (3)

where f (k1, k2) = (k1 + k2) · k1C̃k1 + (k1 + k2) · k2C̃k2 .

The filter F involves on the numerator the CMB “true” unlensed
power-spectrum (C̃k), and on the denominator the “observed”

one Ctot
k , which is assumed to be a pure beam-deconvolved

Gaussian signal with un-coupled homogeneous noise.
Since this estimator involves only simple operations, it is

computable in a few minutes on any standard computer. Its gen-
eralization to spherical harmonics across the full-sky was per-
formed in Okamoto & Hu (2003).

The full likelihood estimator was developed by Hirata &
Seljak (2003), who demonstrated that it gives results very close
to the quadratic one, given the current noise level, but involves
much heavier computations.

The covariance of the φ̂ estimator is related to the true lens-
ing potential spectrum Cφk through

K2
〈
φ̂(K)

∗
φ̂(K′)

〉
= (2π)2δ(K − K′)

[
K2CφK + N(0)

K +O(CφK)
]

(4)

and remarkably, the noise term is directly related to the estimator
normalization Eq. (3)

N(0)
K = K2AK . (5)

This corresponds to the Gaussian term, in the sense that it comes
from the standard disconnected part of the four-point correlator
that appears when computing the noise and is therefore decou-
pled from the φ field. Equivalently, it represents the power of
the QE when running it on unlensed maps.

A first-order power-spectrum correction term was soon af-
terwards discovered by Kesden et al. (2003). This comes from
the connected part of the correlator, and hence depends on the φ
field itself N(1)(φ).

When actually coding the estimator for the Planck experi-
ment, we still noted a poorly understood bias at low �′s which
was finally identified by Hanson et al. (2011) as a non-negligible
second-order term that can be estimated analytically and was
called N(2)(φ). Another way of taking this noise into account is to
use a simple “trick” proposed by Bielewicz (Hanson et al. 2011),
which consists in inserting the lensed spectrum into the numer-
ator of Eq. (3). This approach was shown to capture even more
precisely the second-order contribution than the N(2) but slightly
increases the error in the reconstructed signal.

This is not however the end of the story. Our simulations did
not initially incorporate the spatial inhomogeneity of the noise,
owing to the Planck scanning strategy. This strategy induces cor-
relations between the different Fourier modes leading to spurious
signal reconstruction in the QE. It was shown in Hanson et al.
(2009) that the noise inhomogeneity also affects the QE expec-
tation value resulting in a low-� bias in the power spectrum that
can be analytically estimated under the white noise hypothesis.
However, this mean field approach still misses another N(1)

K -like
term, which is non-computable analytically but affects the whole
lensing spectrum.

Finally, owing to the foreground signal, one can never ex-
perimentally make use of the signal across the full sphere. In
this case, the spherical harmonics no longer form a “natural”
basis and the issue of building a good estimator for lensing is
non-trivial. Even the inverse variance weighting of the map (e.g.
Smith et al. 2007), which is a computationally very challeng-
ing task and sometimes referred to as being “optimal”, does
not provide an unbiased estimate of the lensing spectrum, be-
cause of the large mode coupling introduced by the mask and
the inhomogeneous noise.

To take into account these last two effects, namely the treat-
ment of the masked region and inhomogeneous noise, we add
to the estimator covariance a NMC

K (φ) term that can in general
depend on the lensing field.
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In summary, the deflection estimate variance from applying
the QE to data using a given method, includes the following
terms:

K2
〈
φ̂(K)

∗
φ̂(K′)

〉
= (2π)2δ(K − K′)

·
[
Cd

K + N(0)
K + N(1)

K + N(2)
K + NMC

K

]
, (6)

where

– Cd
K is the sought deflection spectrum;

– N(0)
K is determined on the data given the knowledge of the

underlying true power spectrum;
– N(1)

K , and N(2)
K can be computed analytically. Since they de-

pend on the searched field, one may need to setup an iter-
ative determination. In our simulation, we simply use the
true deflection spectrum from our test cosmology (Sect. 2)
to compute them;

– NMC
K is the bias of the power spectrum estimator, which de-

pends on the inhomogeneous properties of the noise and the
way in which we deal with the Galactic contamination (and
the coupling of both).

The desired properties of NMC
K are to have small value, while still

keeping the optimal variance for the estimator, and decoupled
from the lensing field. In the following, we study this term in two
methods using a set of simulations with inhomogeneous noise
and a large mask.

We somewhat loosely switch to the multipole notation (�) in
the full-sky case, the formal connection being performed in e.g.
Hu (2000). We recall that on a square patch of size L × L, the
discrete Fourier modes are located on a grid

k = ki, j = Δk

(
i
j

)
(7)

with Δk = 2π
L (�35 for L = 10◦), and (i, j) being integers. In

these units, the power spectrum C|k| is equivalent to C� in the flat
sky limit (White et al. 1999).

2. Simulations

To evaluate the performance of our algorithms, we produced a
set of realistic Planck-like frequency maps, i.e. a combination of
all channels of a given frequency. The experimental character-
istics are the ones published in Planck HFI Core Team (2011)
corresponding to almost ten months of data-taking.

The most interesting channels for CMB analyses using
Planck data, are the 100, 143 and 217 GHz ones, where the
Galactic dust contamination increases with frequency but is still
sub-dominant and other Galactic foreground types of emission
(such as synchrotron or free-free) which decrease with the fre-
quency band, are weaker than the CMB (Planck Collaboration
2005). The resolution of the instrument, which is crucial to the
lensing reconstruction, goes however in the other direction with
an average full width at half maximum of the scanning beams of
about 9.5′, 7.1′, and 4.7′, respectively (Planck HFI Core Team
2011). We chose to focus on the 217 GHz channel, because it is
the most challenging for lensing, requiring the largest Galactic
mask.

We thus developed the following pipeline for our
simulations.

We start with a ΛCDM cosmology {H0 = 72, Ωbh2 =
0.023, ΩCDMh2 = 0.11, YHe = 0.24, Neff = 3.04, τ = 0.09,
ns = 0.96, As = 2.4 × 10−9}, which is consistent with the

WMAP seven-year best-fit model (Larson et al. 2011), and run
the Boltzmann code CAMB1 to produce the corresponding spec-
tra of CMB intensity/polarization anisotropies and lensing po-
tential, using Halofit (Smith et al. 2003) for non-linear correc-
tions. Both lensed/unlensed spectra are computed with the code.
In the following, we focus on temperature maps since this is the
best-suited observable for reconstructing lensing in a Planck-like
case. In the following we denote as “fiducial” this true deflection
spectrum.

These spectra then feed the LensPix2 code, which provides
a full-sky high resolution map in the HealPix3 scheme (nside =
2048). We use a cutoff �max = 3000. We verified that the resultant
lensed spectrum is in excellent agreement with the theoretical
ones, up to � � 2750, which is largely sufficient for our analysis.
One hundred realizations of these maps were produced. We refer
to these maps, which are assumed to represent the data, as the H1
set (i.e. lensed).

Starting from the CAMB lensed power-spectra, we also pro-
duced one hundred Gaussian realizations using the standard
HealPix tools (namely syn_alm_cxx/alm2map_cxx) which
help us in de-biasing the lensing power spectrum estimate. In
the following we will refer to these maps as the H0 set (i.e.
unlensed).

Maps were then all smoothed by a 4.7′ Gaussian beam using
HealPix standard tools.

The Gaussian correlated noise in the maps is generated ac-
cording to its spectrum measured in Planck HFI Core Team
(2011). More precisely, the real and imaginary parts of the spher-
ical harmonics coefficients al,m are randomly drawn from an in-
dependent Gaussian distribution with zero mean and a variance
given by the measured spectrum Nl using the standard HealPix
syn_alm_cxx procedure. We then transform the coefficients
into real space, using the alm2map_cxx procedure. Each pixel
value in the map is then weighted according to the square-root
of the number of hits in that pixel, preserving the total variance.
One hundred of these maps, each with a different seed for the
phases, were produced and added to the signal maps.

We then apply a 30% mask obtained by smoothing a higher
resolution (857 GHz) map to avoid the leading dust contamina-
tion in the Galactic plane.

Since it is not the scope of this study to investigate the sys-
tematics errors caused by point-source residuals, we assume that
a point-source mask with perfect completeness is available. We
produce this by combining the Planck Early Release Compact
Source Catalog of point sources detected in the 143, 217, and
353 GHz channels and including Sunyaev-Zel’dovich clusters
(ESZ) and dust cold cores (CC) (Ade et al. 2011b,a,c), the
WMAP seven-year catalog of point sources with a positive flux
in the W band (Gold et al. 2011), and a catalog of IRAS/2MASS
IR sources whose flux at 100 μm is above 2 Jy (Beichman et al.
1988; Jarrett et al. 2001). Each catalog entry is masked by a
5σ � 10′ radius disk. This mask covers �1.7% of the sky out
of the Galactic plane. When combining it with the Galactic one,
we are left with a fraction fsky = 0.69 of the sky.

Figure 1 shows one of these simulated maps.

3. Update on the FS-inpaintingmethod

In Perotto et al. (2010), we studied the impact of an inpainting
method to fill in, with an appropriate statistical mixture, a rather

1 http://camb.info
2 http://cosmologist.info/lenspix
3 http://healpix.jpl.nasa.gov
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Fig. 1. Example of one of our simulated lensed temperature map, using
the procedure described in the text. Units are mKCMB. The gray region
corresponds to the Galactic mask we propose to use. A point-source
mask is also included, but barely visible, being more clearly seen in
Fig. 5.

Fig. 2. Inpainted map corresponding to filling the Galactic+point-
source mask of Fig. 1.

small mask (cutting a �10% fraction of the sky). It was oriented
toward component-separated maps, where such a level of final
masking is to be expected. Here, we push the algorithm further
to its limits by studying the filling of the large mask defined in
Sect. 2 (�30% of the sky). Furthermore, we add spatially inho-
mogeneous noise, which most certainly affects the results of the
algorithm.

Among the inpainting algorithm implemented within the
multi-resolution on the sphere (MRS) package4, we found that
the most robust results are obtained with the spherical harmon-
ics L1 norm minimization using wavelet packet variance regular-
ization (Abrial et al. 2007, 2008).

Each map from the H0 and H1 sets were inpainted. An ex-
ample of a restored map is shown in Fig. 2.

We then apply the Hu & Okamoto quadratic estimator on
the full-sky, using the fast spherical harmonic computations pro-
vided by the HealPix package, with a multipole cut �max =
2000, since there is no statistical gain in going to higher values
given the noise level. The “observed” temperature spectrum that
enters the QE filter is estimated for each map, which is a way
of “absorbing” the residual spectrum deformation after the mask
restoration. We did not adopt the Bielewicz’s trick and therefore
insert the theoretical unlensed spectrum into the numerator of
the QE filter. Given the resolution and noise, we also analyti-
cally computed the N(1) and N(2) terms using the fiducial lensing
power spectrum.

4 http://jstarck.free.fr/mrs.html
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Fig. 3. Mean deflection spectra reconstructed by applying the
FS-inpainting method to the lensed maps. “Raw lensing” denotes
the spectrum reconstructed directly from the maps. In blue, we show
the effect of correcting for the (known) analytical terms N(1) and N(2).
In red, one subtracts the Monte Carlo correction obtained from the set
of unlensed maps. The dashed line is the true input spectrum. All points
are assigned an error bar corresponding to the sample variance of each
map within our Monte Carlo set.

The bias size can then be estimated in either the H0 or
H1 simulations. In the former case, one directly measures a bias,
after N(0) subtraction, that by construction, does not depend on
the potential field. In the latter case, one can estimate the bias
with respect to the fiducial model, after the N(0),N(1), and N(2)

corrections have been applied, that can grab some extra contri-
butions. We wish to check the robustness of our correction of
the lensing field, by estimating NMC i the H0 set. The inpaint-
ing process is expected to induce a non-zero lensing coupled
bias, since it cannot accurately restore the lensed signal statistic
up to the four-point correlation function into the masked region.
However, this effect can be effectively accounted for by introduc-
ing an fsky factor to correct for the lack of power caused by the
un-restored lensing modes within the mask, so that the QE vari-
ance is given by

�(� + 1)
〈
φ̂∗�mφ̂�′m′

〉
= δ��′δmm′

(
fskyCd

� + Ndd
�

)
,

where Ndd
� = N(0)

�
+ fsky

(
N(1)
�
+ N(2)

�

)
+ NMC

� , (8)

and the various contributions are shown in Fig. 3.
The bias of the estimator is quite important but corrected

for by using the unlensed simulations. This means that the cor-
rection does not couple significantly to the lensing spectrum. It
however still introduces systematic uncertainties related to our
limited knowledge of the instrument. This motivates the de-
velopment of an alternative method, which completely avoids
the masking issue, to the detriment of introducing some new
technicalities.

4. The local approach: multi-patch

We start with a simple question. How do you derive the
power spectrum from a vector of sampled data? There are
two approaches:

1. one solution is to perform a one step fast Fourier transform
(FFT), which produces many modes that can then be aver-
aged (binned) later on;

2. if the low frequency power spectrum is not required, a solu-
tion is to slice your sample into bunches, apodize each one,
perform the individual FFTs, and take their mean.

A27, page 4 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201218899&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201218899&pdf_id=2
http://jstarck.free.fr/mrs.html
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201218899&pdf_id=3


S. Plaszczynski et al.: A hybrid approach to CMB lensing reconstruction

Which approach is better? It was found that using the second
one, with overlapping segments of data (by �50%) provides the
nicest (binned) estimates (Oppenheim & Schafer 1975). This is
known as the Welsh periodogram. That then happens when some
portion of the data is missing? In the first case, one tries to cor-
rect for the gaps, possibly by restoring a mixture that has the cor-
rect statistical properties given some prior of the signal, i.e. by
performing an inpainting. It is much simpler in the multi-bunch
case, where one rejects chunks that overlaps with the gaps, an
approach that is efficient as long as there are few of them and
they are largely contiguous.

In the following, we apply these ideas to the case of data
located on a cut-sphere. We extend beyond the power spectrum
estimation (which was largely studied in Das et al. 2009) and in-
vestigate whether this simple idea can be applied to CMB lens-
ing reconstruction, where the main “gap” is the Galactic plane
and the “bunches” are some tangent square planes.

We thus developed a pipeline that allows for a local recon-
struction of the CMB lensing in patches. This has the obvious
advantage of avoiding the masked regions and should therefore
not introduce the large bias due to the mask correlations that ap-
pears in a full-sky analysis. Furthermore, the noise inhomogene-
ity, which adds a sizable contribution to the lensing deflection, is
also reduced by working locally.

Working spatially also allows us to easily inspect the quality
of the data in different regions of the sky and therefore constrain
the experimental systematics. The natural flat-sky formalism that
is applied can be easily interpreted, and indicators, such as one
for lensing isotropy, can be developed.

Statistically, after determining the Fourier complex coeffi-
cients for each patch, we use the Hu-Okamoto quadratic esti-
mator (QE) described in Sect. 1. This has, by construction, a
minimum variance so there is no statistical loss in using this ap-
proach. However, obviously, no scales below the patch Fourier
size 2π

L can be reconstructed, hence we miss the low multipoles.

4.1. Tiling the cut-sphere with patches

The first unknown is the typical size (L × L) of the patches that
one must use for lensing. It turns out to be a compromise be-
tween several contradictory considerations:

1. lensing correlates modes over a few degree scale;
2. the Fourier modes that are to be reconstructed are located

at harmonics of k0 =
2π
L in each (kx, ky) Fourier direction.

For L = 5◦, 10◦ and 15◦, respectively, this corresponds to
k0 = 72, 36, 24, which sets the grid spacing of the measured
modes. To derive our final result in reasonably small multi-
pole bins, we therefore chose to adopt a large L value;

3. when projecting the data from the sphere onto the local tan-
gent plane (using a gnomonic projection), we wish to avoid
too much distortion, which implies that we should not use
too large L values. The classical L � 20◦ flat-sky upper limit
to the flat sky approximation (White et al. 1999) was de-
rived from power spectra considerations and is not necessar-
ily valid for the four point statistics we consider in lensing;

4. a last consideration is the efficiency of tiling a given cut-sky
surface with square patches, which causes them to be small.
In addition, inspired by the Welsh periodogram, we seek a
configuration where the patches overlap by about 50%, so
that there is a clear interplay between the patch central posi-
tions and their sizes.

These considerations suggests that patches of angular size
�10◦ with �50% overlap are appropriate. Although it is a

Fig. 4. Example of the tiling of the map shown in Fig. 1 with overlap-
ping 10◦ ×10◦ patches, that do not intersect the Galactic masked region.

many-parameter system, we found that a simple solution is ob-
tained with patches of angular size L = 10◦ located at the centers
of a HealPix nside = 8 map pixels. In this case, each pixel in the
sphere falls on average into �1.8 patches. We note that the tiling
details do not impact the final result, since we performed the
same analysis on L = 12◦ patches (which leads to a pixel on av-
erage falling into 2.6 patches) and obtained very similar results.

We then start with 12nside
2 = 768 patches. Only patches

that do not intersect the Galactic mask at all (the reason being
explained in the prewhitening section) are then kept, which
leaves 395 of them, covering a fraction fsky = 55% of the sky
(as represented in Fig. 4). In this configuration, the overlap (the
mean number of patches a point of the sphere belongs to) is �1.7.

4.2. Preparing the patches

Local point-source inpainting. Before extracting the Fourier
coefficients, we first need to remove the bright sources from the
patches, which are a strong lensing contaminant. This is per-
formed by using the point-source mask and filling the masked
values by an inpainting algorithm. We note that we use an (im-
age) inpainting algorithm that differs from the one described
in Sect. 3, because we wish each patch to be treated indepen-
dently of the others, which is not the case for FS-inpainting.
We chose a method that has been designed and tuned for weak
lensing surveys FastLens5, which consists in minimizing the
sparsity of DCT (discrete cosine transform) coefficients for
256 × 256 data blocks.

More precisely, we construct high resolution regular images
from the patches using bi-linear interpolation. The FastLens
code is then run to fill in the point-source masked areas. The in-
painted values are then back-projected onto the sphere to obtain
again full-sky maps in which each sources belonging to a patch
have been filled.

Since the patches overlap, some filled sources sometimes be-
long to several of them: we then use the inpainted values from
the patch whose center is the closest to the source, in order to
avoid border effects.

This procedure is applied to the full set of H0 and H1 simu-
lations. An example is shown in Fig. 5.

Prewhitening and apodization. At this stage, we could again
project the pixels onto patches and reconstruct the Fourier
coefficients (details in Sect. 4.3). However, we note that the
bi-dimensional temperature power-spectra obtained for these

5 http://irfu.cea.fr/Ast/fastlens.software.php
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(a) (b)

Fig. 5. a) Example of a 10◦ × 10◦ patch with masked sources in black.
b) Inpainting of the sources using the FastLens algorithm.

patches exhibit a strong leakage along the null Fourier axis
(Fig. 6a).

We concluded that this leakage is due to that of the low
(kx, ky) modes which, for the CMB signal, have the stronger
amplitudes, and originates from the side-lobes of the implicit
10◦×10◦ top-hat window used. Instead of using some anisotropic
filtering (the lensing itself being a source of anisotropy), we can
correct this by prewhitening the map and applying an explicit
window.

Prewhitening is a standard means of achieving comparably
sized Fourier coefficients (e.g. Das et al. 2009). Since we are
interested in a range up to � � 2000 (i.e. which is not too far
into the CMB damping tail), we need to approximately scale the
spectrum by �2. We therefore simply multiply the spherical har-
monic coefficients of the map by �, and return to direct space.
In this process, the Galactic values are replaced by zero’s, which
results in some ringing around the edges of the mask, which is
fortunately damped by the instrument main lobe. This is why
we only used patches that do not intersect the mask edges at all,
since in practice, they are placed far enough away from the mask
frontier. Two illustrative examples are shown in Fig. 7.

We note that the prewhitening procedure was applied to both
the “signal” maps (H1 set) and the MC-correction ones (H0),
so that if it still had a sizable impact on the lensing reconstruction
it would have biased the final lensing estimate. Anticipating a re-
sult that is be presented later (Fig. 11), the H0 correction is then
found to be small, which validates a posteriori the prewhiten-
ing procedure (and actually the entire procedure) is harmless
to lensing.

From now on we work with these full-sky prewhitened maps
for which the harmonic coefficients are of similar order.

Rather than using for each patch the implicit top-hat win-
dow (which has large side-lobes), we apply an explicit window
in the direct space. We work with the family of Kaiser-Bessel
functions (Kaiser 1966), which allow us to vary simply the side-
to-main lobe ratio, and that is still close to the optimal solution of
energy concentration provided by the discrete prolate spheroidal
sequence (Slepian 1978; Das et al. 2009).

Each value in the L × L size patch is therefore multiplied by

Wα(x, y) = W (1)
α (x)W (1)

α (y) (9)

W (1)
α (x) =

1
I0(πα)

I0

⎛⎜⎜⎜⎜⎜⎝πα
√

1 −
(
x/ L

2

)2
⎞⎟⎟⎟⎟⎟⎠ , (10)

where I0 denotes the zero-th order modified Bessel function of
the first kind.
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(b)

Fig. 6. a) Bi-dimensional Fourier spectra of one of our simulation
at different scales. Upper-left: mean of the squared-amplitude of the
Fourier coefficients for all patches i.e. k2〈|akx ,ky |2〉. An isotropic un-
decimated wavelet transform (“a trous”, see e.g. Starck & Murtagh
2010) is applied to the image and the results for scale one and two
are shown in the bottom plots. The upper-right one corresponds to the
smooth component. One notices a clear leakage along the null axes.
b) Same spectra but working on the prewhitened map and applying a
Kaiser-Bessel K0.5 window function. The leakage along the null axis
has clearly disappeared.

The Fourier transform of these windows is6

W̃α(kx, ky) = W̃ (1)
α (kx)W̃ (1)

α (ky)

W̃ (1)
α (kx) =

L
I0(απ)

sinc

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√(

kxL
2

)2

− (απ)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (11)

which exhibits how the windows shrinks with αwhen comparing
it to the tophat window in Fourier space: W̃ (1)(kx) = sinc(

kxL
2 ).

6 In Eq. (11), a complex continuation is to be understood for low
kx values.
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(a) (b)

Fig. 7. Examples of the 10◦ × 10◦ multi-patch tiling (in gray) of a
prewhitened map, around the borders of the Galactic mask (in green) in
two regions of the sky (Galactic coordinates given in degrees). One can
discern some very local ringing around the boundaries of the mask and
some point-sources located outside the patches and that had therefore
not been previously inpainted.

We compute numerically the radial power of these win-
dows as:

PW (r) =
1

2π

∫ 2π

0
|Wα(r cosφ, r sin φ)|2dφ

PW̃(k) =
1

2π

∫ 2π

0
|W̃α(k cos θ, k sin θ)|2dθ (12)

and show them for α = 0.5, 1, 2 in Fig. 8 in direct and Fourier
space.

As is well-known, diminishing the side-lobes always occurs
at the price of increasing the main lobe width (energy conserva-
tion). In the following, we describe how we attempted to keep α
as small as possible to keep the window strongly peaked since
the QE considers the products of modes are convolved by this
window in Fourier space (Sect. 4.5).

We checked that after prewhitening and windowing with the
Kaiser (α = 0.5) window, the power spectrum leakage dis-
appears as is clear in Fig. 6b. In the following, we therefore
use W0.5 as an explicit apodization function.

The size of the window in Fourier space, Fig. 8b, fixes the
binning. For W0.5 on a L = 10◦ square patch, we use a step of
Δk = 40, starting from the first available Fourier mode k0 = 35.

4.3. Fourier series estimation of non-equispaced data

We project the prewhitened map onto the local patches, using a
gnomonic projection. The HealPix pixel centers then fall onto
an irregular bi-dimensional grid. Can we still perform a spectral
analysis?

For a nside = 2048 HealPix map, the mean inter-pixel
separation is about 1.7′, which is not negligible compared to
the expected mean deflection of the CMB lensing (�2.7′), so
that an interpolation would induce some large effects. To avoid
this interpolation, we therefore developed the so-called “ACT”
(Adaptive weight, Conjugate gradient, Toeplitz matrices) algo-
rithm, which allows us to fit the complex Fourier coefficients
from a set of irregularly sampled data in a reasonable time (see
also Keiner et al. 2009). This method has been proposed for
real (1D) data and we generalized it to bi-dimensional data. We
give hereafter the main idea and discuss the technicalities in the
Appendix.
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Fig. 8. Radial power of the Kaiser-Bessel 2D windows with α =
0.5, 1, 2 for L = 10◦ in real a) and Fourier b) space. The top-hat re-
sult is also shown.

We search for the least squares estimates of the ak,h (com-
plex) Fourier coefficients of our band-limited temperature signal,
in the series expansion

T (x, y) =
Mx∑

k=−Mx

My∑
h=−My

ak,he2iπk x
L e2iπh yL . (13)

In the general case, the brute force inversion of the normal equa-
tions is prohibitive, but the method takes advantage of the pe-
culiar structure of the Fourier series decomposition to perform
operations very efficiently. In our case, we manage to determine
the 120× 120 coefficients of the �120 000 data values contained
in a 10◦ × 10◦ patch of an HealPix nside = 2048 map, in about
one minute on a single core computer.

The tool we developed, named FourierToeplitz, has been
compared to a standard FFT method, when fitting (actually solv-
ing) N × N points with N × N unknowns on a regular grid: our
results agree to within machine precision.

This tool opens the road to local analyses of projected spher-
ical maps, which are plagued by interpolation issues. It has been
used successfully in computing the spectra and full CMB bi-
spectra in Pires et al. (2012).

4.4. Local power spectra estimates

After running the FourierToeplitz tool, we have an estimate
of the complex Fourier coefficients per patch, at wave-vector k,
located on the regular grid Eq. (7).

By computing the squared-amplitude map, one can study
the 2D local power spectrum on the sky, and even though the
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Fig. 9. Example of a 1D power spectrum used in the lensing estima-
tor. The points are obtained from the bi-dimensional spectrum (as in
Fig. 6b), deconvolved from the beam, and represented with respect to
to |k|. They are fitted to the smooth function in red. Also shown in blue
is the fiducial model.

cosmic variance is large, detect potential experimental problems.
By taking the mean of the power spectra for all the patches, one
can check for the CMB field isotropy in a simple way.

By plotting the values, with respect to |k| (i.e. assuming
isotropy), one constructs a 1D power spectrum which is equiv-
alent to the famous C� but for the non-integer values |k| given
by Eq. (7). One has a powerful local power-spectrum estimator
that solves the issues of masking that is well-suited to jackknife
tests. To get a full determination of the spectrum, one would still
have to study the window function, as in Hivon et al. (2002) and
Das et al. (2009), but we do not actually need it for the lens-
ing reconstruction since it relies on the observed spectrum. We
first need to deconvolve the maps from the main lobe, which
is a trivial operation in the Fourier space for a Gaussian shape,
and obtain some smooth spectrum. This is obtained by taking
the mean power spectrum of the de-convolved Fourier patches,
and fitting the coefficients of a generic smooth function to all the
data points as explained in Plaszczynski & Couchot (2003). The
result is shown for one of our simulation, in Fig. 9.

4.5. Local deflection estimates

After determining the complex Fourier coefficients for each
patch, and the observed/true C�’s, we may apply the Hu &
Okamoto flat-sky estimator to obtain the (noisy) potential maps
in the Fourier domain, Eq. (2). But before going on to the lensing
spectrum estimate, we need to review the noise of the estimator
on an apodized patch since the standard QE has not been derived
in this case.

The quadratic term 〈T (k1)T (K − k1)〉 upon which the es-
timator in Eq. (2) is build, is affected in a non-trivial way by
the apodization procedure. Metcalf & White (2007, Appendix B)
show that it introduces:

1. an “aliasing” effect due to the overlap of the windows in
Fourier space that affects only the low �’s modes;

2. some complicated “smoothing” of the lensing potential.

We do not try to build an optimal estimator from the elaborate
expression. We note instead that the apodization process scales
the lensing Gaussian noise merely by a constant factor, that can
be understood in the following way.

On the basis of Hivon et al. (2002) and Efstathiou (2004),
one can show that, assuming that the window is well peaked in
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0.8

1.0

1.2

N
K(0
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Kap

o (H
0)

0.85864171

Fig. 10. Color plots showing the ratio of the non-apodized N(0) term
Eq. (5) to the reconstructed lensing variance in the patches apodized by
W0.5 for each of the 100 maps of our unlensed (H0) set. A constant term,
whose value is depicted in the upper box, is fitted to the � ≥ 1000 part.

Fourier space such that the spectrum does not vary too much over
it, the two-point correlation function of an apodized Gaussian
field T apo along with its variance can be approximated by

〈T apo(k1)T apo(k2)〉 � (2π)2δ(k1 + k2)w2Ck1 (14)

var(T apo(k1)T apo(k2)) � 2w4Ck1Ck2 , (15)

where

wi =
1
L2

∫ L/2

−L/2

∫ L/2

L/2
dxdyWi(x, y) (16)

and W(x, y) is the window function in direct space.
These approximations are accurate for large k values

(Efstathiou 2004), which corresponds, given our window size
to k � 100.

In the following, we use windows normalized by
√
w2, so

that the reconstructed power spectrum, the only entity that varies
with apodization in the filter/normalization of the QE, Eq. (3),
is mainly unchanged (Eq. (14)). We checked for instance that
applying a W0.5 window would change the lensing normaliza-
tion Ak by less than 1%.

The Gaussian noise in the apodized case can be written as
the variance in the QE applied to the apodized unlensed sky:

N(0,apo)
K = K2

〈
|φ̂unlens, apo(K)|2

〉
. (17)

Substituting Eq. (15) into this equation and using the normalized
window, one obtains

N(0,apo)
K � w4

(w2)2
N(0)

K . (18)

What is the accuracy of this approximation? We ran the QE on
the unlensed simulations, computed the mean lensing spectrum
and compared it to the ideal case given by Eq. (5). The result in
Fig. 10 shows that the ratio is indeed reasonably flat for values of
� � 100. Fitting the mean value of this ratio in the high � region
gives a result very close to the analytical value (w2)2

w4
= 0.859.

We performed the exercise for several windows, including
the often used Hanning one (e.g. Oppenheim & Schafer 1975),
and give our results in Table 1. They all show excellent agree-
ment with the simple (w2)2

w4
scaling factor.
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Table 1. Comparison of the lensing excess Gaussian noise due to vari-
ous apodization windows.

Window (w2)2

w4
MC-H0

Top-hat 1 1
Kaiser (α = 0.5) 0.859 0.859
Kaiser (α = 1) 0.502 0.505
Kaiser (α = 2) 0.248 0.249
Hanning 0.264 0.265

Notes. (w2)2

w4
is the analytical approximation, whereas the last column

gives the measured ratio from the unlensed Monte Carlo’s, obtained as
in Fig. 10.

This leads us to rewrite the QE total covariance Eq. (6) in the
apodized case, as

K2〈φ̂(K)
∗
φ̂(K′)〉 = (2π)2δ(K − K′)

· w4

(w2)2

[
Cd

K + N(0)
K + N(1)

K + N(2)
K + NMC

K

]
(19)

and propose the simple estimator for an apodized patch

K2ĈφK =
(w2)2

w4

∫
dφ
2π

K2|φ̂apo(K)|2 −
(
N(0)

K + N(1)
K + . . .

)
(20)

where the integral is performed in small size rings over the dis-
crete Fourier grid.

This proposed estimator, Eq. (20), is then tested on our H1
simulations in order to assess its bias/variance. We note that the
value of the scale factor does not need to be known very pre-
cisely. What matters is that the same factor is used in the data
(here H1) and the Monte Carlo correction (here H0).

We now have all in hand to compute the deflection power-
spectra. This is performed for each map of our Monte Carlo set,
in the following way:

1. from the Fourier coefficients obtained on each patch, we
form the 2D-Fourier potential map φ̂ using Eq. (2). The nor-
malization (and N(0) term) is computed in the standard way,
using Eqs. (5) and (3) and the true/observed spectrum as
given in Fig. 9;

2. for each patch, we form the noise-corrected deflection power
map of f K2|φ̂K |2 − N(0)

K where f = 0.86 in our case;
3. we accumulate the 395 power maps and evaluate their mean

and variance;
4. we compute the inverse-variance weighted average in rings

of constant ΔK = 40 width (starting at K0 = 35). The binned
values are reported at the mean of the different modes Ki, j
locations within the ring.

We compute these spectra in the H1 set, which still have noise
contributions from the N(1), N(2) and NMC terms. The NMC term
(the “bias”) is taken from the H0 simulations as the mean dif-
ference from 0 of the reconstructed spectra following the same
procedure.

The mean spectrum is shown in Fig. 11, where one sees the
various contributions.

The initial (raw) lensing spectrum estimate already has a
very little bias, thanks to our lack of use of any Galactic data
and to a reduced local noise inhomogeneity.

We show that the multi-patchmethod leads, after a small
correction, to an un-biased estimate of the deflection over the
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Fig. 11. Mean deflection spectra reconstructed by the multi-patch
method from the lensed maps. “Raw lensing” denotes the spectrum
measured directly on the maps as described in the text without per-
forming any bias correction. In blue, we show the effect of subtracting
the (known) analytical terms N(1) and N(2). In red, one accounts for the
Monte Carlo correction obtained for the set of all unlensed maps. The
dashed line is the fiducial input spectrum. All points are assigned an
error bar corresponding to the variance in the Monte Carlo simulations
per sky map. The first bin for the raw-lensing estimate is located outside
the plot (at a value of 3.5 × 10−7). The same range as in Fig. 3 has been
used for proper comparison.

whole � ∈ [75, 2000] range. The very first bin [35, 75] is also un-
biased but receives a stronger correction from the H0 MC, which
is due to the breakdown of the flat-sky limit (� cannot be identi-
fied to |k| in this case) and to the apodization window having an
overlap integral that extends to approximately 100 (see Fig. 8b).

We note that unlensed simulations accurately correcting
the lensed ones means that the full reconstruction process does
not induce any (significant) couplings to the underlying lens-
ing potential. The variance in the estimator is discussed in the
next part.

Finally, we note that working on patches has a number of
other benefits:

1. we derive bi-dimensional maps of the lensing potential, so
that as in Fig. 6, we can more easily test the deflection field
isotropy. An example is show in Fig. 12;

2. for each patch, we can check for unexpected systematic er-
ror effects that would provide an excessive lensing signal (as
missed sources);

3. with knowledge of all sources of noise, one can apply a
Wiener filter to each patch to reconstruct the lensing poten-
tial maps that can then be cross-correlated to other cosmo-
logical probes of the matter, such as Galactic weak lensing
(cosmic Shear) or cosmic infrared background, which are
only generally measured over a small region of the sky.

5. Comparison of the methods

In Fig. 13, we compare the bias, in each � bin, of the
FS-inpainting and multi-patch methods. They were ob-
tained using unlensed simulations, and were indeed shown to
correct the deflection power measure in lensed maps. We recall
that the binning that we used starts at � = 35 (first multi-patch
accessible mode for a 10◦ × 10◦ patches) and has a width
Δ� = 40. Two extra bins were added to FS-inpainting [2, 13]
and [14, 34].
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Fig. 12. Example of an isotropy check of the lensing potential. For
one of our lensed maps, we evaluate the “raw lensing” estimator (i.e.
that does not include any MC correction) for each patch, and take their
mean. We represent the power map k4Ĉφk after N(0) subtraction, and
smoothed by an “a trous” transform, as in the upper right part of Fig. 6b.
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Fig. 13. a) Bias of the methods computed from our simulations as
the mean of the spurious deflection power on the unlensed set. For
FS-inpainting, it corresponds to NMC

� / fsky in Eq. (8), whereas for
multi-patch, it is the result of applying the modified QE to H0 as
described in Sect. 4.5. b) Same plot with a log scale to emphasize the
low �’s. No mode below 35 is available to the multi-patch method.
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Fig. 14. a) Standard deviation among the methods computed from our
simulations, as the spread in each bin of the lensing estimators for the
100 H1 set. b) Same plot with a log scale to emphasize low �’s.

The standard deviation in each bin from the H1 set is shown
in Fig. 14. The Fisher error estimate for the QE

σ� =
Cd
� + N(0)

�√
�Δ� fsky

(21)

is also depicted. We recall that the multi-patch method has a
lower sky coverage ( fsky = 0.55) than the inpainted one ( fsky =
0.69) owing to the procedure for tiling the cut-sky.

From these plots, it appears that

– the multi-patch approach clearly shows less bias, except
for the very first bin [35, 75]. It cannot reconstruct modes
below these values;

– for large � � 100, both estimators follow the naive Fisher
error estimates, the FS-inpainting one having a slightly
smaller variance than for multi-patch, owing to the larger
sky coverage.

We feel that the small relative statistical loss (�10%) of the
multi-patch method is largely compensated for by the gain
on systematic errors. As explained in Sect. 4, the reconstruction
can be controlled and visually inspected at each step, but most
importantly the systematic errors due to the bias of a necessarily
imperfect simulation are minimized.

We therefore advocate the use of an hybrid method con-
sisting in the multi-patch approach for � � 100 and
FS-inpainting for lower �’s.

A27, page 10 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201218899&pdf_id=12
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201218899&pdf_id=13
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201218899&pdf_id=14


S. Plaszczynski et al.: A hybrid approach to CMB lensing reconstruction

6. Conclusion

We have investigated two methods to reconstruct the lensing-
deflection power spectrum from Planck-like CMB frequency
maps, using a large Galactic cut and including some strong
noise inhomogeneity. The first one, FS-inpainting, which
was previously presented in Perotto et al. (2010), is still found
to be efficient in this extreme configuration as long as one
corrects for a large yet lensing-independent bias using Monte
Carlo simulations. We have developed a well-suited method
to deal with large masks, based on tiling the cut-sky with
10◦ × 10◦ patches and performing local analyses. This has re-
quired us to solve some problems related to non-periodic bound-
ary conditions and Fourier coefficients determination for irreg-
ularly sampled 2D data. For this purpose, we have developed
the FourierToeplitz tool, which allows the fast exact fitting
of the Fourier series coefficients in irregularly sampled 2D data.
This is a valuable tool for other analyses that require a high level
of precision at the spatial location.

Both methods have been demonstrated for realistic Planck-
like simulations of the 217 GHz CMB channel. It was found that
the multi-patch approach has a very low bias in the whole
100 ≤ � ≤ 2000 range, thanks to the avoidance of the Galactic
plane, and lower local noise inhomogeneity. It allows us at each
step to check for experimental systematic errors and perform lo-
cal images of both the temperature and deflection bi-dimensional
power spectra. Its final variance is only marginally larger than
a full-sky method, and could be improved by a smarter strat-
egy for tiling the cut-sky sphere. The final result is insensitive to
the precise position of the patches and of their overlap. To per-
form some cosmological fits using the reconstructed spectrum,
the inter-bin correlation would still have to be measured accu-
rately, and included in the likelihood, since we have measured
some (15 ± 10)% correlation level, with our Δ� = 40 binning.
This requires a large number of simulations (�1000).

In the � ≤ 100 range, we advocated using the
FS-inpainting method, which provides the minimal vari-
ance estimate in the cut sky. Since our simulations did not in-
clude a Galactic contaminant, this boundary could slightly shift.
However, using our 30% Galactic mask, we checked by adding
a simulated Galactic component to our maps, that its net effect
on the reconstructed deflection power was extremely negligible
(on real data, some template would be subtracted).

These results open the road to measuring CMB lensing di-
rectly in Planck-like CMB maps, without even performing a
component separation of the foregrounds. This is not exactly
true for the FS-inpaintingmethod, where one must have clean
boundaries at the mask frontier. However, this can be obtained
by a simple template subtraction measured in the high frequency
channels. For the multi-patch method, one can still perform
the analysis without “un-dusting” the map, by choosing appro-
priate CMB-dominated patches; we checked in simulations that
a sub-dominant amount of dust contamination does not affect the
lensing deflection spectrum.

It is not our goal to come to a decision on whether a com-
ponent separation method is a more accurate means of lensing
reconstruction, since it is an area that remains under active de-
velopment. We note however that the statistical gain offered by
using a larger fraction of the sky can be counterbalanced by a
higher N(0) term due to a larger (combined) lobe of the instru-
ment or a higher final noise level (see Eq. (21)). Adding the
high/low frequency channels will also “bring back” some ad-
ditional infrared/radio sources that need to be masked out, low-
ering the final statistical gain of the combined map.

Working directly on intensity maps allows us to perform
various sanity tests by checking the consistency between the re-
constructions from different frequency maps, which is a way
of assessing the robustness of the estimate against either ex-
perimental uncertainties or physical contamination – as from
possible SZ-lensing or unresolved radio-source-lensing correla-
tions. The reconstructions of each frequency maps can also be
minimum-variance combined, which offers a robust reconstruc-
tion that allows for a high level of systematic control. Finally,
this is a well-suited approach to cross-correlation studies with
other mass tracers, by selecting frequencies that are unaffected
by contaminants that may induce extra correlations. For in-
stance, one may wish to use only frequencies over 100 GHz
(with negligible unresolved radio-source contamination), while
studying correlations with external radio surveys, or below
217 GHz for a CIB-lensing correlation estimate.
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Appendix: FourierToeplitz tool

In order to not lose accuracy in determining the Fourier coeffi-
cients from a sample of irregularly sampled points, we developed
a tool for fitting these coefficients in a reasonable time.

We start with the 1D case, where we have implemented the
“second generation” algorithm proposed in Feichtinger et al.
(1995).

We define f to be a function sampled on any support {ti}. In a
given interval (0, T ), the function can be expanded into a Fourier
series

f (t) =
∞∑

k=−∞
ake2iπk t

T .

Assuming that it has a band-limited spectrum, so that we can
limit the number of Fourier modes to

f (t) =
M∑

k=−M

ake2iπk t
T ,

the problem is to determine the ak coefficients given the sampled
values fi.

We consider the reduced u = t
T variable. If the number of

samples ui is N, one writes the N equations

fi =
M∑

k=−M

ake2iπkui .

This is a linear system of N equations with 2M + 1 unknowns.
The well-known normal equations obtained from least squares
minimization are

(GTG)X = GT F,

where F is the column vector of sampled values and G is the
matrix with elements gkl = e2iπkul . The solution is in general
computationally heavy using standard methods.

Here, the interesting point is that the generic term of the sys-
tem is of the type:

Tkl =

N∑
j=1

e−2iπ(k−l)uj ,
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which is a Toeplitz matrix. One solves the system using the
conjugate-gradient algorithm (the matrix is Hermitian and pos-
itive), which consists in performing successive matrix-vector
products. One then pads the Toeplitz matrix with zeros to ob-
tain a circulant matrix, since the product of a circulant matrix
with a vector can be computed efficiently using an FFT.

We extended this method to the 2D case using the formalism
of the Kronecker products of matrices and the properties of the
separability of FFTs. This allows for the fast determination of
the akh coefficients in the Fourier expansion

f (x, y) =
Mx∑

k=−Mx

My∑
h=−My

akhe2iπk x
Tx e2iπk ty

Ty .

In our case, a 10×10◦ patch from an HealPix nside = 2048 map,
contains about 120 000 irregularly sampled values.

The modes are harmonics of Δkx = Δky = 2π
L � 35, so

we need to determine 120 × 120 (half is negative) of them to
obtain all modes below lmax = 2000. This is performed in about
one minute on a single core. The conjugate gradient converges in
about seven iterations, without using any special pre-conditioner,
so we did not add the adaptive weight scheme.
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