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Abstract This paper discusses several dimensions involved in the design and im­
plementation of future generations of Problem-Solving Environments 
(PSEs). The paper surveys the main requirements posed both by end 
users and by system developers. The main issues on the development of 
future generation of PSEs are identified. A case study is then discussed 
which relates to an ongoing project in the author's institution. This 
research concerns the study of component coordination in a dynamic 
PSE and how this issue may influence the design of the architecture of 
a generic PSE. 
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1. PROBLEM-SOLVING ENVIRONMENTS 
A Problem-Solving Environment (PSE) aims at helping an end-user 

in the specification and solution of a problem in terms of concepts specific 
to the problem domain. It should allow the development of rapid proto­
types to ease the experimentation with specific solutions and allow the 
user to learn from experience. Several recent technologies are enabling 
to develop more fully integrated environments, ranging from parallel and 
distributed computing, component based systems, advanced interactive 
visualization, intelligent knowledge processing and discovery, to large­
scale distributed computing. The awareness to these issues has been 
emerging in multiple projects all over the world[5, 6]. 

A PSE is an integrated environment supporting an entire life cycle 
of development and execution steps to solve problems in a specific ap­
plication domain. The development steps help the user in producing a 
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specification of the problem to be solved and to support its rapid pro­
totyping so that it may be submitted to execution. This involves tools 
ranging from visual specification languages to intelligent components 
providing expert assistance to help the user generating and tailoring the 
PSE to the specific application and user needs. 

The execution steps allow the user to interact with an ongoing ex­
periment, by controlling and monitoring its evolution. They support 
the visualization, processing and interpretation of the input or gener­
ated data, according to the user's interests at each point during the 
experiment. This requires the ability to perform activities on a diversity 
of heterogeneous components, such as the problem solvers, their asso­
ciated expert assistance tools, tools for data processing, interpretation 
and visualization, tools for monitoring and computational steering, on­
line access to large databases. Examples of such activities include the 
selection, evaluation and testing of individual components, their acti­
vation, interconnection and configuration, the management of working 
sessions, and the monitoring and control of their dynamic evolution. 

Some of those components are specific to the application domain, 
while others are generic tools that can be adapted according to each 
application and experiment. The diversity of the above mentioned com­
ponents requires adequate infrastructures to support heterogeneous com­
puting models. In the past decade, many issues for handling heterogene­
ity including component interconnection have been addressed by multi­
ple models and associated middleware platforms. This has enabled the 
development of higher levels of functionalities to support the mentioned 
activities. 

In the remaining of this paper, Section 2 identifies requirements for 
modern generations of PSEs. Section 3 presents the main dimensions 
that should be considered when developing those environments and 
briefly survey approaches to develop more flexible infrastructures for 
PSEs. Section 4 describes ongoing work towards building more flexible 
PSEs. 

2. REQUIREMENTS FOR FUTURE 
GENERATIONS OF PSE 

Due to the complexity of the simulation models, the large volume 
of data, and the difficulties of their interpretation, PSE must satisfy a 
series of requirements concerning the end-user and application needs: 

• Higher Degrees of User Interaction. Increased flexibility in user 
and component interaction demands user interfaces at distinct ab­
straction levels. On one hand this requires more advanced tools 
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for computational steering and advanced visualization. On the 
other hand, it requires distinct modes of operation in the same 
PSE, e.g. allowing off-line of on-line processing or visualization, 
to be selected depending on the user interest at each point dur­
ing an experiment. This also requires the ability of bringing new 
components into an existing environment in order to provide some 
specific functionalities. 

• Intelligence in PSEs. Advisoring, explaining, and expert tools are 
important to assist the user during the development and execution 
steps. The search for a balance between automated intelligent tools 
and an adequate level of user interaction will be a major issue in 
future PSEs. 

• Multidisciplinary Nature of the Applications. This poses the need 
to support interactions between distinct sub-models, based on mul­
tiple heterogeneous and hybrid components, e.g. for the coupling 
of numerical codes, or the interaction between evolutionary com­
puting models. On the other hand, PSEs should evolve towards 
distributed collaborative environments, to enable the interactions 
and coordination of activities among multiple users which are ex­
perts from different subproblems. 

The PSE architecture must address the following main issues in order 
to enable the above user requirements. 

• Infrastructures for PSEs. A PSE should be able to work on top 
of low-level and middleware layers which provide the services of a 
meta-level distributed operating system for cluster computing and 
global computing platforms. Besides heterogeneity issues, other 
aspects must be addressed such as operation at a small or large 
scale, security, resource management and system configuration. 

• Software Architectures. Flexible PSEs require the ability to dy­
namically adapt the tools and the software architecture of the en­
tire environment. As the user interests may change during both the 
development and execution steps, the focus is put on the reuse of 
components and their dynamic modification, relying upon object­
oriented and component-based technologies. On the other hand, 
as applications become more complex, including a large diversity 
of components, one needs models and tools to support the abstract 
specification of PSEs, the reasoning about global system properties 
and the transformations between software levels. 
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• Building PSEs. Historically, PSEs have been developed by "man­
ually" assembling a usually small set of components that are inter­
connected in a specific way for a specific application. New methods 
for developing and generating PSEs are necessary in order to meet 
their intended flexibility and their increased complexity and size. 
This requires the identification of more generic architectures and 
services for PSEs, that can be tailored to specific classes of target 
problem domains. It also requires tools for supporting the more / 
less automatic generation of specific PSEs. 

• Dynamic Configuration and Coordination Issues. Dynamic PSEs 
will support the modification of components and their interaction 
patterns. This requires both theoretical and practical develop­
ments on the design of abstract patterns of interactions, on the 
dynamic reconfiguration of software architectures, and on the co­
ordination of distributed systems. 

These requirements pose new challenges to future generations of PSEs 
[10, 12]. 

3. MAIN DIMENSIONS IN PSE 
DEVELOPMENT 

A PSE involves tools which are specific to the application domain, 
e.g. a simulator, and other more generic ones, such as a monitoring 
tool. There is a need for tools supporting the application building, by 
selecting, evaluating, testing, configuring, activating and interconnect­
ing, monitoring and controlling the execution of multiple heterogeneous 
components. These main dimensions are represented in the figure 1. 

The development of a PSE addresses issues at several distinct ab­
straction levels. Coordination concerns the consistent representation 
and management of dynamic patterns of interaction among components 
[7], and the definition of the corresponding cooperation and commu­
nication models. It requires adequate models and frameworks for the 
software architecture of the PSE. Software Architectures concern the 
specification of the structure of a system in terms of its components 
and interconnections[ll],and it provides the models and tools to reason 
about global system properties. Monitoring and Control includes sup­
port for the observation and control of distributed experiments, such as 
distributed monitoring, computational steering and advanced visualiza­
tion[8, 9]. Resource Management and Interconnection Services handle 
configuration of parallel and distributed heterogeneous virtual machines, 
activation of component instances, infrastructures for the interconnec-
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Figure 1 Dimensions in PSE development 

tion of heterogeneous components, and management of local and large 
scale operations for clusters and metacomputing[4]. 

Among the diversity of ongoing projects[6] we mention some of the 
representative efforts which are opening the way to more advanced PSEs. 
Globus [4] provides an infrastructure for metacomputing, "the GRID", 
giving access to large scale distributed resources and allowing the devel­
opment of high-level services. Distributed Computational Laboratories[9] 
supports increased interactivity in high-performance computing for sin­
gle and collaborative users. It provides an infrastructure for distributed 
resource management, and services for the management of experiments 
with computational steering, monitoring and dynamic system behavior. 
A Generic Problem-Solving Environment[13] is building a generic infras­
tructure to implement PSEs for distinct application domains. It relies on 
an infrastructure for distributed computing and it offers an intermediate 
layer with a set of generic services for the specification of components 
and for abstract resource management. An application dependent layer 
is then used to build specific PSEs for each domain. 

4. AN EXPERIENCE TOWARDS DYNAMIC 
PSE 

A project at the author's institution aims at building more flexible 
and dynamic parallel and distributed PSEs[3]. One goal is to develop a 
framework for PSEs consisting of heterogeneous components. It should 
allow the design of flexible and extensible tools supporting observation 
and control services, as well as the study of dynamic PSEs, their software 
architecture, and the required coordination models. Another goal is to 
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use the above framework to implement prototypes for specific application 
domains which can be used in real applications and adapted according 
to the user needs. This contributes to improve the functionalities and 
tools offered by the PSE. 

This project initially involved the cooperation with colleagues from 
the Environmental Sciences and Engineering Department[2, 3] for the 
design and implementation of a system architecture for Parallel Genetic 

(PGA). The system also included tools for off-line / online 
processing and visualization of the evolution of the GA computations, 
as well as tools for on-line modifications of the parameters. Several pro­
totypes were developed for the execution, visualization and steering of 
PGAs. These versions only supported a static configuration consisting 
of multiple heterogeneous components. They mainly differ in the dis­
tinct implementations of the GA component (based on shared-memory 
or distributed-memory models), and of the steering components. A 
flexible monitoring and control architecture (DAMS) supporting hetero­
geneous tools was designed and used to support control and resource 
management services. DAMS is based on a design which only provides 
the minimal functionalities for observation and control of a distributed 
application. The main idea is to allow incremental extension of new 
services, depending on the changing requirements. DAMS is neutral 
concerning the supported services and the target application model. In­
stead of a fixed API, DAMS allows each service module to provide a 
specific interface, and allows the configuration of the corresponding low 
level drivers which act upon the target application. DAMS was used 
to implement a resource management service for the configuration and 
steering of the mentioned PGA prototype. 

A distributed architecture brings increased potentialities to integrate 
distinct components. Due to the complexity and heterogeneity of mod­
ern applications, one often needs to subdivide them, each subproblem 
being solved by a distinct model which is allowed to evolve autonomously. 
Still they must be able to interact and cooperate due to global appli­
cation constraints or to improve global application behavior. In order 
to meet these requirements, the development of a generic heterogeneous 
component-based environment is under way. It will provide increased 
flexibility in the configuration and activation of its components, the pro­
gramming of their interactions, and the monitoring and control of their 
global and individual behaviors. 

In the most simple case, the components are statically specified and 
the configuration of the PSE remains unchanged during an entire experi­
ment. In order to provide increased flexibility and allow the user to have 
a more interactive role regarding the execution of an experiment, it is 
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necessary to consider the dynamic insertion and removal of components. 
In this way a single user is able to change the system configuration as 
a specific experiment progresses, in order to evaluate distinct aspects 
of the problem. Also, multiple users can concurrently join ongoing ex­
periments with distinct roles (observers, controllers). Computational 
steering plays an increasingly important role in many complex applica­
tions to help the user learning how the simulation behaves depending on 
a diversity of application and system parameters. It is also important 
to allow the user to focus on specific parts of the problem models or to 
specify the most desirable levels of detail in complex systems. Besides 
user driven steering, agent driven steering can be useful to allow the au­
tomatic control of the evolution of a computation. Previous knowledge 
about problem behavior can be integrated into intelligent controllers 
that may act autonomously upon the computational components. For 
heterogeneous applications it could be useful to simultaneously support 
user driven and automatic steering components. 

Besides the definition of suitable interfaces for the monitoring and 
steering components, all of the above requires the system to provide 
adequate mechanisms for the consistent coordination of multiple com­
ponents. We are studying how support for dynamic reconfiguration can 
increase the flexibility of a PSE. In order to evaluate this aspect, we 
are designing a collection of application level scenarios which involve 
multiple tools and components of a PSE. Then we analyze how their 
dynamic reconfiguration can improve the expressiveness of the life cycle 
for application development and execution. The final goal is to be able 
to model a diversity of interaction patterns between components and to 
support their dynamic modification. The model defines a collection of 
coordination operations that allow the control of components and their 
interconnections. 

5. CONCLUSIONS 
A survey was presented of the main dimensions in the design of future 

generations of Problem-Solving Environments. A hierarchy of concep­
tuallayers allows to identify the main issues. Namely, coordination is­
sues and specification of software architectures are important to handle 
the increased complexity of dynamic PSEs and their flexibility. An out­
line of ongoing work was presented concerning experimentation towards 
developing flexible dynamic PSE and tools. 
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