
FUTURE GENERATIONS OF PROBLEM­
SOLVING ENVIRONMENTS*

Jose C. Cunha
New University of Lisbon

Monte da Caparica, Portugal

Abstract This paper discusses several dimensions involved in the design and im­
plementation of future generations of Problem-Solving Environments
(PSEs). The paper surveys the main requirements posed both by end
users and by system developers. The main issues on the development of
future generation of PSEs are identified. A case study is then discussed
which relates to an ongoing project in the author's institution. This
research concerns the study of component coordination in a dynamic
PSE and how this issue may influence the design of the architecture of
a generic PSE.

Keywords: Problem-solving environments, coordination.

1. PROBLEM-SOLVING ENVIRONMENTS
A Problem-Solving Environment (PSE) aims at helping an end-user

in the specification and solution of a problem in terms of concepts specific
to the problem domain. It should allow the development of rapid proto­
types to ease the experimentation with specific solutions and allow the
user to learn from experience. Several recent technologies are enabling
to develop more fully integrated environments, ranging from parallel and
distributed computing, component based systems, advanced interactive
visualization, intelligent knowledge processing and discovery, to large­
scale distributed computing. The awareness to these issues has been
emerging in multiple projects all over the world[5, 6].

A PSE is an integrated environment supporting an entire life cycle
of development and execution steps to solve problems in a specific ap­
plication domain. The development steps help the user in producing a

·Thanks to the Portuguese CIENCIA, FCT/MCT, the CITI, and the PRAXIS SETNA­
ParComp {2/2.1/TIT /1557 /95}.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2001
R. F. Boisvert et al. (eds.), �e Architecture of Scienti�c Software

10.1007/978-0-387-35407-1_22

http://dx.doi.org/10.1007/978-0-387-35407-1_22

30 ARCHITECTURE OF SCIENTIFIC SOFTWARE

specification of the problem to be solved and to support its rapid pro­
totyping so that it may be submitted to execution. This involves tools
ranging from visual specification languages to intelligent components
providing expert assistance to help the user generating and tailoring the
PSE to the specific application and user needs.

The execution steps allow the user to interact with an ongoing ex­
periment, by controlling and monitoring its evolution. They support
the visualization, processing and interpretation of the input or gener­
ated data, according to the user's interests at each point during the
experiment. This requires the ability to perform activities on a diversity
of heterogeneous components, such as the problem solvers, their asso­
ciated expert assistance tools, tools for data processing, interpretation
and visualization, tools for monitoring and computational steering, on­
line access to large databases. Examples of such activities include the
selection, evaluation and testing of individual components, their acti­
vation, interconnection and configuration, the management of working
sessions, and the monitoring and control of their dynamic evolution.

Some of those components are specific to the application domain,
while others are generic tools that can be adapted according to each
application and experiment. The diversity of the above mentioned com­
ponents requires adequate infrastructures to support heterogeneous com­
puting models. In the past decade, many issues for handling heterogene­
ity including component interconnection have been addressed by multi­
ple models and associated middleware platforms. This has enabled the
development of higher levels of functionalities to support the mentioned
activities.

In the remaining of this paper, Section 2 identifies requirements for
modern generations of PSEs. Section 3 presents the main dimensions
that should be considered when developing those environments and
briefly survey approaches to develop more flexible infrastructures for
PSEs. Section 4 describes ongoing work towards building more flexible
PSEs.

2. REQUIREMENTS FOR FUTURE
GENERATIONS OF PSE

Due to the complexity of the simulation models, the large volume
of data, and the difficulties of their interpretation, PSE must satisfy a
series of requirements concerning the end-user and application needs:

• Higher Degrees of User Interaction. Increased flexibility in user
and component interaction demands user interfaces at distinct ab­
straction levels. On one hand this requires more advanced tools

Future Generations of Problem-Solving Environments 31

for computational steering and advanced visualization. On the
other hand, it requires distinct modes of operation in the same
PSE, e.g. allowing off-line of on-line processing or visualization,
to be selected depending on the user interest at each point dur­
ing an experiment. This also requires the ability of bringing new
components into an existing environment in order to provide some
specific functionalities.

• Intelligence in PSEs. Advisoring, explaining, and expert tools are
important to assist the user during the development and execution
steps. The search for a balance between automated intelligent tools
and an adequate level of user interaction will be a major issue in
future PSEs.

• Multidisciplinary Nature of the Applications. This poses the need
to support interactions between distinct sub-models, based on mul­
tiple heterogeneous and hybrid components, e.g. for the coupling
of numerical codes, or the interaction between evolutionary com­
puting models. On the other hand, PSEs should evolve towards
distributed collaborative environments, to enable the interactions
and coordination of activities among multiple users which are ex­
perts from different subproblems.

The PSE architecture must address the following main issues in order
to enable the above user requirements.

• Infrastructures for PSEs. A PSE should be able to work on top
of low-level and middleware layers which provide the services of a
meta-level distributed operating system for cluster computing and
global computing platforms. Besides heterogeneity issues, other
aspects must be addressed such as operation at a small or large
scale, security, resource management and system configuration.

• Software Architectures. Flexible PSEs require the ability to dy­
namically adapt the tools and the software architecture of the en­
tire environment. As the user interests may change during both the
development and execution steps, the focus is put on the reuse of
components and their dynamic modification, relying upon object­
oriented and component-based technologies. On the other hand,
as applications become more complex, including a large diversity
of components, one needs models and tools to support the abstract
specification of PSEs, the reasoning about global system properties
and the transformations between software levels.

32 ARCHITECTURE OF SCIENTIFIC SOFTWARE

• Building PSEs. Historically, PSEs have been developed by "man­
ually" assembling a usually small set of components that are inter­
connected in a specific way for a specific application. New methods
for developing and generating PSEs are necessary in order to meet
their intended flexibility and their increased complexity and size.
This requires the identification of more generic architectures and
services for PSEs, that can be tailored to specific classes of target
problem domains. It also requires tools for supporting the more /
less automatic generation of specific PSEs.

• Dynamic Configuration and Coordination Issues. Dynamic PSEs
will support the modification of components and their interaction
patterns. This requires both theoretical and practical develop­
ments on the design of abstract patterns of interactions, on the
dynamic reconfiguration of software architectures, and on the co­
ordination of distributed systems.

These requirements pose new challenges to future generations of PSEs
[10, 12].

3. MAIN DIMENSIONS IN PSE
DEVELOPMENT

A PSE involves tools which are specific to the application domain,
e.g. a simulator, and other more generic ones, such as a monitoring
tool. There is a need for tools supporting the application building, by
selecting, evaluating, testing, configuring, activating and interconnect­
ing, monitoring and controlling the execution of multiple heterogeneous
components. These main dimensions are represented in the figure 1.

The development of a PSE addresses issues at several distinct ab­
straction levels. Coordination concerns the consistent representation
and management of dynamic patterns of interaction among components
[7], and the definition of the corresponding cooperation and commu­
nication models. It requires adequate models and frameworks for the
software architecture of the PSE. Software Architectures concern the
specification of the structure of a system in terms of its components
and interconnections[ll],and it provides the models and tools to reason
about global system properties. Monitoring and Control includes sup­
port for the observation and control of distributed experiments, such as
distributed monitoring, computational steering and advanced visualiza­
tion[8, 9]. Resource Management and Interconnection Services handle
configuration of parallel and distributed heterogeneous virtual machines,
activation of component instances, infrastructures for the interconnec-

Future Generations of Problem-Solving Environments 33

CoonIl ... tlon

Software
Architecture

Monitoring and
Control

Resource M g.

Infrastructures

T

0

0

L

S

Application
COOlponenls

PSE

Figure 1 Dimensions in PSE development

tion of heterogeneous components, and management of local and large
scale operations for clusters and metacomputing[4].

Among the diversity of ongoing projects[6] we mention some of the
representative efforts which are opening the way to more advanced PSEs.
Globus [4] provides an infrastructure for metacomputing, "the GRID",
giving access to large scale distributed resources and allowing the devel­
opment of high-level services. Distributed Computational Laboratories[9]
supports increased interactivity in high-performance computing for sin­
gle and collaborative users. It provides an infrastructure for distributed
resource management, and services for the management of experiments
with computational steering, monitoring and dynamic system behavior.
A Generic Problem-Solving Environment[13] is building a generic infras­
tructure to implement PSEs for distinct application domains. It relies on
an infrastructure for distributed computing and it offers an intermediate
layer with a set of generic services for the specification of components
and for abstract resource management. An application dependent layer
is then used to build specific PSEs for each domain.

4. AN EXPERIENCE TOWARDS DYNAMIC
PSE

A project at the author's institution aims at building more flexible
and dynamic parallel and distributed PSEs[3]. One goal is to develop a
framework for PSEs consisting of heterogeneous components. It should
allow the design of flexible and extensible tools supporting observation
and control services, as well as the study of dynamic PSEs, their software
architecture, and the required coordination models. Another goal is to

34 ARCHITECTURE OF SCIENTIFIC SOFTWARE

use the above framework to implement prototypes for specific application
domains which can be used in real applications and adapted according
to the user needs. This contributes to improve the functionalities and
tools offered by the PSE.

This project initially involved the cooperation with colleagues from
the Environmental Sciences and Engineering Department[2, 3] for the
design and implementation of a system architecture for Parallel Genetic

(PGA). The system also included tools for off-line / online
processing and visualization of the evolution of the GA computations,
as well as tools for on-line modifications of the parameters. Several pro­
totypes were developed for the execution, visualization and steering of
PGAs. These versions only supported a static configuration consisting
of multiple heterogeneous components. They mainly differ in the dis­
tinct implementations of the GA component (based on shared-memory
or distributed-memory models), and of the steering components. A
flexible monitoring and control architecture (DAMS) supporting hetero­
geneous tools was designed and used to support control and resource
management services. DAMS is based on a design which only provides
the minimal functionalities for observation and control of a distributed
application. The main idea is to allow incremental extension of new
services, depending on the changing requirements. DAMS is neutral
concerning the supported services and the target application model. In­
stead of a fixed API, DAMS allows each service module to provide a
specific interface, and allows the configuration of the corresponding low
level drivers which act upon the target application. DAMS was used
to implement a resource management service for the configuration and
steering of the mentioned PGA prototype.

A distributed architecture brings increased potentialities to integrate
distinct components. Due to the complexity and heterogeneity of mod­
ern applications, one often needs to subdivide them, each subproblem
being solved by a distinct model which is allowed to evolve autonomously.
Still they must be able to interact and cooperate due to global appli­
cation constraints or to improve global application behavior. In order
to meet these requirements, the development of a generic heterogeneous
component-based environment is under way. It will provide increased
flexibility in the configuration and activation of its components, the pro­
gramming of their interactions, and the monitoring and control of their
global and individual behaviors.

In the most simple case, the components are statically specified and
the configuration of the PSE remains unchanged during an entire experi­
ment. In order to provide increased flexibility and allow the user to have
a more interactive role regarding the execution of an experiment, it is

Future Generations of Problem-Solving Environments 35

necessary to consider the dynamic insertion and removal of components.
In this way a single user is able to change the system configuration as
a specific experiment progresses, in order to evaluate distinct aspects
of the problem. Also, multiple users can concurrently join ongoing ex­
periments with distinct roles (observers, controllers). Computational
steering plays an increasingly important role in many complex applica­
tions to help the user learning how the simulation behaves depending on
a diversity of application and system parameters. It is also important
to allow the user to focus on specific parts of the problem models or to
specify the most desirable levels of detail in complex systems. Besides
user driven steering, agent driven steering can be useful to allow the au­
tomatic control of the evolution of a computation. Previous knowledge
about problem behavior can be integrated into intelligent controllers
that may act autonomously upon the computational components. For
heterogeneous applications it could be useful to simultaneously support
user driven and automatic steering components.

Besides the definition of suitable interfaces for the monitoring and
steering components, all of the above requires the system to provide
adequate mechanisms for the consistent coordination of multiple com­
ponents. We are studying how support for dynamic reconfiguration can
increase the flexibility of a PSE. In order to evaluate this aspect, we
are designing a collection of application level scenarios which involve
multiple tools and components of a PSE. Then we analyze how their
dynamic reconfiguration can improve the expressiveness of the life cycle
for application development and execution. The final goal is to be able
to model a diversity of interaction patterns between components and to
support their dynamic modification. The model defines a collection of
coordination operations that allow the control of components and their
interconnections.

5. CONCLUSIONS
A survey was presented of the main dimensions in the design of future

generations of Problem-Solving Environments. A hierarchy of concep­
tuallayers allows to identify the main issues. Namely, coordination is­
sues and specification of software architectures are important to handle
the increased complexity of dynamic PSEs and their flexibility. An out­
line of ongoing work was presented concerning experimentation towards
developing flexible dynamic PSE and tools.

36 ARCHITECTURE OF SCIENTIFIC SOFTWARE

Acknowledgments

To the Parallel and Distributed Processing Group. To D. Pereira, L. Almeida, B.
Horta, L. Duarte, J. Duarte, N. Neves, G. Fert, J. Vieira and B. Moscao.

References

[1] Casanova, H. and J. J. Dongarra {1997}. NetSolve: A Network­
Enabled Server for Solving Computational Science Problems, Int.
J. Supercomputing Appl. 11, 3, 212-223.

[2] Cunha, J. C. {1999}. Parallel and Distributed Processing in aPSE
for Environmental Science, in European Research Conference on
Advanced Environments and Tools for High Performance Comput­
ing: Problem-Solving Environments, Infrastructure and Prototypes,
(http://www.cs.cf.ac. uk/ euresco99 f).

[3] Cunha, J. C. and P. Medeiros and V. Duarte, and J. Louren<;o,
and M. C. Gomes {1999}. An Experience in Building a Parallel
and Distributed Problem-Solving Environment, in Proceedings of
PDPTA '99 - International Conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, USA, CSREA
Press, 1804-1809.

[4] Foster, I. and C. Kesselman {1997}. GLOBUS: A Metacomputing
Infrastructure Toolkit, Int. J. Supercomputing Appl. 11,2, 115-128.

[5] Gallopoulos, E. and E. N. Houstis and J. R. Rice {1995}. Work­
shop on Problem Solving Environments: Findings and Recommen­
dations, ACM Computing Surveys, 27, 2, 277-279.

[6] Houstis, E.N. and J. R. Rice. and E. Gallopoulos and R. Bramley
{2000}. Enabling Technologies for Computational Science: Frame­
works, Middleware and Environments, Kluwer Academic Publish­
ers, Boston.

[7] Papadopoulos, G. A. and F. Arbab {1998}. Coordination Models
and Languages, Advances in Computers, 46, The Engineering of
Large Systems, Academic Press.

[8] Parker, S. G. and M. Miller and C. D. Hansen and C. R. Johnson
{1998}. An Integrated Problem Solving Environment: The SCIRun
Computational Steering System, in Proceedings of the 31st Hawaii
International Conference on System Sciences (HICSS-31) , 147-156.

[9] Plale, B. and K.Schwan and V.Elling and D.King and G.Eisenhauer
and V.Martin {1998}. Realizing Distributed Computational Labo­
ratories, International Journal of Parallel and Distributed Systems
and Networks.

Future Generations of Problem-Solving Environments 37

[10] J. R. Rice {1997}. Future Scientific Software Systems, IEEE Com­
putational Science and Engineering, April-June issue, 44-48.

[11] Shaw, M. and D. Garlan {1996}. Software Architecture: Perspectives
on an Emerging Discipline, Prentice-Hall, Englewood Cliffs, N.J.

[12] Walker, D. W. {1999}. European Research Conference on Ad­
vanced Environments and Tools for High Performance Computing:
Problem-Solving Environments, Infrastructure and Prototypes, San
Feliu de Guixols, Spain (http://www.cs.cf.ac.uk/euresco99/).

[13] Walker, D. W. and M. Li and O.F. Rana and M.S. Shields
and Y.Huang {1999}. The Software Architecture of a Distributed
Problem-Solving Environment, Report ORNL/TM-1999/32, Com­
puter Science and Mathematics Division, Oak Ridge National Lab­
oratory, Tennessee.

	FUTURE GEN
ERATIONS OF PROBLEM SOLVING ENVIRONMENTS*
	1. PROBLEM-SOLVING ENVIRONMENTS
	2. REQUIREMENTS FOR FUTUREGENERATIONS OF PSE
	3. MAIN DIMENSIONS IN PSEDEVELOPMENT
	4. AN EXPERIENCE TOWARDS DYNAMICPSE
	5. CONCLUSIONS
	Acknowledgments
	References

