Towards a GUI Test Model
Using State Charts and Programming Code

Daniel Mauser!, Alexander Klaus?, and Konstantin Holl?

! Daimler AG, Ulm, Germany
2 Fraunhofer IESE, Kaiserslautern, Germany
daniel.mauser@daimler.com,
{alexander .klaus,konstantin. holl}@iese .fraunhofer.de

Abstract. Modern human machine interfaces provide a sophisticated
structure and logic to ease their use. As they are the only mean to control
the system behind, extensive testing and highest quality is required in the
automotive domain. A common testing approach in literature is to derive
the necessary test cases from a formal model. However, redundancy and
data dependency still hinder manual modeling in the industrial context.
In this paper, we present preliminary work to address these obstacles.
As a first step, we combined depictive state charts with reusable pro-
gramming code. We modeled parts of the graphical user interface of a
state-of-the-art infotainment system and successfully generated a test
suite that covers our testing goal to reach each button at least once.

Keywords: automotive, human machine interface, model based testing.

1 Introduction

An automotive human machine interface (HMI) provides system functionality to
the user. The main interface is usually represented by a graphical user interface
(GUI). Figure [Il shows an example for such a GUI including a possible screen
structure. According to [1], a GUI “is essential to customers, who must use it
whenever they need to interact with the system”. However, testing automotive
HMIs leads to more challenges than testing standard PC applications, caused by
the special characteristics of automotive HMIs, e.g., the dynamic menu behavior
and the large set of variants |2]. Effective usage of an automotive HMI by the
user requires an effective quality assurance process. Failures during the usage
while driving may lead to a distraction of the driver.

The complexity of the specification in the automotive domain is typically
handled by the definition of conditions that represent the states of connected
applications and devices. They consist of internal conditions, such as the selec-
tion of an option (e.g., “ESP on/off”), and of external conditions, such as the
availability of a functionality (e.g., “ESP available/unavailable”). The state of
the conditions influences, e.g., the availability or visibility of menu entries. As
modern automotive infotainment systems comprise hundreds of specified condi-
tions, managing the complexity manually is not feasible. Every condition can

H. Yenigiin, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 271-E76] 2013.
© IFIP International Federation for Information Processing 2013

272 D. Mauser, A. Klaus, and K. Holl

1 Status line
I 1

Available

Applications
(Application line)

1

-

1

: /// Dedication to my ex (Miss that) /// ﬁ Content
| Loy Andrésoog i S

Fig. 1. The SUT is structured in four vertical menus that hold the clickable elements

be set to various values; this results in an extremely large number of possible
combinations. Handling the amount of conditions can be done by modeling the
set of conditions and its effects within a test model. It describes the conditions
and its dependencies and leads to a simplification for the test engineer. Defining
rules for test case derivation enables the possibility to cover the complexity of
the conditions. Hence, a test generator can automatically generate test cases
with the intended test coverage. This increases the controllability for reaching
every menu entry which is desired to be tested. The testing goal, to ensure that
all menu entries are reachable, is important for all types of integration tests.

While developing these kinds of test models, we experienced the following two
major issues: The first issue is that widget behavior often depends on data such
as system conditions or inserted data. One example is the entry behavior of a
menu: in the system under test, menu widgets have a property “entryStrategy”
that influences, which of the the containing button elements is focused the first
time the menu is entered, which again depends on what buttons are actually
visible at this particular moment. Test models should support efficient means
to describe this data dependency. The second major issue is redundancy of be-
havior. Due to the modular nature of most user interfaces, atomic elements,
so called widgets (buttons, menus, ...), are reused in order to ease the specifi-
cation (consistent interaction concepts) and implementation (reuse of software
modules). Explicitly modeling each instance of all widget types occurring in an
entire system is time consuming and error prone in development and mainte-
nance. To reduce the probability of errors, mechanisms to facilitate consistent
modeling have to be applied. In software engineering, these challenges are faced
by code that is structured hierarchically and modularly. Logic is encapsulated
in classes that are instantiated every time this particular logic is needed. In the
context of an ongoing industrial research project we currently adopt this concept
for modeling HMI behavior accordingly, for test case generation purposes.

This paper is structured as follows: after discussing related work regarding
applicability in our context, we present excerpts of our ongoing work to develop
a modularly structured test model. The paper concludes with a first appraisal
of the approach and an outlook on the intended next steps.

Towards a GUI Test Model 273

2 Related Work

A good overview on model based testing (MBT) in general can be obtained in
[3], whereas [4] focuses on MBT of GUIs in particular. As a testing approach
should easily integrate in a software development lifecycle, one crucial point is
the model as basis for test generation. In the automotive domain, UML state
charts are “widely established in HMI specification and development” [2, P. 24].
Various approaches for MBT of GUIs use state based modeling ([5-9]). A widely
used technique for model based GUI testing is reverse engineering, i.e., executing
the application and analyzing the GUI (|5-7]). However, as these approaches
rely on the availability of source code, reverse engineering is not applicable in
our domain. An OEM, such as Daimler, usually assigns the task of creating an
HMI to suppliers and receives a package containing both hard- and software. In
such cases, it is not feasible for OEMSs to extract the software or to use reverse
engineering, since there is no operating system supporting these techniques and
the input mechanisms are different.

An approach that presumes manual modeling has been presented in [§]. The
authors use domain specific state machines and model transformations to ob-
tain product line and variant specific test models. Their solution is “to inte-
grate domain knowledge into the state machine metamodel” [§], working with
a combination of EMHY and Xtext?. Although the presented approach appears
to be promising, no test case generator is available to make use of the results.
Therefore, we decided to adapt the method bearing in mind available tools for
generation. Established solutions are, e.g., Microsoft Spec Explorerﬁ or Con-
formiq Qtronicﬁ. Qtronic relies on hierarchical UML state machines as models,
which can be enriched with a custom modeling language, which is a superset
of Java [10]. Test cases are generated using symbolic execution [10]. Spec Ex-
plorer uses models created with Spec#, a variant of C# [11]. The model is then
explored to create test cases and capture the intended behavior [11]. The tool
distinguishes between controllable and observable actions [11]. A comparison of
different characteristics of both Spec Explorer and Qtronic can be found in [10].

3 Model Structure

Similar to the basic structure introduced by [§], we combine programming code
and state charts to make use of the strengths of both approaches: state charts
provide a clear structure of screens and their relationships and therefore ease
retracing the generated test cases. Object oriented programming code is easy to
reuse and provides efficient means to specify behavior. The established product
”Conformiq Designer” supports these kinds of models.

! www.eclipse.org/emf/
2 wuw.eclipse.org/Xtext/
3 http://research.microsoft.com/en-us/projects/specexplorer/

4 http://www.conformiq.com/

274 D. Mauser, A. Klaus, and K. Holl

tring
|reetimageRef) : string [ronEter()
[rpress

Fig. 2. The Screen and the Entry elements Menu and Button are the essential classes

We developed a “widget toolbox” containing the basic elements the user inter-
face consists of: classes for buttons, menus and screens (see Figure[Z). The Entry
is the basic widget type that summarizes all methods that are necessary for the
interaction concepts. Deriving classes have to implement methods that state on
demand whether they are visible (displayed on screen) or available (visible and
selectable). Entries further have to implement methods that are triggered once
they are focused and once they are pressed. The Button represents entries that
are clickable and contain content. This content can be textual (attribute: label)
and/or a reference to an icon or symbol (attribute: imageRef). The attributes
visibility and availability describe references to the system conditions the visibil-
ity /availability of the button object depends on. Menus are container elements
for entries (attribute: entries). As menus can again contain menu objects, this
class also implements the “Entry” interface and provides the respective meth-
ods. isSelectable() and is Visible() return the respective attributes that are set via
constructor. Further, menus determine what containing Entry element is focused
on next() and prev(). The Screen class is called from within the state machine.
Therefore, methods for all user interactions that directly affect the content on
the screen are provided. In this setup, this includes left, right, up, down, press,
and back. Screen objects are the root element for all objects in the respective
state space. E.g., for each application, such as Audio or Navi, a separate screen
object is instantiated. As illustrated in Figure[I the standard screen class pro-
vides three menu lines with horizontal orientation (Application Line, Playfield,
Subfunction Line), which again are contained in the menu object content. The
screen passes the user events through to the respective menus.

The state chart functions as main application. It consists of programming
code that constructs the state machine object and a hierarchical graphical chart.
Within the constructor, all necessary button, menu and screen objects are in-
stantiated. These objects can then be used within the graphical part. An excerpt
of the chart is shown in Figure Bl For modeling, the basic state chart elements
are available. In our approach, we additionally distinguish between view states
that refer to screen objects, and condition states that are used to evaluate system
conditions. On the lowest level of the charts there are solely view states.

With the presented approach, we modeled parts of the audio application of the
latest Mercedes Benz infotainment system (NTG4.5 High Edition) that provides
the functionality to play music that is stored on connected media as well as
to listen to radio. We assumed a fully equipped setup, including all available
media types (HDD, audio and video DVD, AUX, etc.) and radio wavebands

Towards a GUI Test Model 275

[conditions get(curApp) == crdpp_ALDIC] [conditions.get{curApp) == crApp_NAVI]

[Audio Nawi |
entry {ravi.orErter(); T

ceeright / activeScreen right();

ceeleft [activeSereen. left();

cee:up / activeScreen.up();

cee:down / activeScreen.down();
cce:press / activeScreen.press();

ceerback / activeScreen.back();

exit {activescreen.closePopups();

0o

Fig. 3. The “Action” keyword of State Chart elements might refer to coded objects

(FM, LW, MW, DAB, etc.). We instantiated 15 screen, 57 menu and 138 button
objects. As stated in Section[dl the testing goal is to set the system conditions to
focus each button object at least once. To guide the test case generation, we
use checkpoints in code and in the state charts. Hence, we added a checkpoint
to the onEnter() method of the Button class to ensure that this method will
be executed in every Button instance. The generator provided functionality to
determine the necessary user interactions. To cover this state space, we had to
declare 38 conditions. 26 test cases with a total of 616 test steps have been
generated to fulfill the testing goal.

4 Discussion and Conclusion

In this paper, we present ongoing work on model-based black-box testing of
graphical user interfaces in the domain of in-vehicle infotainment systems. We
discussed basic challenges of manual model development and maintenance and
pointed out that model complexity is originated in (a) the dependency of be-
havior on data and (b) the redundancy of logic. To address those complexity
drivers we stress the need for modularly structured test models. Due to the con-
text, manual model development is required. We developed a model structure
that combines the strength of state charts to depict macro behavior with object
oriented programming to allow complex data processing and modular reusability.

We developed a model to cover the audio application of a state-of-the-art in-
fotainment system at Mercedes Benz. The disadvantageous redundancy could be
handled successfully: general interaction concepts, such as the focus based nav-
igation or list based screen structures, are described and maintained centrally;
manual modeling was easy and allowed a satisfiable progress. The approach was
stable regarding changes and allowed model-wide adaption of selective behavior.
Due to the inheritance of object-oriented structures, several abstraction lev-
els could be utilized: general Entries had been specialized to clickable Buttons,
which again, if necessary for testing purposes, could be basis for more complex
structures, such as Radio Buttons or Checkboxes. By doing so, details could be
reduced to a level that could be handled manually. We successfully generated test
cases using the proprietary generator “Conformiq Designer”. As testing goal, we
chose to focus every Button object at least once. The state charts were useful to
retrace the generated test cases.

276 D. Mauser, A. Klaus, and K. Holl

According to our experiences, the mixed approach appears to be appropriate:
describing the entire behavior graphically would not have been feasible. An ex-
clusively coded model would have been confusing and thus as error-prone as the
real implementation. In future, we plan to advance the approach to automate
the testing process. Next step will be to use the generated test suite as input
for automatic test execution. Special attention will be drawn to the verification
aspect. Due to the model structure, a data based description of all content to
be displayed on screen could be exported at any time. We plan to embed this
information in the test case description to provide an extensive basis to assess
the system reaction, i.e., as test oracle.

References

1. Brooks, P.A., Robinson, B.P., Memon, A.M.: An initial characterization of indus-
trial graphical user interface systems. In: Proceedings of International Conference
on Software Testing Verification and Validation, ICST 2009, pp. 11-20. IEEE Com-
puter Society (2009)

2. Duan, L.: Model-based testing of automotive hmis with consideration for product
variability. Ph.D. dissertation, Ludwig-Maximilians-Universitdt Miinchen (2012)

3. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2007)

4. Banerjee, 1., Nguyen, B., Garousi, V., Memon, A.: Graphical user interface (gui)
testing: Systematic mapping and repository. Information and Software Technology
(2013)

5. Morgado, I.C., Paiva, A., Faria, J.P.: Reverse engineering of graphical user inter-
faces. In: The Sixth International Conference on Software Engineering Advances,
ICSEA 2011, pp. 293-298 (2011)

6. Arlt, S., Podelski, A., Bertolini, C., Schaf, M., Banerjee, 1., Memon, A.M.:
Lightweight static analysis for gui testing. In: The 23rd IEEE International Sympo-
sium on Software Reliability Engineering, ISSRE 2012, pp. 301-310. IEEE (2012)

7. Hackner, D.R., Memon, A.M.: Test case generator for guitar. In: Schafer, W.,
Dwyer, M.B., Gruhn, V. (eds.) ICSE Companion, pp. 959-960. ACM (2008)

8. Grandy, H., Benz, S.: Specification based testing of automotive human machine
interfaces. In: Fischer, S., Maehle, E., Reischuk, R. (eds.) GI Jahrestagung. LNI,
vol. 154, pp. 2720-2727. GI (2009)

9. Paiva, A.C., Tillmann, N., Faria, J.C., Vidal, R.F.: Modeling and testing hierar-
chical guis. In: Proceedings of the 12th International Workshop on Abstract State
Machines (2005)

10. Sarma, M., Murthy, P.V.R., Jell, S., Ulrich, A.: Model-based testing in industry: a
case study with two mbt tools. In: Proceedings of the 5th Workshop on Automation
of Software Test, AST 2010, pp. 87-90. ACM, New York (2010)

11. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with spec explorer. In:
Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp.
39-76. Springer, Heidelberg (2008)

	Towards a GUI Test Model
Using State Charts and Programming Code

	1 Introduction
	2 Related Work
	3 Model Structure
	4 Discussion and Conclusion
	References

