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a b s t r a c t

Recent Raman scattering studies in different types of graphene samples are reviewed here.
We first discuss the first-order and the double resonance Raman scattering mechanisms
in graphene, which give rise to the most prominent Raman features. The determination
of the number of layers in few-layer graphene is discussed, giving special emphasis to
the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer
graphene stacked in the Bernal (AB) configuration. Different types of graphene samples
produced both by exfoliation and using epitaxial methods are described and their Raman
spectra are compared with those of 3D crystalline graphite and turbostratic graphite, in
which the layers are stacked with rotational disorder. We show that Resonance Raman
studies, where the energy of the excitation laser line can be tuned continuously, can be
used to probe electrons and phonons near the Dirac point of graphene and, in particular
allowing a determination to bemade of the tight-binding parameters for bilayer graphene.
The special process of electron–phonon interaction that renormalizes the phonon energy
giving rise to the Kohn anomaly is discussed, and is illustrated by gated experiments where
the position of the Fermi level can be changed experimentally. Finally, we discuss the
ability of distinguishing armchair and zig-zag edges by Raman spectroscopy and studies
in graphene nanoribbons in which the Raman signal is enhanced due to resonance with
singularities in the density of electronic states.
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1. Introduction

Interest in studying the fundamental properties of graphene has grown in recent years since the discovery of an easy
method to fabricate and identify these structures [1,2] and especially after the reports of the unusual quantum Hall effect
in these systems [3,4]. Raman spectroscopy has historically played an important role in the structural characterization of
graphitic materials [5–19], and has also become a powerful tool for understanding the behavior of electrons and phonons
in graphene [20–25], aimed at gaining a better understanding of the information on graphene that we can get from Raman
spectroscopy studies.

1.1. Types of graphene samples

Graphene consists of sp2 carbon hexagonal networks, in which strong covalent bonds are formed between two adjacent
carbon atoms. The unit cell for monolayer graphene (1-LG) contains two carbon atoms, A and B, each forming a triangular
2D network, but displaced from each other by the carbon–carbon distance aC–C = 0.142 nm, as shown in Fig. 1(a).
The 3D graphite structure corresponds to a stacking of the hexagonal networks of individual graphene layers in the

direction perpendicular to the layer plane (c-axis) in an AB (or Bernal) stacking arrangement, in which the vacant centers
of the hexagons on one layer have carbon atoms on hexagonal corner sites on the two adjacent graphene layers, as shown
in Fig. 1(b). In graphite with AB stacking, the unit cell consists of four carbon atoms A1, A2, B1, and B2 on the two layer
planes shown in Fig. 1(b). The in-plane and c-axis lattice constants for graphite are a = 0.246 nm and c = 0.670 nm,
respectively. Normally, the bilayer graphene samples obtained from the mechanical exfoliation of graphite exhibit an AB
stacking arrangement, and therefore the number of atoms in the unit cell of bilayer graphene (2-LG) is the same as that for
graphite, with four atoms per unit cell, as shown in Fig. 1(b) and (c). Trilayer graphene (3-LG) in turn contains three layers,
two of which are like bilayer graphene and the third layer has atom A3 over A1 and atom B3 over B1 as shown in Fig. 1(d).
Four layer graphene (4-LG) consists of the stacking of two unit cells of the type shown in Fig. 1(c), one stacked on top of the
other.
In reciprocal space, the unit cell is as shown in Fig. 1(e) for monolayer and bilayer (1-LG and 2-LG), and is planar,

though atomic motion in the z direction normal to the plane would require a third direction. Fig. 1(e) also shows some high
symmetry points within the first Brillouin zone of monolayer graphene: The Γ point at the zone center, theM points in the
middle of the hexagonal sides and the K and K ′ points at the corners of the hexagons. Notice that K and K ′ are inequivalent
since they are not connected by the unit vectors of the reciprocal lattice. In contrast, 3-LG and 4-LG reciprocal space requires
a plane for kz = 0 and kz = π/c forming the lower and upper planes of the Brillouin zone (BZ) for 3D graphite, as shown in
Fig. 1(f).
In turbostratic graphite, denoted by 2D graphite, there is no stacking order between adjacent graphene layers and the

interlayer spacing (>0.342 nm) is larger than that for crystalline graphite (c/2 = 0.335 nm). The absence of stacking order
between the graphene planes results in 2D graphite having modified physical properties relative to 3D crystalline graphite.
Crystalline 3D graphite is found in nature as a natural mineral, or is prepared from precipitants coming from steel-making,
and these flakes are called ‘‘kish’’ graphite. Another common formof crystalline graphite is highly oriented pyrolytic graphite
(HOPG),which is a synthetic AB stacked graphite obtained from carbon-based precursors, and heat treated at various high
temperatures (over 3200 ◦C under pressure) [26].
Graphene samples in the early days of their study were mainly prepared by the mechanical exfoliation of HOPG graphite

[1,2,27], although earlier preparationhad occurred based on anano-diamondprecursormaterial [28]. Both of these graphene
forms lead to multilayer graphene samples with AB Bernal stacking. An alternate route for the preparation of graphene
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Fig. 1. (a) A top view of the real space unit cell of monolayer graphene showing the inequivalent atoms A and B and unit vectors a1 and a2 . (b) A top view
of the real space of bilayer graphene. The light/dark gray dots and the black circles/black dots represent the carbon atoms in the upper and lower layers,
respectively, of bilayer graphene (2-LG). (c) The unit cell and the x̂ and ŷ unit vectors of bilayer graphene and (d) the same as (c) but for trilayer graphene.
(e) The reciprocal space unit cell showing the 1st Brillouin zone with its high symmetry points and lines, such as T connecting Γ to K ; Σ connecting Γ
to M; T ′ connecting K to M . The two primitive vectors

−→
b1 and

−→
b2 are shown and the two vectors on the top of the three hexagons show the reciprocal

space coordinate axes. (f) The Brillouin zone for 3D graphite, showing the high symmetry points and axes. Here1 is a high symmetry point along the axis
connecting points A and Γ , and u is a point in the KMΓ plane.

Fig. 2. (a) Calculated phonon dispersion relation of graphene showing the iLO, iTO, oTO, iLA, iTA and oTA phonon branches. (Adapted from Ref. [33]).

samples is from a SiC-based precursor method [29,30], leading to a graphene family of materials with significant interaction
with the SiC substrate, thereby having somewhat different properties, including only partial stacking order. Epitaxial
chemical vapor deposition (CVD) growth of graphene using various transition metal catalysts, such as Ni, has also been
demonstrated [31], and this class of materials is still under active development. Experiments described in this review are
carried out on graphene samples sitting on various substrates (like Si/SiO2), freely suspended, chemically doped or gated
to control the Fermi level. Freely suspended graphene tends to have higher mobility than its graphene counterparts on
substrates [32].

1.2. Phonon dispersion of graphene

An understanding of the phonon dispersion of graphene is essential to interpret the Raman spectra of graphene. Since the
unit cell of monolayer graphene contains two carbon atoms, A and B, there are six phonon dispersion bands (see Fig. 2), in
which three are acoustic branches (A) and the other three are optic (O) phonon branches. For one acoustic branch (A) and one
optic (O) phonon branch, the atomic vibrations are perpendicular to the graphene plane, and they correspond to the out-of-
plane (o) phonon modes. For two acoustic and two optic phonon branches, the vibrations are in-plane (i). Traditionally, the
directions of the vibrations are considered with respect to the direction of the nearest carbon–carbon atoms and, therefore,
the phononmodes are classified as longitudinal (L) or transverse (T) according to vibrations parallelwith or perpendicular to,
respectively, the A–B carbon–carbon directions. Therefore, along the high symmetry ΓM and Γ K directions, the six phonon
dispersion curves are assigned to LO, iTO, oTO, LA, iTA, and oTA phonon modes. (see Fig. 2)
Near the zone center (Γ point), the in-plane iTO and LO optic modes correspond to the vibrations of the sublattice A

against the sublattice B, and these modes are degenerate at the Γ point. According to Group Theory (see Section 1.4), the
degenerate zone-center LO and iTO phonon modes belong to the two-dimensional E2g representation and, therefore, they
are Raman active modes [8,34]. The degeneracy of the LO and iTO phonons disappears for points inside the first Brillouin
zone (BZ) of graphene. Along the Γ –K line, the LO and iTO branches will have T3 and T1 symmetries, respectively, whereas
the symmetries of these branches along the Γ –M line areΣ3 andΣ1, respectively [35,36].
The phonon modes around the K point are especially important, since the D-band and G′-band are related to phonon

modes in the vicinity of the K point. Exactly at the K -point, the phononwhich comes from the iTO branch is non-degenerate
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Fig. 3. Raman spectrum of a graphene edge, showing the main Raman features, the D, G and G′ bands taken with a laser excitation energy of 2.41 eV.

and belongs to the A′1 irreducible representation of the point group D3h. The LO and LA phonon branches meet each other at
the K point giving rise to a doubly degenerate phonon, with E ′ symmetry [37,38].
Finally, to correctly describe the dispersion of the LO and iTO phonon branches near the Γ and K points, it is

important to consider the renormalization of the phonon energies, associated with a process in which a phonon can create
an electron–hole pair (similarly to the creation of a electron–positron pair by a photon in quantum electrodynamics)
[39]. This important electron–phonon coupling cannot be understood within the framework of the Born–Oppenheimer
approximations, and gives rise to an interesting effect known as the Kohn anomaly [40]. The Kohn anomaly is responsible
for a softening of certain Γ and K point phonons [41].
In 3D graphite, there is a phonon dispersion along the c direction perpendicular to the plane. For few layer graphene

(F-LG), we have a finite number of graphene planes, and several of the in-plane phonon branches are now split by discrete
wave vectors in the c direction. In the case of bilayer graphene, the phonon branches of monolayer graphene split into two
branches, which correspond to the in-phase (symmetric) or out-of-phase (anti-symmetric) vibrations of the atoms in the
two different layers.

1.3. First-order Raman and double resonance Raman scattering in graphene

The most prominent features in the Raman spectra of monolayer graphene are the so-called G band appearing at
1582 cm−1 (graphite) and the G′ band at about 2700 cm−1 using laser excitation at 2.41 eV (see for example, Fig. 3). In
the case of a disordered sample or at the edge of a graphene sample, we can also see the so-called disorder-induced D-band,
at about half of the frequency of the G′ band (around 1350 cm−1 using laser excitation at 2.41 eV).
The G band is associated with the doubly degenerate (iTO and LO) phonon mode (E2g symmetry) at the Brillouin zone

center. In fact, the G-band is the only band coming from a normal first order Raman scattering process in graphene. On the
other hand, the G′ and D-bands originate from a second-order process, involving two iTO phonons near the K point for the
G′ band or one iTO phonon and one defect in the case of the D-band. Since the G′ band is approximately twice the D band
frequency (ωG′ ∼ 2ωD), some authors prefer to call it the 2D band. However, this two-phonon band is allowed in the second-
order Raman spectra of graphenes without any kind of disorder or defects. In order to prevent anymisleading connection of
this feature with disorder or defects, and to avoid confusion between the designation of ‘‘2D’’ to denote two dimensionality,
wewill use here the conventional notation ‘‘G′-band’’ as is used in the graphite and nanotube literature.We use the notation
D′-band to denote another weak disorder-induced feature which appears at∼1620 cm−1, as is discussed further below.
Both the D and G′ bands exhibit a dispersive behavior since their frequencies in the Raman spectra change as a function

of the energy of the incident laser, Elaser. The D-band frequency ωD upshifts linearly with increasing Elaser over a wide laser
energy range, the slope of (∂ωD/∂Elaser) being about 50 cm−1/eV. The slope of (∂ωG′/∂Elaser) is about twice that of the
D-band, i.e., around 100 cm−1/eV [42–44].
The origin and the dispersive behavior in the frequency of the D and G′ bands originate from a double resonance (DR)

Raman process [45–47]. In this DR process, thewave-vectors q of the phonons associatedwith theD and G′ bands (measured
from the K point)would couple preferentially to the electronic stateswithwave-vectors k (measured from the K point), such
that q ' 2k.
The double-resonance (DR) process shown in the center and right side of Fig. 4 begins with an electron of wave-vector k

around K absorbing a photon of energy Elaser. The electron is inelastically scattered by a phonon or a defect of wavevector q
and energy Ephonon to a point belonging to a circle around the K ′ point, with wavevector k+ q, where the K ′ point is related
to K by time reversal symmetry [36]. The electron is then scattered back to a k state, and emits a photon by recombining
with a hole at a k state. In the case of the D band, the two scattering processes consist of one elastic scattering event by
defects of the crystal and one inelastic scattering event by emitting or absorbing a phonon, as shown in Fig. 4. In the case
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Fig. 4. (Left) First-order G-band process and (Center) one-phonon second-order DR process for the D-band (intervalley process) (top) and for the D′-band
(intravalley process) (bottom) and (Right) two-phonon second-order resonance Raman spectral processes (top) for the double resonance G′ process, and
(bottom) for the triple resonance G′ band process (TR) for monolayer graphene [6]. For one-phonon, second-order transitions, one of the two scattering
events is an elastic scattering event. Resonance points are shown as open circles near the K point (left) and the K ′ point (right).

of the G′-band, both processes are inelastic scattering events and two phonons are involved. This double resonance mech-
anism is called an intervalley process because it connects points in circles around inequivalent K and K ′ points in the first
Brillouin zone of graphene. On the other hand, the double resonance process responsible for the D′ band (∼1620 cm−1) is
an intra-valley process, since it connects two points belonging to the same circle around the K point (or the K ′ point) [47,48].
In principle, many different initial electronic states around the K point (or Dirac point) and phonons with different

symmetries and wavevectors can satisfy the DR condition. However, due to: (1) the existence of singularities in the density
of phonon states which satisfy the DR condition, (2) the angular dependence of the electron–phonon scattering matrix
elements, and (3) the destructive interference effectswhen the Raman transition probability is calculated, only a few specific
DR processes contribute strongly to the Raman G′ and D bands [49]. For example, only iTO and iLO branches are observed
in the intervalley and intravalley DR processes, respectively, because the corresponding phonons are strongly coupled to
electrons along the high-symmetry directions associated with the singularities in the DR phonon density of states [37,47,
48,50–52].
When Elaser is increased relative to the Dirac point, the resonance k vector for the electron moves away from the K point.

In the DR process, the corresponding q vector for the phonon increases with increasing k, as measured from the K point.
Thus by changing the laser energy, we can observe the phonon energy h̄ω(q) along the phonon dispersion relations (Fig. 2).
This effect is observed experimentally as a dispersion of the phonon energy as a function of Elaser [48]. A tunable laser system
can directly show this dispersive behavior for the D-band and G′-band in the Raman spectrum.
In a DR Raman process, two resonance conditions for three scattering events should be satisfied, in which the

intermediate k + q state is always a real electronic state and either the initial or the final k state is a real electronic state
[53]. However, the Raman process can also occur by scattering of holes. In the special case of graphene, where the valence
and conduction bands are almost mirror bands of one another relative to the Fermi energy, this can lead to an important
effect, that is the triple resonance (TR) Raman process [54]. For example, the TR process in Fig. 4, shows that we can consider,
instead of the electron being scattered back by a phononwithwavevector−q, that the holewill be scattered by awavevector
+q. In this case, the electron–hole generation is a resonant process, in which both the electron and hole scattering processes
will be resonant, and finally the electron–hole recombination at the opposite side with respect to the K point will also occur
near the K ′ point between an electron and a hole in resonance states. Therefore, for the triple resonance process all steps in
the usual double resonance process now become resonant. This triple-resonance condition might explain why the G′-band
is more intense than the G-band in monolayer graphene. Park et al. [55] have shown that the large intensity of the G′-band
for monolayer graphene can also be explained within the context of the DR formalism.

1.4. Group theory background

In this section we review the symmetry properties for monolayer (1-LG), bilayer (2-LG) and trilayer (3-LG) graphene
giving emphasis to high symmetry lines which are important to address the DR phenomena (see Section 1.3). These
symmetry considerations support the experimental observations of the G′ band lineshape which sensitively depends on
the number of graphene layers, as given in Section 2.
Monolayer graphene (Fig. 1(a)) is described by the space group P6/mmm (D16h) in the Hermann–Mauguin (Schoenflies)

notation. At the Γ point, the group of the wavevector (GWV) is isomorphic to the point group D6h (the Schoenflies character
tables for the point groups can be found in Ref. [36]).
The real space structures for bilayer and trilayer graphene with AB Bernal stacking are show in Fig. 1(b, c) and (d),

respectively. The symmetries for N-layer graphene, with N even or odd (N 6= 1), are the same as for bilayer and trilayer
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Table 1
The space groups and wavevector point groups for monolayer, N-layer graphene and graphite at all points in the Brillouin zone.

Space group Γ K (K ′) M T (T ′) Σ U

Monolayer P6/mmm D6h D3h D2h C2v C2v C1h
N even P3m1 D3d D3 C2h C2 C1v C1
N odd P6m2 D3h C3h C2v C1h C2v C1h
N infinite P63/mmc D6h D3h D2h C2v C2v C1h

Table 2
The irreducible representations for the lattice vibrations Γlat.vib. for monolayer, bilayer and trilayer graphene at the Γ point and along the T (T ′) lines.

Monolayer Bilayer Trilayer

Γ Γ −2 + Γ
−

5 + Γ
+

4 + Γ
+

6 2(Γ +1 + Γ
+

3 + Γ
−

2 + Γ
−

3 ) 2Γ +1 + 4Γ
−

2 + 4Γ
+

3 + 2Γ
−

3
T (T ′) 2T1 + T2 + 2T3 + T4 6(T1 + T2) 10T+ + 8T−

Table 3
The irreducible representations for the group of the wavevector Γπ for monolayer, bilayer and trilayer graphene along the T (T ′) line.

Monolayer Bilayer Trilayer

T (T ′) T2 + T4 2(T1 + T2) 2T+ + 4T−

graphene, respectively. The symmetry operations that distinguish the point groups between even and odd layers are the
horizontal mirror planes, which are absent forN even, and the inversion operation, which is absent forN odd [56]. The point
groups isomorphic to the GWV formonolayer graphene,N-layer graphene (N even and odd), and forN infinite (graphite) are
listed in Table 1 for all points and lines in the first Brillouin zone (BZ) as shown in Fig. 1(e). The irreducible representations
for the lattice vibrations (Γlat.vib.) and for the π electrons (Γπ ) at the Γ point and along the T and T ′ lines (KΓ and KM
directions, respectively) in the first BZ for the Γlat.vib. are found in Table 2 and for the Γπ in Table 3. A more complete group
theory analysis for every high symmetry point inside the first BZ and depending on layer number can be found in Ref. [56].
The first order Raman process occurs at the Γ point due to momentum conservation. Then the Raman-active modes can

be found by looking at the quadratic formof the basis function corresponding to theΓlat.vib representation. The Raman-active
modes can then be summarized as follows for monolayer (1-LG), bilayer (2-LG) and trilayer (3-LG) graphene [56]:

Γ Raman = Γ +6 , for 1-LG (1)

Γ Raman = 2Γ +3 + 2Γ
+

1 , for 2-LG (2)

Γ Raman = 3Γ +3 + 2(Γ
−

3 + Γ
+

1 ), for 3-LG. (3)

In monolayer graphene 1-LG the Raman G band is ascribed to a doubly degenerate Γ +6 symmetry mode. In bilayer
graphene the G band belongs to the Γ +3 irreducible representation, which is doubly degenerate and represents the atomic
motion of nearest neighbor carbon atomsmoving against each other within the plane and in phase between the two layers;
we call this mode the symmetric (S) G mode. The Γ −3 representation, which is not Raman active in bilayer graphene, due to
the center of inversion symmetry in the D3h point group, can become active if this inversion symmetry operation is broken.
The Γ −3 mode is also represented by the atomic motion of the nearest neighbor carbon atoms moving against each other
within the plane, but out-of-phase between the two layers, and we call this the antisymmetric (AS) G band. In Section 4
we show that this AS Raman mode can be activated in bilayer graphene by lowering its symmetry. There is also a low
frequency Γ +3 mode (35–53 cm

−1)with a frequency depending on the number of layers [57]. The other two Γ +1 irreducible
representations give rise to Raman modes near ∼80 cm−1 and ∼900 cm−1 [57,58]. For trilayer graphene, the G band is
assigned to a combination of Γ +3 and Γ

−

3 representations, and also the Γ
+

1 representation is Raman active with a lower
frequency component, as in bilayer graphene.
To address the double resonance process, first we find the allowed absorption transitions (W (k)) between the valence

(ψv(k)) and conduction (ψ c(k)) bands in the electric-dipole approximation. For each of the Γπ representations found in
Table 3, we calculate the electron–radiation interaction by noting that W (k) ∝ |P · 〈ψ c(k)|∇|ψv(k)〉|2, where P is the
polarization vector of light which is described by an irreducible representation which contains the (x, y or z) basis function.
Along the T line where the absorption of light occurs in the Raman process, we list in Table 4 the symmetry-allowed
electron–radiation interactions for monolayer, bilayer and trilayer graphene [56].
From the possible electron–hole creation pairs that obey the symmetry requirements as given above, the symmetry of

the DR processes can be evaluated as being a scattering process which is mainly associated with the electronic T lines near
the K and K ′ points and the phonons along the T ′ line [52]. The symmetry of the electron–phonon (el–ph) scattering process
is calculated from the initial and final electron wave functions coupled by the phonon eigenvector [59,60]. Therefore, the
selection rules for the DR processes are obtained by the direct product of the symmetries of the initial and final electronic
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Table 4
Selection rules for the electron–radiation interaction in optical absorption along the T line with x and y polarized light in monolayer, bilayer and trilayer
graphene (x and y polarized light are in the same direction as the definition of kx and ky in Fig. 1(e)).

Polarization W (k)

Monolayer x ∈ T3 T2 ⊗ T3 ⊗ T4
Bilayer x ∈ T2 T1 ⊗ T2 ⊗ T2

T2 ⊗ T2 ⊗ T1
y ∈ T1 T1 ⊗ T1 ⊗ T1

T2 ⊗ T1 ⊗ T2

Trilayer x, y ∈ T+ T+ ⊗ T+ ⊗ T+
4× (T− ⊗ T+ ⊗ T−)

Table 5
Allowed DR processes for monolayer, bilayer and trilayer graphene along the T line for each phonon symmetry along the T ′ line.

Phonon Allowed scattering

Monolayer T1 T4 → T4
Bilayer T1 T1 → T1 , T2 → T2

T2 T1 → T2 , T2 → T1
Trilayer T+ T+ → T+ , T− → T−

T− T+ → T−

Fig. 5. Measured Raman spectrum with 2.41 eV laser excitation energy, showing the first-order Raman allowed G band and the very strong G′ band of
monolayer graphene which is described by one Lorentzian and a peak frequency of 2687 cm−1 [63], the G∗ Raman band is also shown near∼2450 cm−1.

states and the symmetry of the phonon involved in the process. The symmetry-allowed DR processes for monolayer, bilayer
and trilayer graphene along the high symmetry line Γ K with phonons along the KM direction are found in Table 5 [56].
The selection rules for the DR phenomena found in Table 5, will be used in Section 2 for understanding the evolution of

the number of peaks in the G′ band as a function of the number of layers in AB stacked graphene.

2. Raman spectroscopy experiments to learn about the number of layers and the stacking order in graphene systems

In the case of Bernal AB stacking of graphene (see Section 1.1), Ferrari et al. [20] showed that is possible to use the second
order G′ feature in the Raman spectra of graphene to learn about the number of layers in a graphene sample. As in other sp2
carbons, the G′ feature in the Raman spectrum originates from the double resonance (DR) Raman process [61,62], and links
electrons and phonons in the graphene dispersion relations [20,24,25,52,63].

2.1. Raman spectra for monolayer graphene

Starting from monolayer graphene (1-LG), we first consider the DR process which is depicted in Fig. 4 (see Section 1.3).
Here we see that the selection rules discussed in Section 1.3 for electron–phonon scattering occurring along the KΓ K ′
direction have to satisfy the scattering process shown in Fig. 4, as further discussed below [52,61,64]. But first we show in
Fig. 5 a Raman spectrum measured with a laser energy of 2.41 eV for a monolayer graphene sample, showing the G and G′
bands. The G′ band for 1-LG at room temperature exhibits a single Lorentzian feature with a full width at half maximum
(FWHM) of∼24 cm−1. What is remarkable about this spectrum is the large intensity of the G′ band relative to the G-band,
and this large relative intensity of the G′ band can be understood in terms of a triple resonance process shown in Fig. 4. This
is a unique spectrum for all sp2 carbons where all steps in the process (see Fig. 4) are resonant because of the linear E(k)
dispersion.



58 L.M. Malard et al. / Physics Reports 473 (2009) 51–87

Fig. 6. Schematic view of the electron dispersion of bilayer (2-LG) graphene near the K and K ′ points showing bothπ1 andπ2 bands. The four DR processes
are indicated: (a) process P11 , (b) process P22 , (c) process P12 , and (d) process P21 . The phonon symmetries are also indicated for each process. (e) The
measured G′ Raman band of bilayer graphene for 2.41 eV laser energy. The four fitted Lorentzians are also shown with peak frequencies at 2658, 2688,
2706, and 2721 cm−1 , respectively [63].

2.2. Raman spectra for bilayer graphene

In the case of bilayer graphene (2-LG) with Bernal AB layer stacking, both the electronic and phonon bands split into two
components with special symmetries. For these two phonon components, the motion of the carbon atoms in the upper and
lower layers correspond to different irreducible representations, such that the motion in the two layers are in phase with
respect to each other for one component and out of phase for the other component. The electrons in 2-LG have a parabolic
E(k) dispersion relation showing a k2 dependence near k = 0 and have two conduction and two valence bands [22,65–67]
as shown in Fig. 6. The electrons are also affected by the interlayer interaction and they also split into symmetric and anti-
symmetric symmetry components. For the case of 2-LG, the DR conditions are more complex than in the case of monolayer
graphene (1-LG) where there is only one main DR process contributing to the G′ band. From a group theory analysis [36,
56,68], bilayer graphene is isomorphic to the D3d point group at the Γ point. Consequently, the appropriate group of the
wave vector for the high symmetry Γ K axis (also called the T axis) is the C2 point group following the notation used for the
graphite space group #194 (see Section 1.4) [36,56,68].
Fig. 6(a) shows a schematic view of the bilayer graphene electronic structure where the upper (lower) and lower (upper)

branches of the valence (conduction) band are labeled as π1 (π∗1 ) and π2 (π
∗

2 ), respectively [22]. The major steps of the
DR process occur along the T line (Γ K ) along which the π2 and π∗1 bands belong to the T1 totally symmetric irreducible
representation, while the π1 and π∗2 have odd T2 symmetry [36]. The light absorption selection rules for both x and y light
polarizations [36] result in electron–hole creation between π1 � π∗1 and π2 � π∗2 bands for x light polarization, and
between π1 � π∗2 and π2 � π∗1 bands for y light polarization (see Section 1.4). Here kx is along ΓM and ky is along Γ K (see
Fig. 1(e)). Because of the dependence of k on the polarization direction in graphene [69], the calculated contribution of the
y light polarization for the electron–hole creation is expected to be weaker compared to that for the x polarization [68].
Now, for computing the number of resonant conditions involved in the DR process, we are left with electrons in only two

excited electronic states with wave vectors near the K point, from which the electrons will then be scattered by a phonon
to an electron state with a wave vector near the K ′ point. This electron–phonon scattering can now occur with two phonons
with symmetries T1 and T2. For the case of a T1 phonon and the electron initial state in band π∗1 (T2 symmetry) or π

∗

2 (T1
symmetry), the scattering can occur between the π∗1 → π∗1 or π

∗

2 → π∗2 bands, respectively. The corresponding symmetry-
allowed scattering process by a T2 phonon will connect bands of different symmetries, i.e., π∗1 � π∗2 , where in all cases the
matrix element is invariant for a symmetry-allowed process.
These four different Pij processes are depicted in Fig. 6(a–d), where i (j) denotes an electron scattered from (to) each

conduction band π∗i(j). The P11 and P22 processes come from an iTO phonon with S T1 symmetry, while the P12 and P21
processes come from an iTO phonon with AS T2 symmetry. These four different scattering processes give rise to four Raman
peaks in the G′ spectrum. Fig. 6(e) shows the Raman spectra of a bilayer graphene sample with AB stacking, where the
spectra were fitted with four Lorentzians [63], each with a FWHM of∼24 cm−1. If the valence and conduction bands were
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Fig. 7. (a) Measured trilayer (3-LG) graphene with 2.41 eV laser energy and fitted with 6 Lorentzians. (b) Measured trilayer graphene with 2.18 eV laser
energy, showing that 6 Lorentzians are needed to fit the G′ feature for 3-LG.

mirror images of one another, then processes P12 and P21would be degenerate. Experimentally the fitting to four bands gives
a better fit, suggesting that asymmetries between the valence and conduction band are present in 2-LG.

2.3. Raman spectra for trilayer graphene

Making the same group theory analysis for trilayer graphene, we can show that the number of allowed Raman peaks in
the G′ band is fifteen [56]. Trilayer graphene is isomorphic to the D3h point group at the Γ point, and has six atoms in the
unit cell. Then along the T axis connecting Γ –K , the electronic representation is given by 2T+ + 4T− in the C1h point group
which describes the group of the wave vector along Γ –K for an odd number of graphene layers (see Table 3). Both the x and
y components of the light polarization vector in this case are represented by a totally symmetric representation T+, so we
are left with five possible electron–hole creation transitions connecting the valence and conduction bands with the same
symmetry. The electron–phonon scattering from K to K ′ will occur by three different iTO phonon branches, onewith T+ and
two of them with T− symmetries. Each of the five possible excited electrons can be scattered by each of these phonons to
three different conduction bands at the K ′ point, so that by summing all possibilities, wewill have fifteen different processes.
To correctly identify the G′ Raman band lineshape for trilayer graphene, one should model the DR Raman process, by

considering 15 different transitions, but the energy separations of many of these fifteen different processes turn out to be
very close to each other from an experimental standpoint. Experimentally it is found that the minimum number of peaks
with a FWHMof∼24 cm−1 necessary to correctly fit theG′ in this case is six as shown in Fig. 6(a) and (b) for Elaser = 2.41 and
2.18 eV, respectively. In fact one could use even fewer peaks to fit the G′ feature of 3-LG [21] for Elaser = 2.41 eV. However,
for lower laser energies, the splitting of the G′ peak needs at least six peaks (see Fig. 7(b)). Another important point here
is the fact that the same FWHM of ∼24 cm−1 is always used for the G′ band which comes from the monolayer graphene
feature, thereby defining a characteristic lifetime for the DR Raman process.

2.4. Raman spectra for graphite

The G′ band continues to evolve with the number of graphene layers until we reach the final material that we must
consider which is bulk graphite. For highly oriented pyrolytic graphite (HOPG) (see Section 1.3) we can describe the G′
band with two peaks (see Fig. 8(e)). Fig. 8 compares the Raman spectra in the G′ band region for (a) monolayer, (b) bilayer,
(c) trilayer, (d) four layer graphene and (e) HOPG, showing the evolution of the Raman spectra with the number of layers.
Cançado et al. [68] attributed the G′ band for HOPG to come from a convolution of peaks along the entire kz axis ranging from
kz = 0 to kz = π/c. The higher frequency and most intense peak comes mainly from the P11 DR Raman process [68]. The
turning point of the Raman spectra, distinguishing the G′ band for HOPG from that for few-layer graphene, starts to happen
at 4-LG, where the experimental analysis is here given in terms of 3 peaks. From Fig. 8(d) it is possible to see that now the
high frequency side of the G′ band has a larger intensity than that for fewer graphene layers, indicating the passage to HOPG,
which has its higher intensity peak at higher frequencies.

2.5. Raman spectra for turbostratic graphite

It is important to note that the identification of the number of layers by Raman spectroscopy is well established only for
graphene samples that have AB Bernal stacking. Graphene samples made by the mechanical exfoliation of natural or HOPG
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(a) 1-LG

(b) 2-LG

(c) 3-LG

(d) 4-LG

(e) HOPG

Fig. 8. Themeasured G′ Raman bandwith 2.41 eV laser energy for (a) 1-LG, (b) 2-LG, (c) 3-LG, (d) 4-LG, (e) HOPG and (f) turbostratic graphite. The splitting
of the G′ Raman band opens up in going from mono- to three-layer graphene and then closes up in going from 4-LG to HOPG.

graphite lead to graphene flakes that have predominantly AB stacking, but this is not necessarily the case for graphene
samples made by other growth methods (see Section 5).
For example, turbostratic graphite, in which the stacking of the graphene layers is rotationally random with respect to

one another along the c axis (see Section 1.1), shows a Raman G′ band that is a single Lorentzian (see Fig. 8(f)), just as in
monolayer graphene (see Section 2.1) but with a larger linewidth. The absence of an interlayer interaction between the
graphene planes makes the Raman spectra of turbostratic graphite look much like that for monolayer graphene. The reason
for this is that the electronic structure for turbostratic graphite can be described in the sameway asmonolayer graphene, but
now with a broadening of the G′ feature due to the relaxation of the DR Raman selection rules associated with the random
orientation of the graphene layers with respect to each other. This is reflected in the Raman spectra of the G′ band as a single
Lorentzian, just as in monolayer graphene, but now for turbostratic multilayer graphene with a FWHM of ∼45–60 cm−1
[70,71] instead of∼24 cm−1, as is found for monolayer graphene. Also the relative intensity of the G′ feature to that of the
G-band IG′/IG is much smaller for turbostratic graphite and the frequency is upshifted from that of 1-LG.
We have shown in this section how the G′-band lineshape can be used to determine the number of layers of a graphene

sample with AB stacking. Raman spectroscopy thus provides a useful and fast method to quantify the number of graphene
layers and also provides some information about the stacking order. Also we explained the origin of the number of peaks in
the G′ band that is associatedwith differences in the electronic and phonon dispersion relations, that depend on the number
of layers in N-LG. Group theory analysis helps us to understand the relation between the number of layers and the number
of peaks in the G′-band that can be expected. Layer stacking is shown to play a vital role in the group theory analysis of the
G′ band spectra [56].

2.6. Stacking order

Next, we give an overview of experiments tomeasure the stacking order using Raman spectroscopy in graphite, and then
we move to graphene systems, where it is possible to clearly observe the changes in the lineshape of the G′ Raman band
associatedwith interplanar stacking order to study topics such as in-plane crystallite size [9,10,72] and out-of-plane stacking
order [14,15,17,71]. In this section we will focus on what Raman spectra tell us about the out-of-plane stacking order of
graphene layers. Such knowledge is important for understanding related defects and disorder in few-layer graphenes (F-LG).
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Fig. 9. (a) The G′ Raman spectra of partially disordered graphite samples heat-treated at different temperatures. The spectra were taken with 2.41 eV
laser energy. By heat treatment of the sample at high temperatures, the G′ band goes from a one-peak (G′2D) to a two peak (G

′

3DA and G
′

3DB) profile. (b) The
average of the out-of-plane lattice parameter c for the different samples obtained from X-ray diffraction analysis vs. the ratio R in Eq. (4) for five different
laser excitation energies. (c) The average of the out-of-plane crystallite thickness Lc of the different samples obtained from the X-ray diffraction analysis
vs. the ratio R in Eq. (4) for different laser excitation energies. Figure adapted from Ref. [71].

Recent Raman experiments on disordered graphite films heat-treated at different temperatures, showed that the G′
Raman band can be used to infer information about the out-of-plane lattice parameter (c) and the interplanar crystalline
coherence length (Lc) [71]. Fig. 9(a) shows the Raman spectra in the G′ spectral band region, for four different samples
treated at different temperatures. The sample heat-treated at 2200 ◦C shows a typical spectrum of a turbostratic graphite,
consisting of only one Lorentzian component (G′2D). On the other hand, the spectrum for the sample heat treated at the
higher temperature of 2700 ◦C shows a characteristic G′ spectrum of graphite, with two Lorentzians (G′3DA and G

′

3DB). The
two samples with intermediate heat treatment temperatures in Fig. 9(a) show spectra evolving from a G′ Raman band
characteristic of turbostratic graphite (2200 ◦C) to a G′ band characteristic of HOPG, with the spectra in the intermediate
temperature range show the coexistence of G′2D, G

′

3DA and G
′

3DB Raman bands. Considering that a volume V is illuminated
by the laser beam, we can write V = V3D + V2D, where V3D (V2D) is the 3D (2D) graphite part of the total volume V . The
fractional 3D volume is given by the ratio R = V3D/V which can be obtained experimentally from the intensity (I) of the G′
spectra as [71]:

R =
IG′3DB

IG′3DB + IG′2D
(4)

and correspondingly the 2D volume ratio becomes V2D/V = 1−R. By comparing the experimental value of R for the various
samples in Fig. 9(a) and the value of the c-axis lattice constant c obtained by X-ray diffraction analysis, Cançado et al. [71]
derived an empirical formula from a linear fit of Fig. 9(b) for extracting an experimental value of c for samples with varying
amounts of c-axis stacking faults by Raman spectroscopy [71]:

c(nm) = 0.682− 0.11R. (5)

Thus Eq. (5) allows a determination of the out-of-plane lattice parameter from Raman spectroscopy using laser excitation
lines in the visible range. Moreover, the combination of X-ray diffraction analysis and Raman spectroscopy can be used
to evaluate the c-axis crystallite size Lc . Fig. 9(c) shows a plot of Lc obtained by X-ray diffraction for the four samples in
Fig. 9(a) as a function of the parameter R from Raman spectroscopy. Again an empirical formula was extracted from this
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Fig. 10. (a) AFM topographic image of two graphenes (α′ and α′′), with an overlap region between the two (α′ + α′′) showing a misoriented bilayer
graphene. (b) Raman spectra of the G′ band for the monolayer graphene region (black), an AB Bernal stacked bilayer graphene (red) and the misoriented
bilayer graphene (blue). Adapted from Ref. [74].

experiment [71]

Lc(nm) = 10+
10

1.05− R
(6)

which relates the average Lc crystallite size to the ratio R in Eq. (4) for laser excitation energies in the visible range.
In graphene systems where stacking disorder can occur, i.e., for epitaxial or CVD grown graphene (see Section 5),

this approach can be used in the future to determine the interplanar distance (c/2) and interplanar crystalline thickness.
Moreover, careful inspection of the G′ band lineshape for samples with c-axis stacking disorder can be useful to determine
the contributions to this spectral feature from the AB and non-AB stacking order regions of the sample.
Recently, the Raman spectrum of folded graphene [73] (or misoriented bilayer graphene [74]) have been obtained.

Fig. 10(a) presents an atomic force microscopy (AFM) image showing two graphenes (α′ and α′′) with a region in which
the two graphenes are randomly overlapped (α′ + α′′). Fig. 10(b) shows the Raman spectra of the G′ band of the graphene
(black), a Bernal stacked bilayer (red) and the misoriented bilayer (blue) [74]. The Bernal bilayer spectra in Fig. 10(b)
clearly shows a lineshape common to the four peak spectrum which comes from the different electron–phonon scattering
processes discussed in Section 2.2 for AB stacked 2-LG. However, the misoriented bilayer graphene has completely lost
the characteristics of a Bernal bilayer, and now has a G′ lineshape more typical of monolayer graphene [73,74]. Theoretical
calculations of a non-AB stacked bilayer have also shown that the electronic structure resembles themassless Dirac Fermions
in monolayer graphene [75,76]. The single peak observed for the misoriented bilayer in Fig. 10(b) is in agreement with
these calculations, where the DR Raman process occurs between two conduction bands along the Γ KMK ′Γ direction (see
Sections 1.1 and 1.3). The difference between themonolayer and themisoriented bi-layer G′ Raman spectra is the frequency
of the peak, which for the misoriented bilayer is upshifted by 9 cm−1 and broadened in linewidth as seen in Fig. 10(b) [74].
Two groups have reported the same G′ band frequency upshift for this kind of non-AB bilayer sample [73,74], and have
attributed this effect to a reduction of the Fermi velocity [73] or to a change in the phonon dispersion curves [74].
In this section we have shown that stacking disorder can significantly alter the Raman spectra of the G′ band in graphite

and few-layer graphene. Previous studies of stacking order in graphite have shown that useful information on the stacking
order, the out-of-plane lattice parameter and the c-axis crystallite size can be obtained from Raman spectroscopy [71]. Such
information can now also be used to understand and characterize graphene samples with stacking disorder.

3. Resonance Raman studies: Probing electrons and phonons

Resonance Raman scattering (RRS) has beenwidely use to probe the electronic and phonon structures of carbonmaterials
like carbon nanotubes [77], graphite, diamond-like carbon [78] and linear carbon chains [79]. Also the double resonance
Raman model and its second order G′ band provide rich information about the energy and momentum of the participating
electrons and phonons. In this section we review the combination of RRS and DR Raman processes to probe information
about phonons and electrons in monolayer and bilayer graphene.
From the double resonance process model (see Section 1.3) we have a set of two coupled quantities, that is, the

wavevectors of electrons and phonons and their dispersion relations. From the knowledge of one of these quantities and
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Fig. 11. (a) Raman spectra of the G′ and the G∗ bands of monolayer graphene for 1.92, 2.18, 2.41, 2.54 and 2.71 laser excitation energies. (b) Dependence of
ωG′ and ωG∗ on laser energy Elaser . The circles correspond to the graphene data and the lozenges correspond to turbostratic graphite. Figure from Ref. [52].

information coming from the experimental Raman band originating from a specific double resonance scattering process (for
example, the phonon energies and their dispersion), it is possible to get the other quantity (which, for this example, would
be information about the electronic structure). By changing the laser excitation energy, different points inmomentum space
for the electronic and phonon dispersion are probed, and in thisway it is possible tomap the phonon or electronic dispersion
relations by this method. Some basic fundamental concepts related to this method are discussed in Section 1.3.

3.1. Monolayer graphene phonon dispersion

We begin our discussion here with monolayer graphene, which represents the ideal system for calculating the phonon
dispersion relations for a variety of carbon structures, and there are several different phonon dispersion models in the
literature for describing ω(q) for graphite and other sp2 carbons [38,41,80–85]. In many cases, these models contradict
each other in terms of the slopes and positions of the phonon branches near the Dirac point (the K point) and this is in part
due to the Kohn anomaly [41]. Also different experimental techniques like neutron scattering [86], electron energy-loss
spectroscopy [87–89], inelastic x-ray scattering [38,90], and DR Raman scattering [49,62], have been applied to characterize
the phonon dispersion. Here, we show that by measuring the Raman spectra of two second-order Raman features with
different laser energies, it is possible to obtain experimentally the longitudinal acoustic (LA) and the in-plane transverse
optical (iTO) phonondispersions ofmonolayer graphene near theDirac point [52].We also compare the results thus obtained
with the corresponding results for turbostratic graphite and for different phonon dispersion models in the literature.
Figs. 5 and11(a) shows theRaman spectra in the region of theG∗ (∼2450 cm−1) andG′ (∼2700cm−1)bandswith different

laser excitation energies. As shown in Section 1.3, the G′ band comes from an intervalley DR Raman process involving an
electron with wave vector k in the vicinity of the K point and two iTO phonons with wave vectors q ≈ 2k, where both k
for the electron and q for the phonon are measured from the K point. The G∗ band can also be explained by the DR Raman
model with an intervalley process but involving one iTO and one LA phonon [49] as discussed below.
Fig. 11(b) shows theG′ andG∗ frequencies as a function of laser energy for graphene and turbostratic graphite. TheG′ band

exhibits a highly dispersive behavior, with a slope of 88 cm−1/eV for monolayer graphene and 95 cm−1/eV for turbostratic
graphite. The G∗ band, exhibits a less pronounced dispersion for both materials. In contrast, ωG∗decreaseswith laser energy
by about−18 cm−1/eV for monolayer graphene and by about−31 cm−1/eV for turbostratic graphite [52].
To analyze the experimental data from Fig. 11(b), we first introduce the linear dispersion of a graphene monolayer by

noting that the electron energy is given by E(k) = h̄vFk, where vF is the Fermi velocity and k is the electron wave vector
measured with respect to the K point. Thus the DR Raman conditions are given by:

ωlaser = 2vFk (7)

ωph = vF (k− k′) (8)

q = k+ k′ (9)

where ωlaser and ωph are the laser and phonon frequencies and k′ is the scattered electron wave vector near the K ′ point.
From the measured frequencies ωG∗ and ωG′ shown in Fig. 11, we can obtain the experimental values for the LA and iTO

phonons near the Dirac point. The iTO frequency can be obtained from ωG′/2, and the LA frequency (ωLA) is obtained from
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Fig. 12. (a) Experimental data obtained from the DR scattering process for the (a) iTO phonons and (b) the LA phonons inmonolayer graphene, considering
three different values for the Fermi velocity vF , and theoretical phonon dispersionmodels byMaultzsch et al. [38] (dashed curves), Dubay et al. [83] (dotted
curves), Popov and Lambin [85] (continuous curves) and Benedek and Onida [81] (dash dotted curve). (c) Experimental phonon frequencies obtained from
DR Raman scattering for graphene (circles) and turbostratic graphite (crosses) and inelastic X-ray scattering data by Maultzsch et al. [38] (triangles) and
Mohr et al. [90] (squares). Figure from Ref. [52].

subtracting the iTO frequency from the G∗ band frequency:

ωiTO(q) = ωG′(q)/2 (10)

ωLA(q) = ωG∗(q)− ωG′(q)/2 (11)

So, using Eqs. (7)–(9) we obtain the phonon wave vector q observed for each laser energy and, with the results of Eqs.
(10) and (11), the dispersion of ωLA and ωiTO phonons can be plotted.
As discussed above, we can only determine the phonon velocities in a double resonance Raman experiment as a function

of the Fermi velocity vF for the electrons near the Dirac point. In order to plot experimental results [52] for the phonon
dispersion relation, we need to consider a specific value for the Fermi velocity. Fig. 12 shows experimental data [52] forωiTO
[Fig. 12(a)] andωLA [Fig. 12(b)] formonolayer graphene as a function of the phononwave vector q considering three different
values of vF : 0.84×106m/s (black circles), 1.0×106m/s (white circles), and 1.1×106m/s (gray circles), which correspond
to the values of the nearest-neighbor tight-binding overlap energy γ0 of 2.6, 3.1 and 3.4 eV, respectively [51]. Four different
phonon dispersion models are also shown in Fig. 12 for the iTO and the LA branches. These models correspond to the first-
principles calculations by Maultzsch et al. [38] (dashed curves) and Dubay et al. [83] (dotted curves), the force constant
model by Popov and Lambin [85] (continuous curves) and the bond charge model reported by Benedek and Onida [81]
(dash dotted curve). The best agreement between the experimental and theoretical data is given when we consider a Fermi
velocity of 1.0× 106 m/s and the theoretical model for the iTO phonon dispersion by Popov and Lambin [85], which nicely
describes the Kohn anomaly as observed experimentally. Fig. 12(c) shows the phonon dispersion curve around the K point
with vF = 1.0 × 106 m/s, comparing the different phonon models, as well as with the measured results for turbostratic
graphite and with different experimental inelastic X-ray scattering data for graphite [38,52].
Another important quantity that can be extracted using this approach is the phonon velocity for both phonon branches

(viTO and vLA). By deriving ωph with respect to q and considering the DR conditions shown in Eqs. (7)–(9), we obtain the
following expressions that relate the phonon velocities with the Fermi velocity vF for electrons:

viTO = (dωG′/dωlaser)vF/2 (12)

vLA =

(
dωG∗/dωlaser −

1
2
dωG′/dωlaser

)
vF . (13)

By using the experimental laser frequencyωlaser, the dependence ofωG∗ andωG′ on Elaser shown in Fig. 11(b), the following
values are obtained for the LA and iTO velocities near the Dirac point of monolayer graphene: vLA = 7.70 × 10−3vF
and viTO = 5.47 × 10−3vF . The corresponding values found for turbostratic graphite are: vLA = 9.82 × 10−3vF and
viTO = 5.96× 10−3vF [52], using vF = 1.0× 106 m/s, consistent with the value given above for graphene.

3.2. Bilayer graphene phonon and electronic structure

We now turn to the electronic properties of bilayer graphene as probed by RRS. Bilayer graphene has a richer G′ band
spectrum, because of its special electronic structure consisting of two conduction and two valence bands (see Fig. 6). From
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Fig. 13. Fitting the measured spectra of the G′ band for bilayer graphene at 2.18 eV laser excitation energy with (a) three Lorentzians with an FWHM of
29 cm−1 [55] and with (b) four Lorentzians with an FWHM of 24 cm−1 [91].

the DR Raman process in bilayer graphene, it is possible to distinguish four Lorentzians in the experimental Raman spectra
for each laser line [20]. Fig. 13(a) and (b) compares a G′-band spectrum recorded with 2.18 eV laser energy, where the
fitting was done with three and four Lorentzians. The rationale for using three Lorentzians to fit the G′-band spectrum
for bilayer graphene comes from the mirror band approximation relative to the Fermi energy commonly used to describe
the linear E(k) relation in graphene. Using this approximation, Park et al. calculated the matrix elements contributing to
the transitions in Fig. 6 [55], assuming a degeneracy of the P12 and P21 transition energies consistent with the mirror
band model. The experimental results in Fig. 13(a) show two important points. First, it is seen that the FWHM for the
three peak fit to the data is increased to 29 cm−1, which is larger than that in monolayer graphene, 24 cm−1, and second,
the fit of the experimental data to three Lorentzians is not satisfactory [55]. The experimental data in Fig. 13(b) [63]
taken at 2.18 eV clearly show the need for four peaks to describe the G′ band of bilayer graphene, as discussed in
Section 2.2. These experimental results [63] provide clear experimental evidence for an asymmetry between the valence and
conduction bands.
By fitting the G′ band spectrum for each one of the laser energies with four Lorentzians with a FWHM of 24 cm−1, we can

plot the position of each peak as a function of laser energy. Fig. 14 shows the dispersion of each one of the four peaks that
comprise the G′ band as a function of laser energy. Each one of the DR Raman processes that gives rise to one of the G′ peaks
is labeled as Pij (i, j = 1, 2), in Fig. 14 and the related process is depicted in Fig. 6(a)–(d). Since the iTO phonon along the KM
direction increases its frequency with increasing wave vector q, the highest frequency of the G′ peak for a given Elaser energy
is associated with the P11 process, which has the largest wave vector (q11). The smallest wave vector q22 is associated with
the process P22, which gives rise to the lowest frequency peak of the G′ band. The two intermediate peaks of the G′ band are
associated with processes P12 and P21 [63].
Now we apply the DR Raman model to relate the electronic and phonon dispersion of bilayer graphene with the

experimental dependence of the G′ band peaks energy as a function of laser energy. According to the DR Raman process
for bilayer graphene (see Section 1.3 and Fig. 6) an electron in a Pij process with wave vector ki is resonantly excited from
the valence band πi to the conduction band π∗i by absorbing a photon with energy Elaser. This electron is then resonantly
scattered to a state with wave vector k′j by emitting a phonon with momentum qij and energy E

ij
p . Finally, the electron is

scattered back to state ki by emitting a second phonon, and it recombines with a hole producing a scattered photon with an
energy ES = Elaser − 2E

ij
p . The phonon wave vector qij, measured from the K point and along the KM direction, is given by

qij = ki + k′j . As discussed in Section 2.2, the P11 and P22 processes are related to a phonon with T1 symmetry and the other
two processes to a phonon with T2 phonon symmetry.
The electronic structure of bilayer graphene can be described by the phenomenological Slonczewski-Weiss-McClure

(SWM)model [5,65,66]. Since the number of atoms in the unit cell of bilayer graphene with the Bernal AB stacking structure
is the same as the unit cell for graphite which has the same stacking structure, we can denote the electronic spectrum of
bilayer graphene in terms of a model closely related to the SWMmodel for graphite, by determining the parameters γ0, γ1,
γ3 and γ4, that are associated with overlap and transfer integrals calculated for nearest neighbors atoms. The pairs of atoms
associated with these parameters are indicated in the atomic structure of bilayer graphene shown in Fig. 15. Along the K–Γ
directionwe can replace σ by γ0

[
2 cos(2π/3−kaC–C

√
3/2)+1

]
inMcClure’s expressions [5]. Here k is measured from the K

point and aC–C = 0.142 nm is the in-plane nearest neighbor carbon distance. Since there is no kz-dependencewemay set the
following parameters in McClure’s expressions at Γ = 1 and γ2 = γ5 = 0 (γ2 and γ5 correspond to 3rd layer interactions
in graphite). Also the parameter 1 is weaker for describing the G′ dispersion in graphite and should by symmetry be zero
for bilayer graphene [68]. With these simplifications to adopting the McClure model [65,66], the electronic bands in bilayer
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Fig. 14. The position of the four peaks that comprise the G′ band of bilayer graphene as a function of laser energy (Elaser) [63].

Fig. 15. Atomic structure of bilayer graphene, where the overlap γ parameters are shown with the respective pair of atoms appropriate for each γi
interaction [63].

graphene can be described as [63,67]:

Eπ2 = (−γ1 − v3σ − ξ+)/2, (14)

Eπ1 = (γ1 + v3σ − ξ−)/2, (15)

Eπ∗1 = (−γ1 − v3σ + ξ+)/2, (16)

Eπ∗2 = (γ1 + v3σ + ξ−)/2, (17)

where

ξ± =
√
(γ1 − v3σ)2 + 4(1± v4)2σ 2, (18)

and vj ≡ γj/γ0.
Applying the DR Raman conditions we have:

Elaser = Eπ∗i (ki)− Eπi(ki) (19)

E ijp (ki + k
′

j) = Eπ∗i (ki)− Eπ∗j (k
′

j). (20)

Eq. (16) determines the initial ki electron wave vector as a function of the band parameters. Assuming that the iTO
phonon dispersion is linear in the measured energy range, we have E ijp (ki + k′j) = [A + B(ki + k

′

j)]. Then Eq. (20)
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Fig. 16. Experimental phonon energies (open squares) derived from the G′ band for bilayer graphene as a function of laser excitation energy and the fitted
curves (full lines) from Ref. [56] using (a) γ3 = γ4 = 0, (b) γ3 6= 0 and γ4 = 0 and (c) γ3 6= 0 and γ4 6= 0 (see Table 6).

Table 6
Experimental SWM parameters (in eV) for the electronic band structure of bilayer graphene from Fig. 14. The parameters for graphite are taken from
Refs. [5,92] for a sample for which εF = −0.024 eV.

γ0 γ1 γ2 γ3 γ4 γ5 γ6 = 1

Bilayer graphene 2.9 0.30 n/a 0.10 0.12 n/a n/a
Graphite 3.16 0.39 −0.02 0.315 0.044 0.038 −0.008

uniquely determines the scattered k′j electron wave vector, and E
ij
p (ki + k′j) can be computed for each one of the Pij

processes for each laser excitation energy. By making a least squares fit of the experimental data to the above equations,
it is possible to find the best set of electronic and phonon parameters that fit the experimental data. Fig. 14 shows the
experimental data (symbols) in comparison with the theoretical model (solid lines) [63]. Fig. 16 also compares the SWM
model (Slonzewski–Weiss–McClure) [5,65,66]. including (a) only γ0 and γ1, (b) only γ0, γ1 and γ3 and (c) all γ0, γ1, γ3 and γ4
parameters [63,91]. When γ3 = γ4 = 0, the two inner DR Raman processes become degenerate [Fig. 16(a)], corresponding
tomirror valence and conduction bands. By setting γ3 6= 0 and γ4 = 0 [Fig. 16(b)], the trigonal warping effect [5] is included
and the degeneracy found in Fig. 16(a) is broken, but the calculated energy separation for the P12 and P21 is still too small
to account for the experimental observations. In Fig. 16(c) where γ3 6= 0 and γ4 6= 0, the fit with the experimental data is
successful. The γ4 in the SWM model is responsible for the difference between the electron and hole effective masses [5].
Therefore, the P12 and P21 processes are associatedwith phononswith differentmomenta that participate in these scattering
mechanisms revealing an electron–hole asymmetry in bilayer graphene. Table 6 summarizes the tight binding γ values for
bilayer graphene, as compared with the graphite values in the literature [63]. Also the results for the two linear phonon
dispersions found in the fitting procedure are shown in Table 7 [63].
In this section we summarized how the combination of the RRS experimental data and the DR Raman model can give

important knowledge about the electronic and phonon structure in graphene materials. For monolayer graphene [52], the
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Table 7
Values obtained for the G′ band phonon dispersion for bilayer graphene from Fig. 14 for the two iTO phonon branches of bilayer graphene near the K point,
where E iip = Aii + Biiq corresponds to the P11 and P22 processes and E

ij
p = Aij + Bijq to the P12 and P21 processes.

Aii Bii Aij Bij

153.7 (meV) 38.5 (meV Å) 154.0 (meV) 38.8 (meV Å)
1238 (cm−1) 310 (cm−1 Å) 1241 (cm−1) 313 (cm−1 Å)

Fig. 17. Feynman diagram for the second-order process that renormalizes the phonon energy. The first node shows the decay of a G-band phonon into an
electron–hole pair, and the second node shows the recombination of the electron and hole resulting in the emission of a phonon.

phonon structure of the iTO and LAphononmodes near theDirac pointwere probed by the use of the selection rules of theDR
Ramanprocess in combinationwith different laser excitation energies. For bilayer graphene [63], using a tight bindingmodel
related to graphite, the corresponding band parameters were obtained and the results reveal electron–hole asymmetry. The
comparison of 2-LG to graphite is not expected to yield the same band parameters because the unit cell for bilayer graphene
has empty space bounding the exteriors of the upper and lower layers while graphite has similar unit cells, to form a 3D
lattice of these unit cells. The graphite structure has a kz dependence of the dispersion relations, which is absent in bilayer
graphene. The departure of the data points for the P22 transition from the linear fit at Elaser < 2.4 eV is due to the non-linear
phonon dispersion that occurs near the Dirac point.

4. Raman studies on gated graphenes: Electron–phonon interaction

4.1. Interaction of phonons with electron–hole pairs: Theoretical background

4.1.1. Monolayer graphene
The interaction between electrons and phonons is a fundamental issue for understandingmany of the physical properties

of graphenes, such as electronic transport, excited electron relaxation and thermal conductivity. Since graphene is a zero-
gap semiconductor, the lattice vibrations are partially screened by the conduction electrons. In 1959, Kohn [40] showed that
this screening changes rapidly as a function of wave vector q for phonons with special q-vectors, giving rise to a divergence
in the phonon dispersion ω(q) at these special points. This effect is known as the Kohn anomaly, and it occurs for a vector
q satisfying the condition q = k1 − k2 + b, where k1 and k2 are wavevectors of the electron states at the Fermi level, and b
is a reciprocal lattice vector, necessary to bring the phonon wavevector q into the 1st Brillouin zone.
In the case of graphene, the Fermiwavevectorsk1 andk2 correspond to the corners of the 1st Brillouin zone (namely theK

and K′ vectors; see Fig. 1(e)) and, as first reported by Piscanec et al. [41], the Kohn anomaly occurs for special phonons at the
Γ and K points of graphene. The phonon branches exhibiting the Kohn anomaly at the Γ and K points are those associated
with the Raman G-band and G′-band, respectively [41]. In particular, it was shown in this work [41] that the slopes of the
phonon dispersion at these special points are proportional to the electron–phonon coupling parameter λe−p.
The physical origin for the Kohn anomaly in graphene is explained by the special mechanism illustrated in Fig. 17, in

which an electron in the valence band is first excited to the conduction band by absorbing a phonon, thus creating an
electron–hole pair. The electron and hole then recombine, thus emitting a phonon. Both the frequency and lifetime of the
phonon are significantly affected by this second-order process [93–95]. The renormalization of the phonon energy can be
described by time dependent second-order perturbation theory, inwhich the contribution to the energy of the electron–hole
bubble process depicted in Fig. 17 is negative, giving rise to a softening of the phonon energywith respect to the unperturbed
phonon energy.
The renormalization of the phonon energy is also strongly dependent on the Fermi level position, so that it can be tuned

by doping graphene with electrons or holes. In fact, if one changes the Fermi energy of the system, there is a reduction
in the interaction between phonons and interband electron–hole pairs, thus changing the effective force constant of these
atomic vibrations. This renormalization, which is very effectivewhen EF = 0 (the Fermi level at the Dirac point inmonolayer
graphene), is inhibited when the change in the Fermi level is larger than half of the G-band phonon energy since, as shown
in Fig. 18, the Pauli exclusion principle in this case suppresses the process depicted in Fig. 17 (creation of an electron–hole
pair by exciting a phonon).
Theoreticalmodels for the phonon self-energy [93–95] have predicted a logarithmic dependence of the phonon softening

on chemical potential (or Fermi level change) when it is smaller than half of the phonon energy, and a negative singularity
when it is exactly half of the phonon energy. However, the logarithmic softening and the negative singularity can be
smoothed out by the presence of imperfections in the sample or by temperature effects. Parallel with the dependence of
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Fig. 18. The renormalization of the phonon energy, associated with the mechanism shown in Fig. 17, is allowed when the change in the Fermi energy1εF
is smaller than half of the phonon energy h̄ωG/2 (left figure) and it is suppressed for1εF > h̄ωG/2 (right figure).

Fig. 19. Linewidth and Frequency of the Raman G band as a function of the electron concentration which is proportional to the square of the Fermi level
energy. Adapted from Ref. [96].

the phonon energy on the chemical potential, an increase in the phonon lifetime is predicted by moving the Fermi level
position away from the Dirac point, since the phonon decay into electron–hole pairs is inhibited, as shown in Fig. 18.
Fig. 19 shows a theoretical calculation of both the phonon energy and linewidth as a function of the electron

concentration, performed by Lazzeri and Mauri [96] at three different temperatures. It is important to emphasize that this
calculation was performed by considering a non-adiabatic process, which is a necessary condition due to the very strong
electron–phonon interaction in graphene. Notice that the logarithm divergence of the phonon frequency shown in Fig. 19,
which is very pronounced at low temperature, is smoothed out at room temperature. The phonon linewidth dependence,
which exhibits a barrier-like behavior at low temperature, is also smoothed out at room temperature. So, by moving the
Fermi level from the Dirac (neutrality) point, we expect mostly a hardening of the phonon energy and a narrowing of the
phonon linewidth.

4.1.2. Bilayer graphene
In the case of bilayer graphene, the E2g phonon mode splits into two components, associated with the symmetric (S)

and anti-symmetric (AS) displacements of the atoms in the two layers. Moreover, due to the splitting of the π and π∗
bands in this material, phonons can couple with electron–hole pairs produced by interband or intraband transitions. In
the case of interband transitions, the electron is in the conduction band and the hole is in the valence band, whereas for
intraband transitions both the electron and the hole are either in the valence band or the conduction band. Ando [97] recently
calculated the self-energy of the S and AS phonons for varying Fermi energies and predicted a hardening and softening of
the S and AS phonons, respectively, induced by electron or hole doping.
In order to discuss the phonon renormalization effect in bilayer graphene, we must consider the selection rules for the

interaction of the symmetric S and anti-symmetric AS phonons with the interband or intraband electron–hole pairs. The
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Fig. 20. (color online) Parabolic band structure of bilayer graphene near the K point. The vertical arrows illustrate the possible transitions induced by
symmetric (green) and antisymmetric (red) q = 0 phonons for (a) interband electron–hole pair creation when εF = 0 and (b) intraband electron–hole
pair creation when εF < 0. The opening of an energy gap around the Dirac point is not considered in this diagram.

band structure of bilayer graphene near the K point shown in Fig. 20 consists of four parabolic bands, two of which touch
each other at the K point, while the other two bands are separated by 2γ1, where γ1 ∼ 0.35 eV.
The electron–phonon interaction in bilayer graphene is described by a 2 × 2 matrix for each phonon symmetry, where

each matrix element gives the contribution of electron–hole pairs involving different electronic sub-bands [97]. For the
symmetric phonon mode, all matrix elements are different from zero, and this phonon can interact with both interband or
intraband electron–hole pairs, as shown in Fig. 20(a), giving rise to the phonon energy renormalization (Kohn anomaly).
However, for the anti-symmetric phonon mode, the diagonal terms of the matrix vanish, showing that there is no coupling
between the AS phonons and interband electron–hole pairs. Therefore, no Kohn anomaly is expected for the antisymmetric
phonon mode when the Fermi level is at the Dirac point.
However, if the Fermi energy is moved either up or down with respect to the Dirac point, [for instance, εF < 0 as shown

in Fig. 20(b)], then intraband electron–hole pairs can be produced by phonons. In this case, the anti-symmetric phonons also
have their energies renormalized, giving rise to the Kohn anomaly.

4.2. Experimental results

4.2.1. Monolayer graphene
As discussed in the previous section, the coupling between phonons and electron–hole pairs renormalizes the phonon

energy of graphene, and the renormalization depends on the electron and hole concentrations. The effect is strong near
the Γ and K points in the Brillouin zone. Thus phonons that are important for this process are those with q = 0 and for
q = K, whereK denotes the Brillouin zone corner of graphene (see Fig. 1(e)). The zone center E2g phononmode of graphene,
which gives rise to the Raman G-band, is known to exhibit a very strong coupling with electron–hole pairs. This effect can
be measured directly by Raman spectroscopy, as it probes the G band frequency as a function of Fermi energy.
The modification of the Fermi level of graphenes can be done by electrochemical methods [98] or by an electric field

effect when a gate voltage is applied between the Si substrate and the graphene, deposited on the top of a Si/SiO2 substrate
[99,100]. Recent Raman studies ofmonolayer graphene have shown that themodification of the Fermi level induces changes
in the frequency and width of the G-band, appearing in Raman spectra around 1580 cm−1, and these changes are ascribed
to the dependence of the electron–phonon process depicted in Fig. 17 on the Fermi level position.
Fig. 21 shows the Fermi energy dependence of the frequency and width of the Raman G-band in monolayer graphene,

as measured by Yan et al. [100]. A similar result was reported by Pisana et al. [99]. The G-band frequency of monolayer
graphene increases and the G-band linewidth decreases when the Fermi level is moved away from the Dirac point, due to
doping by either electrons or holes (positive or negative changes in the Fermi level). The logarithmic phonon softening,
predicted theoretically when the chemical potential is smaller than half of the phonon energy, has not yet been observed
in monolayer graphene samples, possibly due to the presence of non-uniformity in the spatial distribution of the charge
density in presently available monolayer graphene samples.

4.2.2. Bilayer graphene
Recently, Yan et al. [101] reported a low temperature (12 K) Raman investigation of a bilayer graphene sample where the

charge density was modulated by an electric field, and they observed a logarithmic softening of the G-band frequency by
about 1 cm−1 for changes in the Fermi level smaller than half of the phonon energy similar to the predictions of Fig. 19. This
observation was ascribed to both the large density of states and the lesser importance of the charge density inhomogeneity
in the large density of states of bilayer graphene at the Dirac point as compared to monolayer graphene.
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Fig. 21. G band FWHM linewidth (upper figure) and energy (lower figure) of monolayer graphene, as a function of the Fermi level energy. Adapted from
Ref. [100].

a b

Fig. 22. (color online) (a) Raman G-band of the bilayer graphene for−80 V,−40 V,−20 V and+40 V gate voltages. Two Lorentzian curves are needed to fit
the G-band for−80 V,−40 V and−20 V and a single Lorentzian for+40 V. (b) Displacement of the carbon atoms for the symmetric (S) and anti-symmetric
(A) highest energy phonon modes at the Γ point of bilayer graphene [102].

Malard et al. [102] reported a Raman study of back-gated bilayer graphene samples, and showed that the G-band of a
bilayer graphene sample for negative gate voltage is clearly composed of two components which show an opposite behavior
upon changing the Fermi level (see Fig. 22(a)).
Fig. 23(a) and (b) show, respectively, the relative shift1ωG (with respect to the G-band position in the+50 V spectrum)

and the full width at half maximum (FWHM) intensity of the Lorentzians that fit the G-band lineshapes as a function of the
applied gate voltage. Notice that the frequency of thehigh energy component increaseswith decreasing values ofVg , whereas
the opposite behavior is observed for the low energy component. Fig. 23(b) shows that the FWHM exhibits a maximum for
the Vg = +50 V spectrum, and it clearly decreases with more negative values of Vg . The absence of an initial softening of
the G-band for |εF | < h̄ωG/2 can be explained by the presence of a large inhomogeneous spatial charge distribution in the
sample and by the fact that this experiment was done at room temperature.
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Fig. 23. (color online) (a) The black squares and red circles correspond, respectively, to the relative shifts (1ωG) of the symmetric (+) and anti-symmetric
(−) components of the G band, with respect to the position in the+50 V spectrum, as a function of the applied gate voltage Vg (bottom scale) [102]. The
solid curves correspond to the theoretical prediction for the relative G-band shift1ω(±)G [97] in units of λω0 as a function of the Fermi energy εF (top scale).
(b) The black squares and red circles correspond, respectively, to the FWHM linewidth ΓG of the symmetric and anti-symmetric components of the G-band,
and the solid curve corresponds to the theoretical predictions for the symmetric phonon mode [97]. Vg = +50 V corresponds experimentally to the Dirac
point which is denoted by εF = 0 in the theoretical solid curves, suitably translated.

Bilayer graphene is formed by two graphene layers with AB Bernal stacking, where the group of the wave vector at the
Γ point is D3d (see Section 1.4). The phonon branch associated with the E2g mode of monolayer graphene gives rise to two
branches for bilayer graphene (one S and the other A), with in-phase and out-of-phase displacements of the atoms in the two
layers, which are represented at Fig. 22(b). At the center of the Brillouin zone (Γ point), the symmetric and anti-symmetric
vibrations belong to the two doubly degenerate representation Eg and Eu, respectively. The anti-symmetric (odd parity) Eu
mode is not Raman active, since theD3d group is centro-symmetric. However, if the inversion symmetry operation of bilayer
graphene is broken, the group of the wave vector is then described by the C3v point group at the Γ point. In this case, both
the symmetric and the anti-symmetric modes belong to the E representation, and both are Raman active (see Section 1.4).
The breaking of inversion symmetry can be due to the different materials that the top and bottom graphene layers of the
device are exposed to and/or to an inhomogeneous doping of the top and bottom graphene layers. The non-equivalence
between the top and bottom layers lowers the symmetry, making the anti-symmetric mode active in the Raman spectra,
thereby explaining the appearance of two components in the Raman G-band.
Fig. 23(a) and (b) also showa frequency shift1ωG and an FWHMbroadening (ΓG) of theG band, as calculated byAndo [97]

in terms of 1ωG = Re[π (±)(ω)] and ΓG = −2Im[π (±)(ω)] [103], respectively, where π (±) is the phonon self energy
for the symmetric (+) and anti-symmetric (−) components as a function of frequency ω, as described in Ref. [97]. The
phenomenological damping parameter δ in the phonon self-energy expression [97] describes the charge inhomogeneity in
the sample that smooths out the logarithmic singularity which is expected to occur at εF = h̄ω0/2. The value of δ = 0.1 eV
was considered in the theoretical curves depicted in Fig. 23, since this is the smallest value of δ necessary to remove phonon
softening for εF < h̄ω0/2 [97,104].
Theoretical curves for 1ωG and ΓG are calculated in units of λe−p, where ω0 = 0.196 eV is the energy of the optical

phonon and λe−p is related to the strength of the electron–phonon coupling given by [97,105]:

λe−p = 0.16× 10−3(Å
2 eV−2)

[
∂γ0

∂b

]2
(21)
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where γ0 is the in-plane nearest-neighbor tight-binding parameter [see Fig. 22(b)] and b is the nearest neighbor C–C distance
with an equilibrium value of aC–C = 0.142 nm.
In order to compare the experimental and theoretical results depicted in Fig. 23(a) and (b) we need to convert the

experimental horizontal scale (applied gate voltage, in the bottom axis of Fig. 23) into the theoretical scale (Fermi energy, in
the upper axis of Fig. 23), and the experimental vertical scales (in cm−1, left side axes of Fig. 23) into the theoretical scales
(in units of λe−pω0, right side axes of Fig. 23).
To match the scales of the experimental (left axis) and calculated (right axis) values of1ωG and ΓG, shown in Fig. 23, the

value ∂γ0/∂b = 6.4 eV Å
−1 was used in Eq. (21) [95]. Both of the theoretical curves, for1ωG and ΓG, are plotted in Fig. 23 as

a function of the Fermi energy εF (top axis), while the experimental values are plotted as a function of gate voltage (bottom
axis). In order to scale these axes, we need to consider that both εF and Vg are related to the electron (or hole) density n,
which is assumed to be the same in both layers. The absolute value of the Fermi energy |εF | is related to the electron (or
hole) carrier density in the regime |εF | < γ1 by [97]:

|εF | =
1
2

(
−γ1 +

√
4nπγ 2 + γ 21

)
, (22)

where γ =
√
3/2aγ0, a = 0.246 nm is the lattice constant, γ0 ≈ 3 eV (the in-plane nearest neighbor overlap energy)

and γ1 ∼ 0.35 eV is the out-of-plane nearest-neighbor overlap energy parameter [see Fig. 23(b)]. A parallel plate capacitor
model gives n = 7.2 × 1010 cm−2V−1(Vg − VD), where VD is the gate voltage needed to move the Fermi level to the Dirac
point due to the intrinsic doping of the sample. The value of VD = +50 V was obtained from the experimental spectrum
as the gate voltage where the G-band has the largest FWHM linewidth [see lower figure in Fig. 21], since the symmetric
phonon lifetime is a minimum for εF = 0 (at the Dirac point) [97].
Fig. 23 shows that there is a qualitative agreement between the experimental results and the theoretical prediction of

the Fermi level dependence of the frequency and the width of the symmetric and anti-symmetric optical phonon modes in
bilayer graphene. The hardening of the symmetric mode and the softening of the antisymmetric phonon mode when the
sample is doped is explained by the selection rules associated with the creation of interband or intraband electron–hole
pairs by symmetric and anti-symmetric optical phonons [102]. Some of the difference between the experimental results
and the theoretical predictions may be related to the different carrier densities in the lower and upper graphene layers.
We stress the fact that the splitting of the G-band shown in Fig. 23 was not reported in the two other studies of gated

bilayer graphene devices [101,103], despite the fact that the G-band observed in reference [101] is clearly asymmetric.
Possibly, the splitting shown in Fig. 23 is due to the characteristics of the devicewhich leads to inversion symmetry breaking
and allows the observation of the inactive Raman antisymmetric vibration.

5. Raman studies of epitaxial graphene

Raman spectroscopy provides a quick and facile structural and quality characterization of the graphene material that is
produced by the epitaxial growth process. This section considers Raman studies on two types of epitaxial graphene. The first
type of epitaxial graphene, derived from SiC is discussed in Section 5.1, where it is shown how Raman spectroscopy can be
used to characterize few layer graphene grown on Si terminated and on C terminated SiC and separated from the SiC by a
carbon buffer layer. In Section 5.2 we consider how Raman spectroscopy can be used to characterize graphene grown by a
CVDmethod based on various transitionmetal catalysts, most notably Ni. Thesemethods allow for the growth of larger area
graphene samples with potential chemical control of many aspects of the growth process. These approaches to the growth
of graphene are both at an early stage of development, and detailed Raman characterization could well contribute to a more
rapid development of these growth techniques.

5.1. Raman characterization of SiC-derived graphene

Monolayer or few layer graphene, denoted by 1-LG and F-LG, respectively, can be obtained by the annealing of SiC
surfaces at high temperatures. Such graphene samples are produced by a graphitization process based on 4H–SiC or 6H–SiC
precursors in an ultra-high vacuum process. These two polytype forms of SiC are both hexagonal with a space group C46v
or P63mc (group #186), while AB Bernal stacked F-LG is described by space group D46h or P63mmc (group #194). The layer
stacking in 4H–SiC is ABAC while in 6H–SiC it is ABCACB.
Between the SiC structure and the graphene layers, is a monolayer of carbon atoms, called the buffer layer, in which the

carbon atoms are in the sp3 configuration, and these carbon atoms are bonded to the Si atoms. Both carbon-terminated and
silicon-terminated surfaces of SiC are used to produce graphene samples. The number of graphene layers in the sample is
determined by the temperature (between 1200 and 1600◦C, depending on the desired degree of graphitization) and time of
the heat treatment process.
Normally, the number of layers N in N-LG is obtained by in-situ X-ray photoelectron spectroscopy (XPS), angle-resolved

ultra-violet photoemission spectroscopy (ARUPS) or low-energy electron diffraction (LEED), as well as Raman scattering,
as discussed in this article (see Section 2). Because of the different symmetry of this buffer layer, it is desirable to transfer
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Fig. 24. (a) Raman spectra of a 4H–SiC substrate, (b′) of a graphitic residue on the 4H–SiC substrate, (b) of five to ten layers (F-LG) on a 4H–SiC substrate, (c)
of another location on the same sample as (b′), (d) for another samplewith 70–90 layers of epitaxial graphene, and (e) ofmechanically exfoliated graphene.
Adapted from Ref. [106].

the graphene sample prepared by this technique to another substrate with spectral features (if any) that are not close in
frequency to the graphene G or G′ bands.
If the graphene sample remains on the SiC substrate for the Raman characterization procedure, the graphene spectrum

must be separated from that for SiC (see Fig. 24). The SiC substrate exhibits a number of second-order Raman features
between 1450 and 1750 cm−1, which are superimposed upon the G-band of the graphene sample [106], preventing an
accurate analysis of the G-band feature in the graphene spectrum (see Fig. 24). Normally the spectrum of the graphene
G-band is obtained by subtracting the spectrum of the SiC substrate from the measured spectrum [107]. Ferralis et al.
[108] showed that the intensity of the G-band of graphene can be enhanced with respect to the SiC features by performing
a depolarized Raman spectrum, in which the polarization of the scattered light is perpendicular to that of the incident
laser beam. This Raman polarization geometry is also appropriate for exciting the E2g symmetry in-plane optical mode in
graphite [109].
Faugeras et al. [106] reported a Raman study of the few-layer graphene (F-LG) Raman spectra produced by a C-terminated

4H–SiC surface and showed that, in contrast to the case of few-layer mechanically exfoliated graphenes, the G′-band for
this C-terminated 4H–SiC derived graphene is composed of a single Lorentzian component centered in the ωG′ range
2655–2665 cm−1 (using a 632.8 nm or 1.96 eV laser line) and with a FWHM linewidth of ∼60 cm−1. Fig. 24 shows that
the shape and FWHM of the G′-band is similar to that of turbostratic graphite, (see Section 1.1 and Section 2.5) showing that
the few-layer epitaxial graphene sample in Fig. 24 does not exhibit AB Bernal stacking of graphene layers, which is typical
of HOPG and of mechanically exfoliated few-layer graphene samples (see Section 2). However, it is claimed [106] in this
work that, in contrast to turbostratic graphite where the layers are randomly oriented, the layers in the epitaxial graphene
sample produced from a SiC precursor are rotated at specific angles [110–112].
Rohrl et al. [107] observed that the G-band in epitaxial monolayer graphene is significantly blue-shifted, as compared to

that from mechanically exfoliated monolayer graphene. These results have been attributed to both the presence of charges
and a compressive strain in the sample. From the estimation of the dependence of the G-band peak frequency on the charge
transfer, Rohrl et al. [107] concluded that the effect of charging makes a minor contribution to the blue-shift of the G-band,
with the main contribution coming from the compressive strain of the sample. According to this work, ωG decreases with
increasing number of graphene layers, tending to the value of ωG in HOPG (1582 cm−1).
Concerning the G′-band, Rohrl et al. [107] observed that the graphene G′-band in their samples is composed of a single

Lorentzian peak in the case of monolayer graphene, with a FWHM of ∼60 cm−1. It was also observed in this work that
the position of the peak of the G′-band (ωG′ ) changes from spot to spot on the sample, with spot to spot variations in ωG′
of more than 30 cm−1. By increasing the number of graphene layers, ωG′ decreases and the G′-band becomes broader and
more asymmetric as the G′ band lineshape for graphite (e.g., HOPG) is reached (see Section 2.4). Despite the fact that the
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Fig. 25. Raman spectra of monolayer, bilayer and trilayer graphene grown epitaxially on SiC (monolayer, bilayer on 6H–SiC(0001), trilayer on
4H–SiC(0001)). The G′ frequency increases with the number of graphene layers. Adapted from Ref. [113].

G′-band for F-LG in this work does not exhibit a clear multi-peak structure, as is observed in mechanically exfoliated
graphene, the G′-band for their SiC-based graphene is asymmetric. Rohrl et al. [107] in fact used up to four Lorentzian
peaks to fit the G′-band of their normal bilayer graphene sample, as was also used by Ferrari in his lineshape analysis of
mechanically exfoliated 2-LG [20].
Lee et al. [113]measured the Raman spectra ofmonolayer, bilayer and trilayer graphene obtained from the graphitization

of Si-terminated SiC. It was observed in this work that the G-band of their epitaxially grown graphene is blue-shifted with
respect to that from mechanically exfoliated graphene samples. This result has been attributed to the compressive strain
induced by the substrate, which builds up during the cool-down process in the sample preparation.
Fig. 25 shows their G′-band Raman spectra recorded with the 488 nm (or 2.54 eV) laser line for 1-LG, 2-LG, 3-LG samples

of graphene thus prepared. The G′-band in this work [113] is always observed at around 2700–2770 cm−1 (using the 488 nm
laser line), but it is much broader compared to that for mechanically exfoliated graphene samples. In the case of monolayer
graphene, the G′-band is fitted by a single Lorentzian with FWHM of ∼45 cm−1 and for bilayer and trilayer samples the
G′ feature becomes still broader (∼65 cm−1 for bilayer graphene prepared from Si-terminated SiC) and the lineshape is
asymmetric. However, themulti-peak structure observed for theG′-band in few-layermechanically exfoliated graphenewas
not observed in the case of their epitaxial SiC-based few-layer graphene samples. Interestingly, the multi-peak structure of
bilayer graphene was somewhat recovered when the epitaxial bilayer sample was transferred to a SiO2 substrate, showing
that the shape of the G′-band in few-layer Si-terminated SiC-based epitaxial F-LG samples is strongly influenced by the
SiC substrate and the buffer layer between the graphene and SiC. According to the work reported by Lee et al. [113], the
position of the G′-band increases with increasing number of layers (see Fig. 25). Notice that these results are opposite to
those reported by Rohrl et al. [107], in which the ωG′ decreases with increasing number of layers.
The main conclusion reported by Lee et al. [113] is the fact that the G′-band FWHM linewidth values exhibit a clear

relationship with the inverse of the number of layers. The fact that the FWHM linewidth of epitaxial monolayer graphene
(45 cm−1) is significantly larger than that for mechanically exfoliated monolayer graphene (25 cm−1) is attributed in this
work to the intrinsic disorder of their epitaxial graphene samples.
A combined Raman and AFM study of epitaxial monolayer graphene grown from a Si-face of 6H–SiC (0001) was recently

reported by Robinson et al. [114]. It was shown in this work that both the peak ωG′ value and the lineshape of the G′-band
are strongly dependent on the position of the laser spot on the sample. Using an experimental setup in which the laser spot
was reduced to about 300 nm, these authors were able to observe a G′-band with a FWHM ∼25 cm−1, which is similar to
the value found in mechanically exfoliatedmonolayer graphene (see Section 2). The different values forωG′ were correlated
with the topography of the substrate, leading the authors to conclude that the variations of the G′-band position (ωG′ ) are
due to strain inhomogeneities of their monolayer graphene samples. This effect is shown in Fig. 26 where three consecutive
spectra of the G′-band are collected at different spots on the sample separated by 300 nm. The middle curve is fitted by a
sum of the two Lorentzians, that fit the top and bottom spectra, respectively. These results show that the middle Raman
spectrum is collected over two areas of monolayer graphene subjected to different amounts and types of strain [114].
It is clear that there are still todaymany open questions concerning the Raman spectra of epitaxial graphene grownon SiC.

Many of the contradictory results found in the literature, concerning the peak frequency, the lineshape of the Raman G and
G′ bands, and the dependence of these bands on the number of layers are related to the strong influence of the compressive
strain induced by the lattice mismatch difference in the thermal expansion coefficients of SiC and graphene. Moreover, it
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Fig. 26. Three consecutive spectra collected in a line scan of the G′ band at 2.33 eV laser excitation for 1-LG obtained from SiC-based epitaxial graphene.
The top and bottom spectra are fit by a single Lorentzian and the middle curve is fitted to a sum of the same Lorentzians associated with the two adjacent
points on this Raman line scan. Adapted from Ref. [114].

Fig. 27. (a) Raman spectra of 1-LG (red), 2-LG (blue), 3-LG (green) prepared by a CVD process based on a Ni(111) precursor and then transferred to a
SiO2/Si substrate. (b) Raman spectra of 1-LG (red), 2-LG (blue), 3-LG (green) prepared by the mechanical exfoliation of HOPG, shown for comparison. All
spectra were taken with Elaser = 2.33 eV. Adapted from Ref. [31].

has been demonstrated that the detailed Raman lineshape depends on the fact that the precursor materials can be 4H–SiC
or 6H–SiC, or can be a SiC surface that is either carbon or silicon terminated. Furthermore, since in many samples the lateral
sizes are smaller than 1 µm, normal micro-Raman experiments, in which the size of the laser spot is about 1 µm, probe
inhomogeneous parts of the sample, thereby broadening the Raman bands compared to those frommechanically exfoliated
graphene. It is, however, clear that the G′-band of epitaxial few-layer graphene derived from SiC is more similar to that
of turbostratic graphite than to HOPG, showing that the graphene layers in epitaxial graphene are not stacked in the AB
(or Bernal) configuration. As the synthesis of SiC-based epitaxial graphene improves, it may be possible to obtain further
information about themore detailed non-Bernal stacking order that has been discussed for Si-terminated and C-terminated
SiC-based epitaxial F-LG samples, and the differences between their structures from one another.

5.2. Raman characterization of CVD grown graphene

Another method under development for the preparation of few-layer epitaxial graphene is by the chemical vapor
deposition (CVD) growth from thin films of transitionmetalswhich serve as catalysts for the growthof few layer graphene (F-
LG). Examples of transitionmetals that have been used successfully for the growth of F-LG are Co [115], Pt [116,117], Ir [118,
119], Ru [120,121] and Ni [31,122–126]. In the case of Ni, the in-plane lattice constant in the 111 plane is a = 0.232 nm, as
compared to graphite (for which a = 0.246 nm) at room temperature, representing a lattice mismatch of 5.6% for this CVD
growth. This lattice match is sufficient to allow continuous growth of graphene films on the surface of the Ni and these films
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Fig. 28. (a) Different types of edges that can be formed by cutting the graphene plane at different angles. (b) Raman spectra obtained in three different
regions of the HOPG sample from Ref. [131]. The laser energy was 1.96 eV. The inset shows a schematic diagram of the edge step and the regions where
spectra 1, 2, and 3 were taken (open circles). Adapted from Ref. [131].

exhibit a large fraction of 1-LG and 2-LG domains, with regions up to 20µm in size, large enough for Raman characterization
of each of these graphene regions individually.
The Raman spectra of 1-LG, 2-LG and 3-LG derived from CVD growth using the Ni precursor and from mechanically

exfoliated HOPG are shown in Fig. 27 for spectra excited at Elaser = 2.33 eV. A low intensity of the disorder-induced D band
(1350 cm−1) is observed relative to that of the G-band (1585 cm−1) for the monolayer sample with peak intensity ratios
(ID/IG) in the range 0.05 < ID/IG < 0.3 for the CVD-derived sample. The D-band intensity largely comes from graphene
edges and sub-domain boundaries in areas with a constant number of graphene layers. Spectra from the thinnest sections
of the CVD graphene film show a sharp linewidth (38 cm−1) and a single Lorentzian profile of the G′ band (∼2693 cm−1),
which are hallmarks of monolayer graphene (see Section 2.1). Although the G′ lineshape provides a good measure of the
number of layers in the case ofHOPG-mechanically exfoliated graphene, theG′ lineshape formultilayer CVDgrowngraphene
shows some variation between regions of identical numbers of layers. Moreover, regions of 2-LG and 3-LG, as identified by
AFM measurements, show G′-band features described by a single Lorentzian and with linewidths of (∼30–83 cm−1). This
indicates a departure from the ordered AB stacking and therefore the corresponding electronic coupling between graphene
layers does not occur in all regions of the film. Transmission electron microscope (TEM) diffraction measurement of the
interlayer spacing yields a value of 0.350±0.014nm for folded-over regions of these F-LG samples, consistentwith interlayer
spacings in the turbostratic regime (see Section 1.1), though the sharp spot diffraction patterns (rather than rings) indicate
local interlayer stacking order. From the Raman and TEM observations, we conclude that there is local stacking order but
the stacking is neither AB Bernal stacking nor turbostratic random stacking. The decreased interlayer coupling may have
advantages for some practical applications since incommensurate multilayer graphene with weak interlayer coupling can
have electronic properties more similar to those of a single sheet of graphene. Furthermore, instead of the G′ lineshape, it
was found that the G to G′ peak intensity ratios (IG/IG′) provide a good correlationwith the number of graphene layers in the
CVD-derived graphene samples [31]. Correlation between the grains in the Ni polycrystalline precursor and the grains in the
resulting graphene films suggest that some annealing of the initial Ni films might produce larger single domain graphene
regions in CVD grown graphene.
Raman characterization of CVD grown 2-LG [127] based on a Ru(0001) catalytic precursor was also carried out. Though

no Raman spectra were obtained from 1-LG similarly prepared, the 2-LG sample showed a single G′-band Lorentzian peak
with a linewidth of 42 cm−1 and both the G-band and G′-band spectral features were homogeneous throughout a spatial
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Fig. 29. (a) Schematic illustration of the atomic structure of the graphene edges shown in Fig. 28 emphasizing the different structures along the armchair
and zigzag edges. (b) First Brillouin zone of 2D graphite, showing that the intervalley double resonance mechanism satisfies conservation of momentum
for an armchair graphite edge but not for a zigzag edge. Adapted from Ref. [19].

scan of the 2-LG sample. The authors noted a surprising similarity between the Raman spectrum for this 2-LG sample (as
determined by scanning probe measurements) with a comparison spectrum for a monolayer reference graphene sample
prepared by the mechanical exfoliation process taken with the same experimental set-up. In this comparison, their 2-LG
sample showed frequency upshifts of 13 cm−1 and 4 cm−1, respectively, for the G and G′ band peak frequencies, and an
increase of 4 cm−1 in the FWHM linewidth of the G′ band, though the (IG′/IG) intensity ratio for the CVD derived 2-LG film
appeared to be notably smaller than that for their monolayer comparison spectrum. Similarities can also be seen between
the (IG′/IG) intensity ratio for the CVD derived 2-LG samples from the Ru (0001) precursor [120,121], on one hand, and
the CVD-derived 2-LG derived from the Ni (111) precursor [31]. Another similarity found for these two types of 2-LG CVD
grown graphene samples was that both types of samples showed spot diffraction patterns, indicative of interlayer ordering,
but with departures from the Bernal AB interlayer stacking order.

6. Raman studies of graphene and graphite edges

In this section we consider the use of Raman spectroscopy to distinguish between armchair and zigzag edges because
an edge breaks the symmetry of the graphene structure and gives rise to D-band intensity (see Section 1.3). Different wave
vectors are involved for the armchair and zigzag edges, and this allows Raman spectroscopy to distinguish between these
edges.
Knowledge about graphene edges is of great importance, since the electronic properties of nanometer scale graphene

materials are sensitive to the specific types of edges [128–130]. Furthermore, Raman spectroscopy can be used to measure
the quality of the edges in graphene, namely, the armchair and zigzag edges. Fig. 28 shows armchair and zigzag edges and
the possible combination of angles between either of them, which are multiples of 30◦. The first study of graphene edges by
Raman spectroscopy was done on step-like edges in graphite [131]. Fig. 28(b) shows the Raman spectra from three different
locations on such a sample, where it is possible to clearly identify those edges that have a 150◦ angle between them. For the
laser spot positions number 1 and 2, it is possible to observe two disorder-induced Raman bands, the D-band (1340 cm−1)
and the D′-band (1620 cm−1). For position 3, where the Raman spectra were taken from a flat interior region of the HOPG
sample, no disorder-induced bands were found, indicating the absence of imperfect crystalline order [131]. Whereas the D′
intensities are the same for positions 1 and 2, the D band intensity is different for these two locations.
Cançado et al. [131] showed, using scanning tunneling microscopy (STM) characterization, that position 2 is indeed a

zigzag edge and that the weaker D band intensity with respect to that for the armchair edge is due to the one-dimensional
character of a defect along the edges. From the intervalley double resonance mechanismwhich gives rise to the D band (see
Section 1.3), we see in Fig. 29(b) that the phonon wavevector is q. Thus, in order to conserve momentum, when the electron
is scattered back elastically from K ′ to K in the Brillouin zone by a phonon with wavevector d = −q. Fig. 29(a) shows the
armchair and zigzag edges with their respective defect wavevectors da and dz, which are perpendicular to the armchair
and zigzag edges. Fig. 29(b) shows the first Brillouin zone of graphene, oriented in accordance with the real space lattice
[Fig. 29(a)]. Here we see that the armchair wavevector (da) is able to participate in the intervalley double resonance process
between the K and K ′ points. On the other hand, the zigzag defect wavevector (dz) cannot connect the K and K ′ points, and
thus the elastic electron scattering by the defect does not have enough momentum for spanning points K and K ′ and for
conserving momentum as shown in the figure for the DR Raman process (Fig. 29(b)). This result shows that only armchair
edges and not zigzag edges are expected to exhibit a D band in the Raman spectra of a perfect graphene edge [131].
TheD′ band, which originates from an intravalley process connecting k points around the same K (or K ′) point, can satisfy

momentum conservation for either armchair or zigzag edges. Thus, the D′ band is independent of the edge structure, as is
observed experimentally in Fig. 28(b).
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Fig. 30. Dependence of the D band intensity on the polarization direction of the incident and scattered light. The spectra were taken in region 1 in Fig. 28
(armchair edge) at room temperature. The laser power density on the sample was 3 × 105 W/cm2 and the laser energy was 2.41 eV. The inset shows
a schematic illustration of the optical anisotropy around the K point of 2D graphite [69], where θ is the angle between the light polarization P and the
armchair edge direction. Figure from Ref. [131].

Moreover the Raman scattering from these edges exhibit a polarization dependence for both the incident and scattered
light polarizations. Because of optical anisotropy in graphene [69], the optical absorption (emission) is proportional to |P×k|,
whereP is the polarization of the incident (scattered) light andk is thewavevector of the electronmeasured from theK point.
Thus in the case of theVV andVH polarization configurations (whereV andH , respectively, denote the vertical andhorizontal
polarization directions for the light), the intensity of the D band is given by ID(VV ) ∝ cos4(θ) and ID(VH) ∝ cos2(θ) sin2(θ),
where θ is the angle of the incident light with respect to k [131]. The experimental points in Fig. 30 show the measured
polarization dependence for the armchair edge D band intensity (square points) which is compared with the theoretical
curves (lines) for both the VV (closed squares and solid lines) and VH (open squares and dashed lines) configurations.
The corresponding result was also verified for the G′ band for graphene, where the one-dimensional nature of the double
resonance mechanism along the high symmetry lines Γ –K–M–K ′–Γ also gives rise to a polarization dependence [132].
The same results found by Cançado et al. [131] at step edge defects in graphite are also expected to be seen in graphene.

Although mechanically exfoliated graphene of top of silicon oxide appears to have sharp edges macroscopically, these edges
are found to be imperfect at the atomic level, as seen by high resolution electron microscopy. You et al. [133] performed a
series of Raman imaging experiments of the D band in different graphene samples and showed that, indeed, when the edges
have an angle of n × 30◦ (for n = 1 and 3) between them, the D band intensity is more pronounced for one of the edges.
Fig. 31 shows two different graphene edges where the intensity difference of the D band is sufficient to distinguish between
the armchair and zigzag edges. In fact, this result depends sensitively on the quality of the edges that can be made by the
mechanical exfoliation of graphite [133]. Casiraghi et al. [134] showed that the difference between the D band intensity for
different edges is not always large enough to be correlated reliably with the edge orientation. Although Raman spectroscopy
can potentially provide a useful tool to probe the edge chirality of graphene, imperfect graphene edges produced by the
mechanical cleavage of graphite can produce ambiguous results that do not clearly discriminate the armchair and zigzag
edges from one another [134].

7. Raman studies of graphene nanoribbons

Graphene is a two dimensional, zero gap semiconductor. For electronics applications it is desirable to have a
semiconductor with an energy gap to realize high ON/OFF ratios in transistor devices [27], and this is where nanoribbons
mayplay an important role. By cutting a graphene sheet into ribbons a fewnanometerswide, it is possible to forma gap in the
electronic dispersion relations due to the confinement of the electronwavefunction [128,129,135]. Moreover, thewidth and
chirality of the edges of the nanoribbons define the size of the bandgap [129,135]. Fig. 32(a) and (b) illustrate the structures
of zigzag and armchair nanoribbons, respectively, while Fig. 32(c) shows a tight binding calculation of the electronic density
of states for a narrow zigzag nanoribbon with N = 6 [see Fig. 32(a)] [129]. Tight binding calculations [129] suggest that
all zigzag ribbons are metallic while armchair ribbons can be either semiconducting or metallic, depending on the number
of columns of carbon atoms N along the width wa [see Fig. 32(d)] [129], and some STM measurements show experimental
evidence in support of these phenomena [136]. Amore complete calculation includingmany-body effects by Son et al. [135]
found that armchair and zigzag nanoribbons are all semiconducting [see Fig. 32(e)][135].
Raman spectroscopy can be used as a fast and non-destructive method to localize and probe nanoribbon properties.

Cançado et al. [7] performed Raman spectroscopy measurements on nanographite ribbons sitting on top of an HOPG
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Fig. 31. Raman mapping of the D band intensity for four different types of angles between the graphene edges. It is possible to observe that the D band
intensity is enhanced at the armchair edges, and zigzag edges are found to have a smaller intensity when compared to the armchair edges. Figure adapted
from Ref. [133].

Fig. 32. (a) and (b) Geometrical structure of a zigzag and an armchair graphene ribbon, respectively. (c) Tight binding calculation of the density of states
for a zigzag ribbon with N = 6 (see (a)), (d) and (e) Calculated dependence of the energy gap on the width of armchair nanoribbons using a tight binding
calculation (d) and a first principles (LDA) calculation (e), respectively. The figure is adapted from Ref. [135].

(highly oriented pyrolytic graphite) substrate. Fig. 33(a) shows an atomic force microscopy (AFM) image of several parallel
nanoribbons with an average width of 8 nm, with lengths that can be as large as 1 µm. Fig. 33(b) shows an AFM height
profile on one of these nanoribbons, confirming that the nanoribbon is one graphene layer thick and has a width of 8 nm.
Fig. 33(c) shows Raman spectra taken on this nanoribbon with 2.41 eV laser energy in the region of the G band. Here it is
possible to observe two G peaks in the spectra, the G1 feature (with a dotted curve) centered at 1568 cm−1 and the G2 peak
(with a solid curve) at 1579 cm−1. As discussed in Ref. [7] the frequency of the G1 peak is strongly dependent on the laser
power density used in the experiment.
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Fig. 33. (a) AFM image of different ribbons parallel with each other. (b) An AFM height profile for one of the nanoribbons, showing a step high of 0.35 nm.
(c) Raman spectra in the G band region showing a two peak feature consisting of the G1 (dotted lines) and G2 (full lines) Raman bands. This figure was
adapted from Ref. [7].

To clearly establish the physical origin of these two G band features, polarized Raman spectra were taken [7]. Fig. 34(a)
shows the Raman spectra for different polarization angles with respect to the nanoribbon, where θ = 0◦ denotes the
light polarization vector P parallel with the ribbon. The G1 peak intensity decreases gradually from parallel (θ = 0◦) to
perpendicular (θ = 90◦) polarization with respect to the nanoribbon length axis [Fig. 34(b)]. On the other hand, the G2
peak intensity is not affected by the polarization angle [see Fig. 34(a)]. It can therefore be concluded from Fig. 34(b) that
the G1 Raman peak is associated with the G band of the nanoribbon [7]. The separation in frequency between the G1 and G2
peaks arises from the laser heating of the nanoribbon due to the lower thermal conductivity from the graphene ribbon to the
HOPG substrate on which the nanoribbon sits. This angular dependence in Fig. 34(b) is explained by considering the optical
anisotropy of graphene [69] and the quantum confinement in a 1D graphene ribbon, which has been discussed by Ref. [7].
It is interesting to note, that the G1 peak intensity for the nanoribbon can be even larger than that for the G2 feature which
originates from the HOPG substrate. Although the number of carbon atoms within the laser spot size of the HOPG sample
is at least 100 times larger than the number of C atoms in the ribbon, the signal from the graphene ribbon is, nevertheless,
clearly observed. The observation of such a strong signal means that the laser energy should be close to an optical transition
associated with the van Hove singularities in the valence and conduction bands of the nanoribbons [7].
Subsequent to the above studies carried out in 2004, isolated graphene nanoribbons have been fabricated on a silicon

oxide substrate. Two types of fabrication techniques have been applied: structural etching [137] of mechanically exfoliated
graphene or chemical routes to exfoliate graphite [138]. The chemically exfoliated graphite is obtained by intercalating
graphite flakeswith sulfuric acid and nitric acid and then heating at∼1000 ◦C in forming gas (Ar+10%H) for 1min, resulting
in an exfoliated graphite [5,138]. The latter method produces ribbons with small widths (<10 nm)with an average length of
1 µm [138]. Fig. 35(a)–(c) shows different ribbons imaged by AFM with different widths on top of a silicon oxide substrate.
This Ramanmeasurement in Fig. 35(d) for the G band is one of the few reported in the literature thus far for isolated carbon
nanoribbons. One of themajor difficulties impeding progress in this area is sample preparation to yield isolated nanoribbons
with well-defined edges and chiralities.
The paucity of experimental Raman studies in the literature is partly compensated for by recent theoretical investigations

of the Ramanmodes of nanoribbons [136,139–143]. Fig. 36 shows a calculation of the nanoribbon first-order Raman spectra
for different ribbon widths [141]. The armchair nanoribbon Raman spectra with 7 and 8 carbon dimer widths is given in
Fig. 36(a) and (b), respectively, while Fig. 36(c) and (d) show the corresponding Raman spectra for a zigzag nanoribbon. It
is interesting to compare these spectra with the Raman spectra of a single wall carbon nanotube (SWNT), where the most
prominent features are the low frequency radial breathing mode (RBM) and the G band in the 1580–1590 cm−1 range. In
Fig. 36 it is possible to distinguish three intensemodes for carbon nanoribbons, the R, E and Lmodes using the notation of Ref.
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Fig. 34. (a) Raman spectra obtained for different values of the light polarization angles (θ ) with respect to the nanoribbon direction or its length.
(b) Intensity of the G1 peak associated with the nanoribbon as a function of the angle θ (see insert to (a) which defines θ as the angle between the ribbon
axis and the polarization vector). This figure was adapted from Ref. [7].

Fig. 35. (a)–(c) AFM images of graphene ribbons for different widths on top of a silicon oxide substrate. The scale bar is 100 nm. (d) Raman spectrum for
the G-band in a graphene nanoribbon<10 nm in width. This figure was adapted from Ref. [138].

[141]. The E mode is an E2g-like vibration in the nanoribbon network which gives rise to the G band in the Raman spectra for
graphene. The R mode for the nanoribbon is a radial breathing-like mode (RBLM) resembling the radial breathing mode of
carbon nanotubes. This mode is created by the vibration of the outer atoms, while the center atoms are almost static [141].
The localized L mode in Fig. 36 is a mode generated by the vibration of the atoms at the edge of the ribbons [141]. Both
the RBLM and the localized modes are very useful for characterizing the nanoribbon properties by Raman spectroscopy as
is usually done in single wall carbon nanotubes (SWNTs). First, the RBLM mode frequency depends on the width of the
nanoribbon [141,143], the larger the width, the lower the RBLM frequency. The localized mode can be different for different
types of edges, thus making a distinction between armchair and zigzag edges, as is seen in Fig. 36.
Although experimental Raman studies on carbon nanoribbons are still lacking in the literature, we highlighted here

the importance of resonance phenomena and polarized Raman spectroscopy to clearly distinguish nanoribbons relative to
graphite or graphene [7]. On the other hand, a significant amount of theoretical effort has already been made to provide a
framework that can be used to probe nanoribbon properties by Raman spectroscopy [139–143]. One can then envision the
development of a Kataura-like plot for nanoribbons, whichwould provide a powerful tool to identify the chirality andwidth
of individual nanoribbons by Raman spectroscopy, as has been done for single wall carbon nanotubes [6,77,144].
Recent advances [145–147] in the synthesis of large scale quantities (grams per day) of crystalline graphene nanoribbon

material (Fig. 37(a) and (b)) by a CVD process, with nanoribbon widths of 20–300 nm, and thicknesses of 2–40 graphene



L.M. Malard et al. / Physics Reports 473 (2009) 51–87 83

Fig. 36. (a), (b) Calculated Raman spectra of armchair nanoribbons (ACNR) for 7 and 8 carbon dimers, respectively. (c)–(d) The same corresponding spectra
as in (a), (b) but now for zigzag nanoribbons (ZCNR). The most prominent modes in the spectra are marked as R for the radial breathing-like mode (RBLM)
mode, E for the G band, and L for the localized mode. Figure adapted from Ref. [141].

layers [145], have shown how to produce atomically sharp zigzag and armchair edges (Fig. 37(c)) by the joule heating of
these as-grownnanoribbons (see Fig. 37(a))within an integrated TEM-STM instrument [145–147]. The transmission electron
microscope (TEM) allows imaging of the graphene ribbon while manipulating the ribbon and using the scanning tunneling
microscope (STM) to make current–voltage measurements. Parallel TEM and Raman studies of this material under static
heat treatment at constant temperature also results in the annealing of defects within the interior of the ribbons (Fig. 37(d)
and (e)) but for heat treatment temperatures of 1500 ◦C and above, adjacent edges tend to form loops (Fig. 37(e)) to passivate
their reactive dangling bonds [147]. Raman spectra for the as-prepared material and for the material heat treated at various
heat treatment temperatures are shown in Fig. 37(f), where a decrease in D-band intensity can be identified by the decrease
in the in-plane disorder, but a residual D-band intensity remains at high heat treatment temperature (2800 ◦C) and is
attributed to the presence of edge loops [147]. This approach to the preparation of graphene nanoribbons is at an early
stage of development and offers promise as a method to study the development and motion of edges and their electronic
and transport properties. Raman spectroscopy is expected to play a major role in guiding the future development of this
graphene nanoribbon material.

8. Summary and conclusions

In summary, we have presented an overview of the Raman spectroscopy in graphene, discussing the theoretical
background associated with the first-order and the double resonance Raman scattering mechanisms that gives rise to the
main features in the Raman spectra of graphene, and presenting some recent Raman studies in different types of graphene,
including both exfoliated and epitaxial graphene samples. Symmetry considerations based on a Group Theory analysis were
presented and the selection rules associated with the different Raman features were discussed. We showed that Raman
spectroscopy is a very useful tool to determine the number of layers in few-layer graphene, and in particular to distinguish
monolayer from few-layer graphene stacked in the Bernal (AB) configuration.
The Raman features of different types of graphene sampleswere comparedwith those of two extreme cases—the ordered

3D crystalline graphite where all layers are stacked in the Bernal (AB) configuration and turbostratic graphite, in which the
layers are stacked with rotational disorder. We showed that, in contrast to the case of mechanically exfoliated graphene
where the Raman spectra are well understood, the Raman studies of epitaxial graphene are still at an early stage. It is clear
that in SiC-based epitaxial graphene, the Raman features are strongly dependent on the precursor material and on the strain
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Fig. 37. (a) SEM image of an as-produced graphene ribbon (scale bar = 500 nm) (b) HRTEM image of the surface and edge of an as-produced ribbon, where
the arrow indicates the edge (scale bar = 4 nm). The inset shows the FFT of this region where the hexagonal pattern of a honeycomb structure is evident.
(c) HRTEM image of the same sample after the Joule heating experiment (scale bar = 1 nm), (d) and (e) HRTEM images of the edges of a pristine sample
and a sample heat treated at 2000 ◦C, respectively (scale bar = 5 nm), (f) micro Raman spectra on bulk nanoribbons heat treated at various temperatures
taken with Elaser = 2.33 eV [145,147].

of the graphene due to interaction with the substrate. As the quality of graphene samples improves, Raman spectroscopy
will likely play a role in illuminating the properties of graphene close to the Dirac point, using freely suspended samples.
We have also presented Resonance Raman studies of graphene, where the energy of the excitation laser line can be tuned

continuously. Due to the double-resonance Raman mechanism, photons with different energies interact with electrons and
phonons with different wavevectors. Therefore, by changing the energy of the excitation laser, it is possible to probe the
dispersion of electrons and phonons near the Dirac point of graphene. In particular, a resonant Raman investigation of the
G′ band allows the determination of the tight-binding parameters in bilayer graphene. These Raman results agreeswell with
infrared absorption and transmission spectroscopy of bilayer graphene which also reveals electron-hole asymmetry [148].
The electron–phonon interaction is very strong in graphene, and the adiabatic (Born–Oppenheimer) approximation fails

for this system. Some special phonons, specially those responsible for the main Raman features, can create an electron–hole
pair, and this process renormalizes the phonon energy giving rise to the so-called Kohn anomaly. This process is suppressed
when the Fermi level position is changed by an amount greater than half of the phonon energy. Experimental results
in monolayer and bilayer graphene, where the position of the Fermi level is tuned by applying a gate voltage or using
electrochemical methods, were discussed and compared with theoretical predictions.
The possibility of distinguishing between armchair and zig-zag graphene edges was discussed in terms of the double-

resonance Raman process, showing that the scattering at an armchair edge gives a strong D-band intensity while a weak
D-band feature is observed at a zigzag edge. This result can be used to test the atomic quality of a graphene edge. Finally,
we discussed polarized Raman studies in graphene nanoribbons in which the signal is enhanced due to resonance with
singularities in the density of electronic states. In the future, Raman spectroscopy is likely to play a significant role in
illuminating the special one-dimensional properties of narrow graphene nanoribbons.
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