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Abstract— An optimized fast fixed point algorithm based on 
modified Newton iteration method has been proposed. With 
good performance of the blind image separation, the optimized 
algorithm can improve the convergence speed greatly. We 
proposed a new adaptive enhancement parameter to enhance 
the separated images effectively. The experimental results 
demonstrate that the new algorithm is superior.  
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I.  INTRODUCTION  

Independent component analysis (ICA), a computational 
and statistical method used to reveal hidden factors that 
underlie sets of random variables or  measurements [1], has 
been widely used in the fields of digital signal processing, 
super resolution, blind image separation (BIS), etc.  

Nowadays, many papers about ICA have been published 
in a large number of conference proceedings and journals. In 
the papers, many modified ICA methods have been proposed, 
such as infomax ICA[2,3], JADE [4],  SOBI [5] , fast fixed 
point algorithm[6] , H-J [7], etc. Early, ICA resulted from the 
classic blind source separation (BSS) problem of a cocktail-
party with less priori knowledge or even nothing [8]. ICA 
defines a generative model for the observed multivariate data 
from a large database of samples. In the model, the mixing 
system is unknown, and the observed data are nonlinear or 
linear mixtures of some unknown components of the 
observed data. The components are assumed mutually 
independent and nongaussian. The basic aim of ICA is to 
find these independent components (ICs). Considered as the 
development of principal component analysis (PCA) [9], 
ICA is much more powerful and robust to get the ICs.  

However, when the data amount is large, ICA can’t 
fulfill the real-time requirements. So some modified methods 
have been proposed to improve the processing speed, and the 
typical one is the fast fixed point algorithm. The algorithm 
has the excellent algorithmic properties and the splendid 
statistical properties arising from negentropy. It’s based on a 
fixed point iteration scheme for finding a maximum of the 
nongaussianity of ICs. The algorithm could be derived by 
using the classic Newton iteration method (CN) [10].  

Newton iteration method is a fundamental algorithm in 
numerical analysis, and it’s used to solve nonlinear equations. 

The classic Newton iteration method converges quadratically. 
And some novel modified Newton iteration methods (MN) 
with higher order of convergence have been proposed to 
improve the computational efficiency by speeding up the 
convergence.  In the paper, an optimized fast fixed point 
algorithm based on MN has been proposed to cope with BIS. 
A new adaptive image enhancement method based on 
normalization has been proposed to enhance the separated 
images. The experimental results have shown that the 
optimized algorithm speeds up the convergence greatly and 
has good signal separation performance. 

II. Modified Newton iteration method  

CN is used to solve nonlinear equations in the field of 
numerical analysis. CN transforms the nonlinear equation 
into a linear equation approximately by using linearizing 
method. CN is easier for programming and converges faster. 
CN for a single nonlinear equation converges quadratically. 
Its fundamental formula is shown as follow: 
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In order to reduce the iteration number, some new MN 

methods with higher order convergence were proposed. The 
midpoint rule based on Newton’s theorem in (2) gives the 
iteration method with 3rd-order convergence defined by (3) 
and (4) [10].   
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In [11], a new MN method with 5th-order convergence is 

presented and the conclusion is to assume that: 
     1) The function ݂: ܦ ⊂ ܴ ⇒ ܴ for an open interval D has 
a simple root ߙ ∈   ;ܦ

2) ( )f x  has 1st, 2nd and 3rd derivatives in D; 

௡ାଵݑ (3 െ ߙ ൌ ௡ଷ݁ܤ ൅ for some	ሺ݁௡ସሻߍ 0B ≠  and ݁௡ ൌ ௡ݔ െ   ;ߙ
So the MN defined by (5) has 5th-order convergence.  
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The proof is given:݂ሺݔሻ is expended by Taylor series， 
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So the method defined by (5) has the 5th-order convergence. 

III. BSS & ICA 

A. BSS 

As a hot topic, BSS is used to separate individual source 
signals from observed mixtures of source signals when the 
priori information of the source signals, the mixing system 
and noise are all unknown. The BSS mixing model is: 

( ) ( ) ( )k k k∗ ∗= +* *x A s n                                     (16) 

ሺ݇ሻ∗ܠ ൌ ሺܠଵ௞∗ ,⋯ , ∗୑௞ܠ ሻ୘ is the vector of M observed 
mixtures of source signals at time k;	ܛ∗ሺ݇ሻ ൌ ሺܛଵ௞∗ ,⋯ , ∗ே௞ܛ ሻ୘ 
is the vector of N source signals at time k ; and ۯ∗is the Mൈ N mixing matrix; ܖ∗ሺ݇ሻ ൌ ሺܖଵ௞∗ ,⋯ , ∗୑௞ܖ ሻ୘ is the vector 
of M noise signals. We utilize the separating model in (17) 
to get the estimation of ܛ∗ሺ݇ሻ.	ܡ∗ሺ݇ሻ ൌ ሺܡଵ௞∗ ,⋯ , ∗ே௞ܡ ሻ୘is the 
estimation of ܛ∗ሺ݇ሻ and it’s the vector of N separated 
signals at time k. ∗W is the N ൈM separating matrix. 

( ) ( )k k∗ ∗ ∗=y W x                                             (17) 

B. ICA 

As a basic algorithm to solve the BSS problem, ICA is a 
very general-purpose statistical technique in which observed 
data are expressed as a linear transform of statistically 
independent components [1]. The aim of ICA is to obtain the 
restoration of source data from observed data by calculating 
a separating matrix, without knowing the source data and 
mixing matrix. And the separating matrix is the inverse of 
the estimate of the mixing matrix. The linear ICA model and 
the separating model are shown in (18) and (19) respectively.  

x = As                                                             (18) 
y = Wx = WAs                                                (19) 

In (18), s is the N ൈ 1vector of unknown source data 
which are mutually independent. And x is the Mൈ 1 vector 
of observed random data which are linearly mixed sources. 
A is the Mൈ Nmixing matrix composed of the unknown 
mixing coefficients. W is the N ൈM separating matrix. In 
(19), y is the N ൈ 1 estimation vector of s, and the 
components of y are as independent from each other as 
possible. Usually, we focus on the situation that the number 
N of source data s is equal to the number M of observed 
random data x. If the number of source data s is less than the 
one of observed random data x (i.e. N ൏ M), PCA is used to 
cope with the problem of data redundancy and makes sure N 
= M. If the matrix WA is a permutation matrix (all elements 
of each column and row are zero except for one element with 
the value unity), the estimation of s can be found.  

ICA is under the following assumptions: the components 
of source data are mutually independent and nongaussian 
(except for perhaps one); the mixing matrix is a full column 
rank matrix and has its pseudo-inverse matrix. 

Nongaussian of y, which is used as a measure of the 
independence of y, is found by kurtosis minimization or 
maximization, mutual information minimization, maximum 
likelihood estimation or negentropy maximization [12]. 

 In order to improve processing speed and robustness, the 
fast fixed point algorithm based on negentropy has been 
presented. By whitening the sources, the algorithm has a 
modified separating model ܡ ൌ ܢ܄ . And ܢ ൌ ܠ܃  is the 
whitening data of x after PCA processing, while U is the 
whitening matrix. ܂ܑܞ  is the  i-th row of the orthogonal 
system V and ܑܡ ൌ  The maximum .ܡ is the i-th row of ܢ܂ܑܞ
approximation of the negentropy of ܑܡ is obtained at certain 
optimum of Eൣܩ൫ܢ܂ܑܞ൯൧. G is a nonquadratic function while g 
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is the derivative of G. Each optimum under the Lagrange 

conditions and constraint E ቂ൫ܢ܂ܑܞ൯ଶቃ ൌ ଶ‖ܑܞ‖ ൌ 1  is 

obtained if Eൣ݃ܢ൫ܢ܂ܑܞ൯൧ ൅ ܑܞߚ ൌ 0 ߚ )  ൌ Eൣ݃ܢ܂ܑܞ൫ܢ܂ܑܞ൯൧ ). 
And by CN, the fast fixed point algorithm is obtained as 
follows： 
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/ || ||i i i⇐v v v                                                                (21) 

IV. AN OPTIMIZED FAST FIXED POINT ALGORITHM  

In order to optimize the performance of the fast fixed 
point algorithm mentioned above, an optimized fast fixed 
point algorithm has been proposed. And the modified 
Newton iteration in (5) is applied to its modification in (22): 
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The optima of Eൣܩ൫ܢ܂ܑܞ൯൧ is obtained through ݂ሺܞ௜ሻ ൌ 0. 
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i i if g β= Ε +v z v z v                                             (23) 

By using (23) in (22), we get:  
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We could use algebraic simplification to eliminate the 

denominators of three equations in (24) and then obtain (25) 
without	ߚ.The final result ݅ܞ is obtained by (26).   
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/ || ||i new new=v v v                                                           (26) 

So the new optimized algorithm is defined by (25) and 
(26). According to the BIS based on the new algorithm, each 
IC is a separated image which is the estimation of one source 
image. In order to display the separated images well, the gray 
scale pixel values of each IC are normalized through (27).  

( ) ( )
minmax

min,
,

FF

FyxF
yxFnew −

−=
,ݔሺܨ (27)                                               ௠௜௡are the maximum and the minimum of all theܨ ௠௔௫andܨ .ሻis a gray scale pixel value of an IC at point (x,y)ݕ

gray scale pixel values of each IC. ,ݔ௡௘௪ሺܨ ሻݕ is the 
normalized gray scale pixel value of the IC at point (x,y). 

In (28), a new adaptive enhancement parameter ߙ is 
proposed to enhance the separated images. The method is 
use (29) to get the new images. 

( ) 1/2
,allr M x yα σ −

= ⋅                                                        (28) 

( ) ( ) ( ) ( ), , , ,new newF x y F x y M x y M x yα= − +    is the average of all the normalized gray scale pixel	௔௟௟ܯ (29)                    
values of one image. ߪሺݔ, ሻݕ  and ܯሺݔ,  ሻare the standardݕ
deviation and the average of the normalized gray scale pixel 
values in the neighborhood (3 ൈ 3 sub-image region) of the 
pixel at (x,y) respectively. And r is a proportionality constant 
from 0 to 1 (assumed that r=0.5). In (28), because ߙ is in 
inverse proportion to ඥߪሺݔ, ሻݕ ,ݔ௡௘௪ሺܨሾߙ , ሻݕ െܯሺݔ,  ሻሿݕ
could enhance the images adaptively so that the regions 
lacking adequate contrast could be enhanced well. By using 
the method, the separated images can be enhanced and then 
displayed well. The new algorithm is depicted in Figure 1.  

 
Figure 1.The optimized fast fixed point algorithm 

V. EXPERIMENTAL RESULTS & DISCUSSIONS  

The simulation environments are given as follows: 
Windows XP, MATLAB 7.5.0, CPU AMD Athlon (tm) 64 
X2 Dual Core 2.41GHz, and 3.0G RAM. We’ve chosen two 
images (512 ൈ 512) as source images and mixed them at 
random to test our algorithm. And the source images and the 
mixed images are shown in the Fig. 2 & 3 respectively.  

In Fig.4, by using the classic fast fixed point algorithm, 
the separated images can’t be displayed normally, and we 
can’t detect the detail information visually. But the 
experimental results by using the normalization algorithm in 
Fig.5 show the clearer images which are more similar to the 
source images. In Fig.6, because of the combination with 
adaptive enhancement parameter ߙ and the normalization 
algorithm, the regions with low contrast are enhanced 
adaptively and the detail of dim regions are clear; and in the 
regions with high contrast, more detail information such as 
edge and texture are finer softly. Compared with the results 
in Fig.4 & 5, our algorithm shows the best performance with 
the most image detail information from the regions with 
different contrast. Therefore, our algorithm can enhance all 
the regions adaptively and improve the separated images. 
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Figure 2.Source images                            Figure 3. Mixed images 

 
Figure 4. Separated images                    Figure 5.Separated images 
               (classic algorithm)        (classic algorithm with normalization) 

   
Figure 6.Separated images (our algorithm ) 

PI in (30) has been utilized to test the quality of the new 
algorithm for 6 times under the same experimental condition.  
C=VUA ={c୧୨ }is a M by N matrix (M=N=2). Table I shows 
that compared with the classic algorithm, the BIS based ours 
doesn’t lose any information nearly with similar performance.  

1 1 1 1

| | | |1
1 1

( 1) | | | |m ax m ax

M M M M
ij ij

j i i jkj ik
k k

c c

M M c c= = = =

    
    ΡΙ = − + −    −         

   
 (30)   

TABLE I.  PI RESULTS 

Test Number 1 2 3 4 5 6 

Classicalgorithm 0.0479 0.0824 0.0412 0.0471 0.0487 0.0801

our algorithm 0.0479 0.0824 0.0411 0.0471 0.0485 0.0799

Under the same condition, we’ve obtained the average 
iteration number of each IC from 20 experiments by using 
the two algorithms. Table II demonstrates that: the average 
number of the 1st IC has been reduced by 30.1%; the total 
average number of all ICs has been reduced by 24.8%. So 
our algorithm speeds up the convergence greatly. 

TABLE II.  THE AVERAGE ITERATION NUMBER 

IC 1st IC 2nd IC total 

classic algorithm 9.3 2 11.3 

new algorithm 6.5 2 8.5 

In brief, our algorithm has some advantages:  

1) It speeds up the convergence with good BIS 
performance by reducing the iteration number;  

2) By using the normalization, it can improve the display 
performance of the separated images and makes them be 
closer to the source images visually;  

3) By using our enhancement parameter, it stresses the 
details and the contrasts of the separated images greatly.  

VI. CONCLUSIONS  

We’ve proposed an optimized fast fixed point algorithm 
based on the modified Newton iteration method and a new 
adaptive enhancement parameter. The experimental results 
demonstrate that: with good performance of blind image 
separation, the new algorithm could speed up the 
convergence greatly and enhance the separated images 
adaptively. So the algorithm is superior to the classic one. 
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