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Data Augmentation

�Data Enrichment

Data Cleaning

�Data Cleansing

Data Cleansing

Synonyms

Data cleaning; Data reconciliation; Data
scrubbing

Data cleansing is the process of detecting and
correcting (or removing) corrupt or inaccurate
records from data.

Cross-References

�Data Preparation

Data Enrichment

Synonyms

Data augmentation; Data integration

Data enrichment is the process of adding to an
existing data collection. This commonly involves
sourcing of additional information about the data
points on which data are already held.

Cross-References

�Data Preparation

Data Integration

�Data Enrichment

Data Linkage

�Record Linkage

Data Matching

�Record Linkage

Data mining on Text

�Text Mining
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Abstract

Before data can be analyzed, they must be or-
ganized into an appropriate form. Data prepa-
ration is the process of manipulating and orga-
nizing data prior to analysis.

Data preparation is typically an iterative
process of manipulating raw data, which is
often unstructured and messy, into a more
structured and useful form that is ready for
further analysis. The whole preparation pro-
cess consists of a series of major activities
(or tasks) including data profiling, cleansing,
integration, and transformation.

Synonyms

Data preprocessing; Data wrangling

Motivation and Background

Data are collected for many purposes, not nec-
essarily with machine learning or data mining in
mind. Consequently, there is often a need to iden-
tify and extract relevant data for the given analytic
purpose. Every learning system has specific re-
quirements about how data must be presented for
analysis, and hence data must be transformed to
fulfill those requirements. Further, the selection
of the specific data to be analyzed can greatly
affect the models that are learned. For these
reasons, data preparation is a critical part of any
machine learning exercise and is often the most
time-consuming part of any nontrivial machine
learning or data mining project.

In most cases, the preparation process con-
sists of dozens of transformations and needs to

be repeated several times. Despite advances in
technologies for working with data, each of those
transformations may involve much-handcrafted
work and can consume a significant amount of
time and effort. Thus, working with huge and di-
verse data remains a challenge. It is often agreed
that data wrangling/preparation is the most te-
dious and time-consuming aspect of data analy-
sis. It has become a big bottleneck or “iceberg”
for performing advanced data analysis, particu-
larly on big data. A recent article in the New York
Times For Big-Data Scientists reported that the
whole process of data wrangling could account
up to 80 % of the time in the analysis cycle. In
other words, there is only a small fraction of
time for data analysts and scientists to do anal-
ysis work. According to the data science report
Data science report, published by Crown in 2015,
messy and disorganized data are the number one
obstacle holding data scientists back. The same
study reports that 70 % of a data scientist’s time
is spent in cleaning data.

Processes and Techniques

The manner in which data are prepared varies
greatly depending upon the analytic objectives
for which they are required and the specific learn-
ing techniques and software by which they are to
be analyzed. The following are a number of key
processes and techniques.

Data Profiling: Sourcing, Selecting, and
Auditing Appropriate Data
It is necessary to review the data that are already
available, assess their suitability to the task at
hand, and investigate the feasibility of sourcing
new data collected specifically for the desired
task. It is also important to assess whether there
are sufficient data to realistically obtain the de-
sired machine learning outcomes.

Data quality should also be investigated, as
data sets are often of low quality. Those re-
sponsible for manual data collection may have
little commitment to assuring data accuracy and
may take shortcuts in data entry. For example,
when default values are provided by a system,
these tend to be substantially overrepresented

http://dx.doi.org/10.1007/978-1-4899-7687-1_100100
http://dx.doi.org/10.1007/978-1-4899-7687-1_100102
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Data Preparation, Fig. 1 Data quality measures
(Adapted from Müller and Freytag 2005)

in the collected data. Automated data collection
processes might be faulty, resulting in inaccurate
or incorrect data. The precision of a measuring
instrument may be lower than desirable. Data
may be out-of-date and no longer correct.

Assuring and improving data quality are two
of the primary reasons for data preprocessing.
There are common criteria to measure and evalu-
ate the quality of data, which can be categorized
into two main elements, accuracy and uniqueness
(Müller and Freytag 2005), as explained in Fig. 1.

Accuracy is described as an aggregated value
over the quality criteria: integrity, consistency,
and density. Intuitively this describes the extent
to which the data are an exact, uniform, and
complete representation of the mini-world: the
aspects of the world that the data describe. We
describe each accuracy criterion as follows:

• Integrity: An integral data collection con-
tains representations of all the entities in the
mini-world and only of those. Integrity re-
quires both completeness and validity.
– Completeness: Complete data give a

comprehensive representation of the
mini-world and contain no missing
values. We achieve completeness within
data cleansing by correcting anomalies
and not just deleting them. It is also
possible that additional data are generated,
representing existing entities that are
currently unrepresented in the data. A
problem with assessing completeness is
that you do not know what you do not
know. As a result, there are no known
gold standard data, which can be used as a
reference to measure completeness.

– Validity: Data are valid when there are no
constraints violated. There are numerous
mechanisms to increase validity including
mandatory fields, enforcing unique values,
and data schema/structure.

• Consistency: This quality concerns syntac-
tic anomalies as well as contradictions. The
main challenge concerning data consistency is
choosing which data source you trust for re-
liable agreement among data across different
sources.
– Schema conformance: This is especially

true for the relational database systems
where the adherence of domain formats
relies on the user.

– Uniformity: This is directly related to ir-
regularities.

• Density: This criterion concerns the quotient
of missing values in the data. There still can be
nonexistent values or properties that have to
be represented by null values having the exact
meaning of not being known.

The above three criteria of integrity, consistency,
and density collectively represent the accuracy
measure.

The other major quality measure that is also
crucial to measure data quality is uniqueness.
Uniqueness is satisfied when the data do not
contain any duplicates.

Timeliness is another criterion that also has
been considered for data quality. This criterion
refers to the currency of the data that keeps it up
to date.

More information about data quality can be
found in Dasu and Johnson (2003) and Müller
and Freytag (2005).

Data Cleansing
Where the data contain noise or anomalies, it may
be desirable to identify and remove outliers and
other suspect data points or take other remedial
action. See � noise.

Data cleansing is defined as the process of
detecting and correcting (or removing) corrupt
or inaccurate records from a record set, table, or
database. Data cleansing can also be referred to as
data cleaning, data scrubbing, or data reconcilia-

http://dx.doi.org/10.1007/978-1-4899-7687-1_957
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Data Preparation, Fig. 2 Data cleansing process (Adapted from Müller and Freytag 2005)

tion. More precisely, the process of data cleansing
could be explained as a four-stage process:

1. Define and identify errors in data such as
incompleteness, incorrectness, inaccuracy, or
irrelevancy.

2. Clean and rectify these errors by replacing,
modifying, or deleting them.

3. Document error instances and error types.
4. Measure and verify to see whether the cleans-

ing meets the user’s specified tolerance limits
in terms of cleanliness.

Data Anomalies
Data are symbolic representations of information,
i.e., facts or entities from parts of the world,
called a mini-world, depicted by symbolic val-
ues. Imperfections in the data set correspond to
differences between an ideal (i.e., error-free) data
set (DI) and the real data (DR). In this context,
anomalousness is a property of data that renders
an erroneous representation of the mini-world.

The term data anomaly describes any distor-
tion of data resulting from the data collection
process. From this perspective, anomalies include
duplication, inconsistency, missing values, out-
liers, noisy data, or any kind of distortion that can
cause data imperfections.

Anomalies can be classified at a high level into
three categories:

• Syntactic anomalies: describe characteristics
concerning the format and values used
for the representation of the entities.
Syntactic anomalies include lexical errors,
domain format errors, syntactical errors, and
irregularities.

• Semantic anomalies: hinder the data
collection from being a comprehensive
and nonredundant representation of the
mini-world. These types of anomalies include

integrity constraint violations, contradictions,
duplicates, and invalid tuples.

• Coverage anomalies: decrease the number
of entities and entity properties from the mini-
world that is represented in the data collection.
Coverage anomalies are categorized as
missing values and missing tuples.

Therefore, it is clear that data anomalies can
take a number of different forms, each with a
different range of analytical consequences.

Data Cleansing Process
Data cleansing is an iterative process that consists
of the four consecutive steps (Müller and Freytag
2005), as depicted in Fig. 2:

1. Data auditing: This first step mainly identi-
fies the types of anomalies that reduce data
quality. Data auditing checks the data using
validation rules that are prespecified and then
creates a report of the quality of the data and
its problems. We often apply some statistical
tests in this step for examining the data.

2. Workflow specification: The next step is to
detect and eliminate anomalies by a sequence
of operations on the data. The information
collected from data auditing is then used to
create a data-cleaning plan. It identifies the
causes of the dirty data and plans steps to
resolve them.

3. Workflow execution: The data-cleaning plan
is executed, applying a variety of methods on
the data set.

4. Post-processing and controlling: The post-
processing or control step involves exami-
nation of the workflow results and performs
exception handling for the data mishandled by
the workflow.

Dealing with Missing Values
One major task in data cleansing is dealing
with missing values. It is important to determine
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whether the data have missing values and, if so,
to ensure that appropriate measures are taken to
allow the learning system to handle this situation
See �missing attribute values.

Handling data that contain missing values is
crucial for the data cleansing process and data
wrangling in general. In real-life data, most of
existing data sets contain missing values that
were not introduced or were lost in the recording
process for many reasons.

Handling Outliers
An outlier is another type of data anomaly that re-
quires attention in the cleansing process. Outliers
are data that do not conform to the overall data
distribution.

Outliers can be seen from two different per-
spectives; first, they might be seen as glitches
in the data. Alternatively, they might be also
seen as interesting elements that could potentially
represent significant elements in the data. For
example, outliers in sales records for a store
might reflect a successful marketing campaign.
Therefore, to classify data as outliers, we must
define what the normal behavior of the data is
and therefore how different or significant the
outlier is relative to normal behavior. There might
be different normal behaviors for data and thus
different classes of outliers. From the above def-
inition, we can see that as the normality in data
differs, various classes of outliers can be detected.
To be able to do that, we need to formalize both
the normality in the data and inconsistency of the
outliers. Read more about handling outliers for
data preprocessing in Han et al. (2011).

Data Enrichment/Integration
Existing data may be augmented through data
enrichment. This commonly involves sourcing
of additional information about the data points
on which data are already held. For example,
customer data might be enriched by obtaining
socioeconomic data about individual customers.
The imported data must be integrated with the
other data for a unified view of all data sources.

Data integration is a crucial task in data prepa-
ration. Combining data from different sources
is not trivial especially when dealing with large
amounts of data and heterogeneous sources. Data

are typically presented in different forms (struc-
tured, semi-structured, or unstructured) as well as
from different sources (web, database) that could
be stored locally or distributed. Moreover, struc-
tured data coming from a single source might
have different schemas. The combination of these
variations is not an easy task.

Integration of data brings many opportunities,
yet it also comes with various challenges. We
highlight the most relevant challenges below:

1. Data are heterogeneous: Data integration in-
volves a combination of data coming from
different sources that have been developed
independently of each other and thus vary in
data format. Each source will have its own
schemas, definition of objects, and structure of
data (tables, XML, unstructured text, etc.).

2. The number of sources: Data integration is
already a challenge for a small number of
sources, but the challenges are exacerbated
when the number of sources grows (such as
Web-scale data integration).

3. Object identity and separate schemas: Dif-
ferences exist both on the level of individual
objects and the schema level. Every source
classifies their data according to taxonomies
pertinent to a certain domain.

4. Time synchronization: Each source might
have a different time window over which data
have been captured, different granularities
at which events are modeled (daily, weekly,
annually), and frequency at which they are
updated. Synchronization of these differences
and making time-sensitive data compatible are
another challenge.

5. Dealing with legacy data: There are still
important data stored in a legacy form such
as IMS, spreadsheets, and ad hoc structures.
Combining legacy data with other modern
data structures such as XML is a challenging
task.

6. Abstraction levels: Different data sources
might provide data at incompatible levels of
abstraction. When combining data, differences
in levels of specificity must be resolved.

7. Data quality: Data are often erroneous, and
combining data often aggravates the problem.
Erroneous data has a potentially devastating

http://dx.doi.org/10.1007/978-1-4899-7687-1_954


322 Data Preparation

impact on the overall quality of the integration
process.

The integration process can be divided into
two main subtasks, schema integration and data
integration, where each has its own techniques
and challenges. Schema integration concerns a
holistic view across data sources. It focuses on
formats, structures, and identification of objects
and their level of abstraction. This includes
semantic mapping, matching, resolving naming
conflicts, and entity resolution. The contents of
data add another clue to the integration process.

Even with data from different sources that
have identical schemas, integration on the
data level is still essential. Data integration
deals with different types of problems that
concern the data itself rather than the overall
structure as in schema integration. Common
data integration problems are duplication in
data and inconsistency. Correlated or duplicated
values/attributes may increase both size and
complexity of the data. Resolving conflicts at
the data level enhances the overall performance
of the integration process.

Data Transformation
It is frequently necessary to transform data from
one representation to another. There are many
reasons for changing representations:

• To generate symmetric distributions
instead of the original skewed distributions.

• Transformation improves visualization of
data that might be tightly clustered relative to
a few outliers.

• Data are transformed to achieve better inter-
pretability.

• Transformations are often used to improve
the compatibility of the data with assump-
tions underlying a modeling process, for
example, to linearize (straighten) the relation
between two variables whose relationship is
nonlinear. Some of the data mining algorithms
require the relationship between data to be
linear.

In the following, we will discuss different types
of transformation whereby each data point xi is

replaced with a transformed value yi D f.xi/,
where f is the transformation function. Many
techniques are applied for data transformation.
Each technique has its own purpose and depen-
dency on the nature of data. Some of the major
transformations are discussed below.

Numeric to Numeric Transformation

Normalization and Rescaling
It is usually the case that raw data are not in a suit-
able form to be processed by machine learning
and data mining techniques. Data normalization
is the process of transforming raw data values
to another form with properties that are more
suitable for modeling and analysis. The normal-
ization process focuses on scaling data in terms
of range and distribution. Therefore, it consists of
two main processes:

• Min-max normalization projects the original
range of data onto a new range. Very
common normalization intervals are [0,1]
and [�1,1]. This normalization method
is very useful when we apply a machine
learning or data mining approach that utilizes
distance. For example, in k-nearest neighbor
methods, using un-normalized values might
cause attributes whose values have greater
magnitudes to dominate over other attributes.
Therefore, normalization aims to standardize
magnitudes across variables. A useful
application for min-max scaling is image
processing where pixel intensities have to be
normalized to fit within a certain range (i.e.,
0–255 for the RGB color range). Also, typical
neural network algorithms (ANN) require data
that is on a 0–1 scale. Normalization provides
the same range of values for each of the inputs
to the model.

• Z-score normalization (also referred to as
standardization) is a normalization method
that transforms not only the data magnitude
but also the dispersion. Some data mining
methods are based on the assumption
that data follow a certain distribution.
For example, methods such as logistic
regression, SVM, and neural network when
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using gradient descent/ascent optimization
methods assume data follow a Gaussian
distribution. Otherwise, the approaches will
be ill conditioned and might not guarantee
a stable convergence of weight and biases.
Other approaches such as linear discriminant
analysis (LDA), principal component analysis
(PCA), and kernel principal component
analysis require features to be on the same
scale to find directions that maximize the
variance (under the constraints that those
directions/eigenvectors/principal components
are orthogonal). Z-score normalization
overcomes the problem of variables with
different units as it transforms variables so
that they are centered on 0 with a standard
deviation of 1.

• Decimal scaling is another type of scaling
transformation where the decimal place of
a numeric value is shifted so the maximum
absolute value will be always less than 1.

Linear Transformation
Linear transformations preserve linear relation-
ships within data. A function f(.) results in a
linear transformation if and only if for all values
x and y in the original representation, f(x)Cf(y)
= f(xCy) and f(x)�f(y) = f(x�y). Examples of
a linear transformation are transforming Celsius
to Fahrenheit, miles to kilometers, and inches
to centimeters. All linear transformations follow
the standard linear regression formula to convert
variables linearly.

Many other transformations are not linear.
A nonlinear transformation changes (increases
or decreases) linear relationships between vari-
ables and, thus, changes the correlation between
variables. Examples of nonlinear transformations
are square root, raising to a power, logarithm,
and any of the trigonometric functions. In the
following, we discuss some nonlinear transfor-
mation methods.

Power Transformation (Tukey’s Ladder of
Powers)
Tukey describes a way of re-expressing variables
using a power transformation (Tukey 1977). The
aim of this transformation is to improve the lin-

earity between variables. When we consider two
variables (x and y), transformation can be applied
to one variable or both of them depending on
the relationship between the two variables. This
kind of transformation fits when the relationship
between the two variables is monotonic and has
a single bend. When the data are represented as
pairs of (x,y), Tukey has expressed data transfor-
mation as

ya D ˇ0 C ˇ1 C xb:

The choice of a and b decides on the trans-
formation type in the relationship between x and
y. Figure 3 shows a visual rule of thumb that
has been proposed by John Tukey. The following
diagram gives us an insight to understand which
transformations are likely to work with different
types of data.

We explain Tukey’s ladder rule as follows:
Suppose the data patterns follow a similar curve
as the blue line in Q1; thus the data could be
transformed by going up the ladder for x, y, or
both. If the data pattern is shaped similar to that
shown in Q2, then we should try to transform the
data by going the down-ladder for x and/or up-
ladder for y. Similar procedures can be applied
for the other two quarters. Figure 4 explains the
ladder of power for variable y. The transformation
is stronger when the power value is away from
1 (the original data) in both directions (up and
down).

Choosing the Right Numeric
Transformation
There is no definite answer to what is the best
transformation method to use for a particular
data set. The choice is very data dependent and
requires an understanding of the domain as well
as the data distribution. Trial and error for the
common transformation methods may also be
required. Table 1 summarizes the main transfor-
mation methods.

Nominal to Numeric Transformation
All the aforementioned methods transform and
re-express numerical variables. However, the
transformation of nominal variables is equally



324 Data Preparation

Data Preparation, Fig. 3
Tukey’s ladder rule

Data Preparation, Fig. 4
The ladder of power

important, especially for machine learning and
data mining methods that only accept numerical
values such as SVM and ANN. Assume that
we have a nominal variable x with N different
nominal values. There are two approaches to
transform x into a numeric variable:

1. The first and simplest approach is to map
nominal values to the integers 1 to N . Al-

though simple, this method has two major
drawbacks:
• Integer substitution may impose an order-

ing that does not actually exist in the origi-
nal data.

• The integer value might be used as part
of the calculation in the mining algorithm
giving an incorrect meaning of weights
based on the assigned values.
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Data Preparation, Table 1 Summary of key transformation methods

Method Pros Cons

Standard linear re-
gression

–Preserves the relationship between variables –No actual transformation occurred

Reciprocal
transformation

–Making small values bigger and big values
smaller
–Reducing the effect of outliers

–Not applicable for zero

Log
transformation

–Good for right skewed data
–log10(x) is especially good at handling
higher-order powers of 10 (e.g.,
1000,100,000)

–Not applicable for zero and
negative values (constant can be
added to overcome this)

Root
transformation

–Simple counts
–Good for right skewed data

–Not applicable for negative values (constant
can be added to overcome this)

Logit
transformation

–Works with proportions and percents –Not applicable for 0 and 1 values

Cube root transfor-
mation

–Can be applied on negative and 0 values –Not effective in transformation as long model

2. The other main approach is to first binarize
the variable (see 3.7 Binarization) and then
map each of the N new binary attributes to
the integer values 0 and 1. This approach is
generally viewed as safer than the first and
hence is more widely used.

Propositionalization
Some data sets contain information expressed
in a relational format, describing relationships
between objects in the world. While some learn-
ing systems can accept relations directly, most
operate only on attribute-value representations.
Therefore, a relational representation must be re-
expressed in attribute-value form. In other words,
a representation equivalent to first-order logic
must be converted to a representation equivalent
only to propositional logic.

Discretization
Discretization transforms continuous data into a
discrete form. This is useful in many cases for
better data representation, data volume reduction,
better data visualization, and representing data
at various levels of granularity for data analysis.
Data discretization approaches are categorized
as supervised, unsupervised, bottom-up, or top-
down. Approaches for data discretization include
binning, entropy based, nominal to numeric,

3-4-5 rule, and concept hierarchy. See �Disc-
retization.

Binarization
Some systems cannot process multivalued cate-
gorical variables. This limitation can be circum-
vented by binarization, a process that converts
a multivalued categorical variable into multiple
binary variables, one new variable to represent
the presence or absence of each value of the
original variable.

Conversely, multiple mutually exclusive bi-
nary variables might be converted into a single
multivalued categorical variable.

Granularity
It is important to select appropriate levels of
granularity for analysis. For example, when dis-
tinguishing products, should a gallon of low-
fat milk be described as a dairy product, and
hence not distinguished from any other type of
dairy product; be described as low-fat milk, and
hence not distinguished from other brands and
quantities; or be uniquely distinguished from all
other products?

Analysis at the lowest level of granularity
makes possible identification of potentially valu-
able fine-detail regularities in the data but may
make it more difficult to identify high-level rela-
tionships.

http://dx.doi.org/10.1007/978-1-4899-7687-1_221
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Dimensionality Reduction

As many learning systems have difficulty with
high-dimension data, it may be desirable to
project the data onto a lower-dimensional space.
Popular approaches to doing so include principal
component analysis and kernel methods.

Feature Engineering

It is often desirable to create derived values. For
example, the available data might contain fields
for purchase price, costs, and sale price. The
relevant quantity for analysis might be profit,
which must be computed from the raw data.

Feature engineering can be considered as
means for dimensionality reduction also, by
replacing the original features by a smaller
number of derived features.

See �Feature Selection and �Feature Con-
struction in Text Mining.

Sampling

Much of the theory on which learning systems are
based assumes that the training data are randomly
sampled from the population about which the
user wishes to learn a model. However, much
historical data contains sampling biases, for ex-
ample, data that were easy to collect or were
considered interesting for some other purpose.
It is important to consider whether the available
data are sufficiently representative of the future
data to which a learned model is to be applied.

In all sampling methods, the aim is to select a
sample S containing N instances from the entire
data D. Each method models the relationship
between a population and a sample with an un-
derlying mathematical process. We discuss in the
following some of these methods:

Random Sampling
In this method, S is selected randomly from
D with a probability of 1/N for any instance
in D to be selected. Simple random sampling
may have very poor performance in the presence
of skew in data. There are two main variants
of simple random sampling, with replacement

(SRSWR) and without replacement (SRSWOR).
For sampling with replacement, the instance that
is drawn from the population is replaced, and
therefore it might be chosen again. For sampling
without replacement, each instance that is drawn
fromD is removed, and hence S must contain N
distinct instances.

Simple random sampling is usually easy to
implement and to understand. However, it might
cause loss of accuracy if applied to skewed data
by failing to include sufficient data to accurately
represent the tail of the distribution. The simple
random sample might also result in substantial
variance across samples.

Cluster Sampling
This method approximates the percentage of each
class (or subpopulation of interest) in the overall
data set; then it draws a simple random sample
from each cluster. In this method, we might
not have a complete list of population members
(i.e., not all data available). However, a list of
groups or “clusters” of this population is available
and complete. That means the clusters could be
incomplete, but a list of them is complete. There-
fore, cluster sampling is a cost-efficient sampling
method, as it does not require data to be complete.
A drawback for cluster sampling is the possible
poor representation of the diversity in clusters.

Stratified Sampling
If D is divided into mutually disjoint parts called
strata, obtaining a simple random sample from
each stratum generates a stratified sample.

Stratified sampling has a number of advan-
tages. First, inferences can be made about specific
subgroups for more efficient statistical estimates.
Since each stratum is treated as an independent
population, different sampling approaches can be
applied to different strata. Second, this method
will never result in lower efficiency than the sim-
ple random sample, provided that each stratum
is proportional to the group’s size in the popu-
lation. Finally, it increases data readability as it
represents individual preexisting strata within a
population rather than the overall population.

Stratified sampling is complex to implement
and estimate. It also can be sensitive to parame-
ters such as selection criteria and minimum group

http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
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size. Finally, stratified sampling techniques are
generally used when the population is heteroge-
neous, or dissimilar, where certain homogeneous,
or similar, subpopulations can be isolated (strata).
Thus, this method will not be useful when there
are no homogeneous subgroups. Read more about
sampling techniques in Garcı́a et al. (2015).

Balanced sampling is a special case of strati-
fied sampling where the strata correspond to the
classes and the sample drawn from each strata is
proportional to the class’s size in the population.

Cross-References
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Data Preprocessing

�Data Preparation

Data Scrubbing

�Data Cleansing

Data Reconciliation

�Data Cleansing
�Record Linkage

Data Set

A data set is a collection of data used for some
specific machine learning purpose. A � training
set is a data set that is used as input to a learning
system, which analyzes it to learn a model. A
� test set or � evaluation set is a data set con-
taining data that are used to evaluate the model
learned by a learning system. A training set may
be divided further into a � growing set and a
� pruning set. Where the training set and the test
set contain disjoint sets of data, the test set is
known as a � holdout set.

Data Wrangling

�Data Preparation
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DBN

Dynamic Bayesian Network. See �Learning
Graphical Models

Decision Epoch

In a �Markov decision process, decision epochs
are sequences of times at which the decision-
maker is required to make a decision. In a discrete
time Markov decision process, decision epochs
occur at regular, fixed intervals, whereas in a
continuous time Markov decision process (or
semi-Markov decision process), they may occur
at randomly distributed intervals.

Decision List

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Synonyms

Ordered rule set

Definition

A decision list (also called an ordered rule set)
is a collection of individual � classification rules
that collectively form a � classifier. In contrast
to an unordered � rule set, decision lists have an
inherent order, which makes classification quite
straightforward. For classifying a new instance,
the rules are tried in order, and the class of the
first rule that covers the instance is predicted. If
no induced rule fires, a default rule is invoked,
which typically predicts the majority class.

Typically, decision lists are learned with a
� covering algorithm, which learns one rule at
a time, appends it to the list, and removes all
covered examples before learning the next one.

Decision lists are popular in � inductive logic
programming, because PROLOG programs may
be considered to be simple decision lists, where
all rules predict the same concept.

A formal definition of decision lists, a compar-
ison of their expressiveness to decision trees and
rule sets in disjunctive and conjunctive normal
form, as well as theoretical results on the learn-
ability of decision lists can be found in Rivest
(1987).

Cross-References

�Classification Rule
�Decision Lists and Decision Trees
�Rule Learning
�Rule Set

Recommended Reading

Rivest RL (1987) Learning decision lists. Mach Learn
2:229–246

Decision Lists and Decision Trees

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Definition

�Decision trees and � decision lists are two
popular � hypothesis languages, which share
quite a few similarities, but also have important
differences with respect to expressivity and
learnability.

Discussion

The key difference between decision trees and
decision lists is that the former may be viewed as
unordered � rule sets, where each leaf of the tree
corresponds to a single rule with a condition part
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consisting of the conjunction of all edge labels
on the path from the root to this leaf. The hierar-
chical structure of the tree ensures that the rules
in the set are non-overlapping, i.e., each example
is covered by exactly one rule. This additional
constraint makes classification easier (no con-
flicts from multiple rules), but may result in more
complex rules. For example, it has been shown
that decision lists (ordered rule sets) with at most
k conditions per rule are strictly more expressive
than decision trees of depth k Rivest (1987).

This is also reflected in the learning strategies
that are typically used for learning these concept
classes. Decision trees are traditionally learned
with a � divide-and-conquer strategy, which
successively divides the example space into
non-overlapping regions, whereas the � covering
algorithm that is typically used for learning rule
sets is also known as � separate-and-conquer
Fürnkranz (1990) because it successively
removes (separates) examples covered by pre-
viously learned rule. For a comparison between
the two strategies we refer to Boström (1995).

Moreover, the restriction of decision tree
learning algorithms to non-overlapping rules
imposes strong constraints on learnable rules.
One problem resulting from this constraint
is the replicated subtree problem Pagallo and
Haussler (1990); it often happens that identical
subtrees have to be learned at various places in a
decision tree, because of the fragmentation of the
example space imposed by the restriction to non-
overlapping rules. Rule learners do not make such
a restriction, and are thus less susceptible to this
problem. An extreme example for this problem
has been provided by Cendrowska (1987), who
showed that the minimal decision tree for the
concept x defined as

IF A=3 AND B=3 THEN
Class=x

IF C=3 AND D=3 THEN
Class=x

has 10 interior nodes and 21 leafs assuming that
each attribute A . . .D can be instantiated with
three different values.

On the other hand, a key advantage of decision
tree learning is that not only a single rule is

optimized, but that conditions are selected in a
way that simultaneously optimizes the example
distribution in all successors of a node. Attempts
to adopt this property for rule learning have given
rise to several hybrid systems, the best known
being PART Frank and Witten (1998), which
learns a decision list that consists of a list of
rules, each one being the single best rule of a
separate decision tree. This rule can be efficiently
found without learning the full tree, by repeated
expansion of its most promising branch. Simi-
larly, pruning algorithms can be used to convert
decision trees into sets of non-overlapping rules
Quinlan (1987a).

See Also

�Covering Algorithm
�Decision Tree
�Divide-and-Conquer Learning
�Rule Learning
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Decision Rule

A decision rule is an element (piece) of knowl-
edge, usually in the form of a “if-then statement”:

if < Condition > then < Action >
If its Condition is satisfied (i.e., matches a fact

in the corresponding database of a given problem)
then its Action (e.g., classification or decision
making) is performed. See also �Markovian De-
cision Rule.

Decision Stump

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

A decision stump is a �Decision Tree, which
uses only a single attribute for splitting. For
discrete attributes, this typically means that the
tree consists only of a single interior node (i.e.,
the root has only leaves as successor nodes). If
the attribute is numerical, the tree may be more
complex.

Discussion

Decision stumps perform surprisingly well on
some commonly used benchmark datasets from
the UCI repository (Holte 1993), which illus-
trates that learners with a high �Bias and low
�Variance may perform well because they are
less prone to �Overfitting. Decision stumps are
also often used as weak learners in �Ensemble
Methods such as boosting Freund and Schapire
(1996).

Cross-References

�Bias Variance Decomposition
�Decision Tree
�Overfitting

Recommended Reading
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Holte RC (1993) Very simple classification rules per-
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Decision Threshold

The decision threshold of a binary classifier that
outputs scores, such as � decision trees or � naive
Bayes, is the value above which scores are
interpreted as positive classifications. Decision
thresholds can be either fixed if the classifier
outputs calibrated scores on a known scale (e.g.,
0.5 for a probabilistic classifier), or learned from
data if the scores are uncalibrated. See �ROC
Analysis.

Decision Tree

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

The induction of decision trees is one of
the oldest and most popular techniques for
learning discriminatory models, which has
been developed independently in the statistical
(Breiman et al. 1984; Kass 1980) and machine
learning (Hunt et al. 1966; Quinlan 1983,
1986) communities. A decision tree is a
tree-structured classification model, which is
easy to understand, even by non-expert users,
and can be efficiently induced from data. An
extensive survey of decision-tree learning can
be found in Murthy (1998).

Synonyms

Classification tree
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Representation

Figure 1 shows a well-known dataset, in which
examples are descriptions of weather conditions
(outlook, humidity, windy, temperature), and
the target concept is whether these conditions
are suitable for playing golf or not (Quinlan
1986). On the right, a simple decision tree
that can be induced from such data is shown.
Classification of a new example starts at the top
node – the root – and the value of the attribute that
corresponds to this tree is considered (outlook in
the example). Classification then proceeds by
moving down the branch that corresponds to a
particular value of this attribute, arriving at a
new node with a new attribute. This process is
repeated until we arrive at a terminal node – a
so-called leaf – which is not labeled with an
attribute but with a value of the target attribute
(play golf?). For all examples that arrive at the
same leaf, the same target value will be predicted.
Figure 1 shows leaves as rectangular boxes.

Note that some of the attributes may not occur
at all in the tree. For example, the tree in Fig. 1
does not contain a test on temperature because the
training data can be classified without making a
reference to this variable. More generally, one can
say that the attributes in the upper parts of the tree
(near the root) tend to have a stronger influence
on the value of the target variable than the nodes
in the lower parts of the tree (e.g., outlook will

always be tested, whereas humidity and windy
will only be tested under certain conditions).

Learning Algorithm

Decision trees are learned in a top-down fashion,
with an algorithm known as top-down induction
of decision trees (TDIDT), recursive partitioning,
or divide-and-conquer learning. The algorithm
selects the best attribute for the root of the tree,
splits the set of examples into disjoint sets, and
adds corresponding nodes and branches to the
tree. The simplest splitting criterion is for discrete
attributes, where each test has the form t  

.A D v/ where v is one possible value of the
chosen attributeA. The corresponding set St con-
tains all training examples for which the attribute
A has the value t . This can be easily adapted
to numerical attributes, where one typically uses
binary splits of the form t  .A < vt /, which
indicate whether the attribute’s value is above or
below a certain threshold value vt . Alternatively,
one can transform the data beforehand using a
� discretization algorithm (Fig. 2).

After splitting the dataset according to the
selected attribute, the procedure is recursively
applied to each of the resulting datasets. If a set
contains only examples from the same class, or if
no further splitting is possible (e.g., because all
possible splits have already been exhausted or all

Outlook Temp Humidity Windy Golf?
rainy hot high false no
rainy hot high true no

overcast hot high false yes
sunny mild high false yes
sunny cool normal false yes
sunny cool normal true no

overcast cool normal true yes
rainy mild high false no
rainy cool normal false yes
sunny mild normal false yes
rainy mild normal true yes

overcast mild high true yes
overcast hot normal false yes
sunny mild high true no

Outlook

yes

ye ys esnono

WindyHumidity

normal high true false

rainsunny overcast

Decision Tree, Fig. 1 A data set describing weather conditions and a target variable (Play Golf?) and a decision tree
learned for this dataset (Quinlan 1986)

http://dx.doi.org/10.1007/978-1-4899-7687-1_221
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remaining splits will have the same outcome for
all examples), the corresponding node is turned
into a leaf node and labeled with the respective
class. For all other sets, an interior node is added
and associated with the best splitting attribute for
the corresponding set as described above. Hence,
the dataset is successively partitioned into non-
overlapping, smaller datasets until each set only

function TDIDT(S)

Input: S, a set of labeled examples.

Tree = new empty node
if all examples have the same class c

or no further splitting is possible
then // new leaf

Label(Tree) = c
else // new decision node

(A, T ) = FindBestSplit(S)
for each test t ∈ T do

St = all examples that satisfy t
Nodet = TDIDT(St)
AddEdge(Tree t→ Nodet)

endfor
endif
return Tree

Decision Tree, Fig. 2 Top-down induction of decision
trees

contains examples of the same class (a so-called
pure node). Eventually, a pure node can always be
found via successive partitions unless the train-
ing data contains two identical but contradictory
examples, i.e., examples with the same feature
values but different class values.

Attribute Selection
The crucial step in decision-tree induction is the
choice of an adequate attribute. In the sample
tree of Fig. 3, which has been generated from
the same 14 training examples as the tree of
Fig 1, most leaves contain only single training
example, i.e., with the selected splitting criteria,
the termination criterion (all examples of a node
have to be of the same class) could in many
cases only trivially be satisfied (only one exam-
ple remained in the node). Although both trees
classify the training data correctly, the former
appears to be more trustworthy, and in practice,
one can often observe that simpler trees are more
accurate than more complex trees. A possible
explanation could be that labels that are based
on a higher number of training examples tend
to be more reliable. However, this preference for
simple models is a heuristic criterion known as
�Occam’s Razor, which appears to work fairly
well in practice. but is still the subject of ardent
debates within the machine learning community.

Decision Tree, Fig. 3 A needlessly complex decision tree describing the same dataset

http://dx.doi.org/10.1007/978-1-4899-7687-1_614
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Typical attribute selection criteria use a func-
tion that measures the impurity of a node, i.e.,
the degree to which the node contains only exam-
ples of a single class. Two well-known impurity
measures are the information-theoretic entropy
(Quinlan 1986) and the Gini index (Breiman et al.
1984), which are defined as

Entropy.S/ D �

cX

iD1

jSi j

jS j
� log2

�
jSi j

jS j

�

Gini.S/ D 1 �
cX

iD1

�
jSi j

jS j

�2

where S is a set of training examples and Si is
the set of training examples that belong to class
ci . Both functions have their maximum at the
point where the classes are equally distributed
(i.e., where all Si have the same size, maximum
impurity), and their minimum at the point where
one Si contains all examples (Si D S ) and all
other Sj ; j ¤ i are empty (minimum impurity).

A good attribute divides the dataset into sub-
sets that are as pure as possible ideally into sets
so that each one only contains examples from the
same class. Thus, we want to select the attribute
that provides the highest decrease in average
impurity, the so-called gain:

Gain.S;A/

D Impuri ty.S/ �
X

t

jSt j

jS j
� Impuri ty.St /

where St are non-overlapping disjoint subsets
St 2 S that are induced by splitting the attribute
A, and Impurity can be any impurity measure.
As the first term, Impurity.S/, is constant for
all attributes, one can also omit it and directly
minimize the average impurity (which is typically
done when Gini is used as an impurity measure).

A common problem is that attributes with
many values have a higher chance of resulting
in pure successor nodes and are therefore often
preferred over attributes with fewer values. To
counter this, the so-called gain ratio normalizes
the gained entropy with the intrinsic entropy of
the split:

GainRatio.S;A/ D
Gain.S;A/

P
t

jSt j
jS j
� log2

�
jSt j
jS j

�

A similar phenomenon can be observed for
numerical attributes, where the number of pos-
sible threshold values determines the number of
possible binary splits for this attribute. Numerical
attributes with many possible binary splits are
often preferred over numerical attributes with
fewer splits because they have a higher chance
that one of their possible splits fits the data. A
discussion of this problem and a proposal for a
solution can be found in Quinlan (1996).

Other attribute selection measures, which
do not conform to the gain framework laid
out above, are also possible, such as CHAID’s
evaluation with a �2 test statistic (Kass 1980).
Experimental comparison of different measures
can be found in Mingers (1989a) and Buntine
and Niblett (1992).

Thus, the final tree is constructed by a se-
quence of local choices that each consider only
those examples that end up at the node that is
currently split. Of course, such a procedure can
only find local optima for each node, but cannot
guarantee convergence to a global optimum (the
smallest tree). One of the key advantages of
this divide-and-conquer approach is its efficiency,
which results from the exponential decrease in
the quantity of data to be processed at successive
depths in the tree.

Overfitting Avoidance
In principle, a decision-tree model can be fit to
any training set that does not contain contradic-
tions (i.e., there are no examples with identical at-
tributes but different class values). This may lead
to �Overfitting in the form of overly complex
trees.

For this reason, state-of-the-art decision-tree
induction techniques employ various �Pruning
techniques for restricting the complexity of the
found trees. For example, C4.5 has a pre-pruning
parameter m that is used to prevent further split-
ting unless at least two successor nodes have at
least m examples. The cost-complexity pruning
method used in CART may be viewed as a simple

http://dx.doi.org/10.1007/978-1-4899-7687-1_960
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�Regularization method, where a good choice
for the regularization parameter, which trades off
the fit of the data with the complexity of the tree,
is determined via �Cross-validation.

More typically, post-pruning is used for re-
moving branches and nodes from the learned tree.
More precisely, this procedure replaces some of
the interior nodes of the tree with a new leaf,
thereby removing the subtree that was rooted at
this node. An empirical comparison of different
decision-tree pruning techniques can be found in
Mingers (1989b).

It is important to note that the leaf nodes of the
new tree are no longer pure nodes, i.e., they no
longer need to contain training examples that all
belong to the same class. Typically, this is simply
resolved by predicting the most frequent class at a
leaf. The class distribution of the training exam-
ples within the leaf may be used as a reliability
criterion for this prediction.

Well-Known Decision-Tree Learning
Algorithms

The probably best-known decision-tree learning
algorithm is C4.5 (Quinlan 1993), which is based
upon (Quinlan 1983), which, in turn, has been
derived from an earlier concept learning sys-
tem (Hunt et al. 1966). ID3 realized the basic
recursive partitioning algorithm for an arbitrary
number of classes and for discrete attribute val-
ues. C4.5 (Quinlan 1993) incorporates several
key improvements that were necessary for tack-
ling real-world problems, including handling of
numeric and missing attribute values, overfit-
ting avoidance, and improved scalability. A C-
implementation of C4.5 is freely available from
its author. A re-implementation is available under
the name J4.8 in the Weka data mining library.
C5.0 is a commercial successor of C4.5, dis-
tributed by RuleQuest Research. CART (Breiman
et al. 1984) is the best-known system in the
statistical learning community. It is integrated
into various statistical software packages, such as
R or S.

Decision trees are also often used as compo-
nents in �Ensemble Methods such as random
forests (Breiman 2001) or AdaBoost (Freund and

Schapire 1996). They can also be modified for
predicting numerical target variables, in which
case they are known as � regression trees. One
can also put more complex prediction models into
the leaves of a tree, resulting in �Model Trees.

Cross-References

�Decision List
�Decision Lists and Decision Trees
�Decision Stump
�Divide-and-Conquer Learning
�Model Trees
� Pruning
�Regression Trees
�Rule Learning

Recommended Reading

Breiman L (2001) Random forests. Mach Learn 45(1):
5–32

Breiman L, Friedman JH, Olshen R, Stone C (1984)
Classification and regression trees. Wadsworth &
Brooks, Pacific Grove

Buntine W, Niblett T (1992) A further comparison
of splitting rules for decision-tree induction. Mach
Learn 8:75–85

Freund Y, Schapire RE (1996) Experiments with a new
boosting algorithm. In: Saitta L (ed) Proceedings
of the 13th international conference on machine
learning, Bari. Morgan Kaufmann, pp 148–156

Hunt EB, Marin J, Stone PJ (1966) Experiments in
induction. Academic, New York

Kass GV (1980) An exploratory technique for investi-
gating large quantities of categorical data. Appl Stat
29:119–127

Mingers J (1989a) An empirical comparison of se-
lection measures for decision-tree induction. Mach
Learn 3:319–342

Mingers J (1989b) An empirical comparison of prun-
ing methods for decision tree induction. Mach Learn
4:227–243

Murthy SK (1998) Automatic construction of decision
trees from data: a multi-disciplinary survey. Data
Min Knowl Discov 2(4):345–389

Quinlan JR (1983) Learning efficient classification
procedures and their application to chess end games.
In: Michalski RS, Carbonell JG, Mitchell TM (eds)
Machine learning. An artificial intelligence ap-
proach, Tioga, Palo Alto, pp 463–482

Quinlan JR (1986) Induction of decision trees. Mach
Learn 1:81–106

Quinlan JR (1993) C4.5: Programs for machine learn-
ing. Morgan Kaufmann, San Mateo

http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_717
http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_65
http://dx.doi.org/10.1007/978-1-4899-7687-1_285
http://dx.doi.org/10.1007/978-1-4899-7687-1_303
http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_717
http://dx.doi.org/10.1007/978-1-4899-7687-1_744


Deep Belief Nets 335

D

Quinlan JR (1996) Improved use of continuous at-
tributes in C4.5. J Artif Intell Res 4:77–90

Decision Trees for Regression

�Regression Trees

Deductive Learning

Synonyms

Analytical learning; Explanation-based learning

Definition

Deductive learning is a subclass of machine
learning that studies algorithms for learning
provably correct knowledge. Typically such
methods are used to speedup problem solvers
by adding knowledge to them that is deductively
entailed by existing knowledge, but that may
result in faster solutions.

Deduplication

�Entity Resolution

Deduplication or Duplicate
Detection (When Applied to One
Database Only)

�Record Linkage

Deep Belief Nets

Geoffrey Hinton
University of Toronto, Toronto, ON, Canada

Synonyms

Deep belief networks

Definition

Deep belief nets are probabilistic generative
models that are composed of multiple layers
of stochastic latent variables (also called “feature
detectors” or “hidden units”). The top two layers
have undirected, symmetric connections between
them and form an associative memory. The lower
layers receive top-down, directed connections
from the layer above. Deep belief nets have two
important computational properties. First, there
is an efficient procedure for learning the top-
down, generative weights that specify how the
variables in one layer determine the probabilities
of variables in the layer below. This procedure
learns one layer of latent variables at a time.
Second, after learning multiple layers, the values
of the latent variables in every layer can be
inferred by a single, bottom-up pass that starts
with an observed data vector in the bottom layer
and uses the generative weights in the reverse
direction.

Motivation and Background

The perceptual systems of humans and other
animals show that high-quality pattern recogni-
tion can be achieved by using multiple layers
of adaptive nonlinear features, and researchers
have been trying to understand how this type
of perceptual system could be learned, since the
1950s (Selfridge 1958). Perceptrons (Rosenblatt
1962) were an early attempt to learn a biologi-
cally inspired perceptual system, but they did not
have an efficient learning procedure for multi-
ple layers of features. Backpropagation (Werbos
1974; Rumelhart et al. 1986) is a supervised
learning procedure that became popular in the
1980s because it provided a fairly efficient way
of learning multiple layers of nonlinear features
by propagating derivatives of the error in the
output backward through the multilayer network.
Unfortunately, backpropagation has difficulty op-
timizing the weights in deep networks that con-
tain many layers of hidden units and it requires
labeled training data, which is often expensive
to obtain. Deep belief nets overcome the limita-
tions of backpropagation by using unsupervised
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learning to create layers of feature detectors that
model the statistical structure of the input data
without using any information about the required
output. High-level feature detectors that capture
complicated higher-order statistical structure in
the input data can then be used to predict the
labels.

Structure of the Learning System

Deep belief nets are learned one layer at a time by
treating the values of the latent variables in one
layer, when they are being inferred from data, as
the data for training the next layer. This efficient,
greedy learning can be followed by, or combined
with, other learning procedures that fine-tune all
of the weights to improve the generative or dis-
criminative performance of the whole network.
Discriminative fine-tuning can be performed by
adding a final layer of variables that represent
the desired outputs and backpropagating error
derivatives. When networks with many hidden
layers are applied in domains that contain highly
structured input vectors, backpropagation learn-
ing works much better if the feature detectors
in the hidden layers are initialized by learning
a deep belief net that models the structure in
the input data (Hinton and Salakhutdinov 2006).
Matlab code for learning and fine-tuning deep
belief nets can be found at http://cs.toronto.edu/�

hinton.

Composing Simple Learning Modules
Early deep belief networks could be viewed as
a composition of simple learning modules, each
of which is a “restricted Boltzmann machine.”
Restricted Boltzmann machines contain a layer
of “visible units” that represent the data and a
layer of “hidden units” that learn to represent
features that capture higher-order correlations in
the data. The two layers are connected by a matrix
of symmetrically weighted connections, W , and
there are no connections within a layer. Given
a vector of activities v for the visible units, the
hidden units are all conditionally independent so
it is easy to sample a vector, h, from the posterior

distribution over hidden vectors, p.hjv;W/. It is
also easy to sample from p.vjh;W/. By starting
with an observed data vector on the visible units
and alternating several times between sampling
from p.hjv;W/ and p.vjh;W/, it is easy to get
a learning signal which is simply the difference
between the pairwise correlations of the visible
and hidden units at the beginning and end of the
sampling (see Chapter �Boltzmann Machines
for details).

The Theoretical Justification of the
Learning Procedure
The key idea behind deep belief nets is that the
weights, W, learned by a restricted Boltzmann
machine define both p.vjh;W/ and the prior
distribution over hidden vectors, p.hjW/, so the
probability of generating a visible vector, v, can
be written as

p.v/ D
X

h

p.hjW/p.vjh;W/ (1)

After learning W, we keep p.vjh;W/ but we re-
place p.hjW/ by a better model of the aggregated
posterior distribution over hidden vectors – i.e.,
the nonfactorial distribution produced by averag-
ing the factorial posterior distributions produced
by the individual data vectors. The better model
is learned by treating the hidden activity vectors
produced from the training data as the training
data for the next learning module. Hinton et al.
(2006) show that this replacement improves a
variational lower bound on the probability of the
training data under the composite model.

Deep Belief Nets with Other Types of
Variable
Deep belief nets typically use the logistic func-
tion y D 1=.1C exp.�x// of the weighted input,
x, received from above or below to determine
the probability that a binary latent variable has a
value of 1 during top-down generation or bottom-
up inference. Other types of variable within the
exponential family, such as Gaussian, Poisson,
or multinomial, can also be used (Welling
et al. 2005; Movellan and Marks 2001) and the
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variational bound still applies. However,
networks with multiple layers of Gaussian or
Poisson units are difficult to train and can
become unstable. To avoid these problems, the
function log.1Cexp.x// can be used as a smooth
approximation to a rectified linear unit. Units
of this type often learn features that are easier
to interpret than those learned by logistic units.
log.1C exp.x// is not in the exponential family,
but it can be approximated very accurately as a
sum of a set of logistic units that all share the
same weight vector and adaptive bias term, but
differ by having offsets to the shared bias of
�0:5;�1:5;�2:5; : : :.

Using Autoencoders as the Learning
Module
A closely related approach that is also called a
“deep belief net” uses the same type of greedy,
layer-by-layer learning with a different kind of
learning module – an “autoencoder” that simply
tries to reproduce each data vector from the
feature activations that it causes (Hinton 1989;
Bengio et al. 2007; LeCun and Bengio 2007).
However, the variational bound no longer applies,
and an autoencoder module is less good at ignor-
ing random noise in its training data (Larochelle
et al. 2007).

Applications of Deep Belief Nets
Deep belief nets have been used for generating
and recognizing images (Bengio et al. 2007;
Hinton et al. 2006; Ranzato et al. 2007), video
sequences (Sutskever and Hinton 2007), and
motion-capture data (Taylor et al. 2007). If the
number of units in the highest layer is small, deep
belief nets perform nonlinear dimensionality
reduction (Hinton and Salakhutdinov 2006),
and by pretraining each layer separately, it is
possible to learn very deep autoencoders that
can then be fine-tuned with backpropagation
(Hinton and Salakhutdinov 2006). Such networks
cannot be learned in reasonable time using
backpropagation alone. Deep autoencoders learn
compact representations of their input vectors
that are much better than those found by linear
methods such as principal component analysis,

and if the highest level code is forced to be
binary, they allow extremely fast retrieval of
documents or images (Salakhutdinov and Hinton
2007; Torralba et al. 2008).
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Deep Belief Networks

�Deep Belief Nets

Deep Learning

Jürgen Schmidhuber
The Swiss AI Lab, IDSIA, USI & SUPSI,
Manno & Lugano, Switzerland

Abstract

Deep learning artificial neural networks have
won numerous contests in pattern recognition
and machine learning. They are now widely
used by the worlds most valuable public com-
panies. I review the most popular algorithms
for feedforward and recurrent networks and
their history.

Introduction

Deep learning has revolutionized Pattern Recog-
nition and Machine Learning. It is about credit
assignment in adaptive systems with long chains
of potentially causal links between actions and
consequences.

The ancient term “deep learning” was first in-
troduced to Machine Learning by Dechter (1986)
and to artificial neural networks (NNs) by Aizen-
berg et al. (2000). Subsequently it became espe-
cially popular in the context of deep NNs, the

most successful deep learners, which are much
older though, dating back half a century. This
article will focus on essential developments since
the 1960s, addressing supervised, unsupervised,
and (briefly) reinforcement learning. There is a
recent, more detailed survey with 888 references
(Schmidhuber 2015). LeCun et al. (2015) provide
a more limited view of more recent deep learning
history. The present condensed survey is based on
the Scholarpedia article (Schmidhuber 2015b).

A standard NN consists of many simple, con-
nected processors called units, each producing a
sequence of real-valued activations. Input units
get activated through sensors perceiving the en-
vironment, other units through connections with
real-valued weights from previously active units.
Some units may influence the environment by
triggering actions. Learning or credit assignment
is about finding weights that make the NN exhibit
desired behavior, such as controlling a robot.
Depending on the problem and how the units are
connected, such behavior may require long causal
chains of computational stages, where each stage
transforms (often in a nonlinear way) the aggre-
gate activation of the network. Deep learning in
NNs is about accurately assigning credit across
many such stages.

In a sense, sequence-processing recurrent NNs
(RNNs) are the ultimate NNs, because they are
general computers (an RNN can emulate the cir-
cuits of a microchip). In fully connected RNNs,
all units have connections to all non-input units.
Unlike feedforward NNs, RNNs can implement
while loops, recursion, etc. The program of an
RNN is its weight matrix. RNNs can learn pro-
grams that mix sequential and parallel informa-
tion processing in a natural and efficient way.

To measure whether credit assignment in a
given NN application is of the deep or shallow
type, we consider the length of the corresponding
credit assignment paths, which are chains of pos-
sibly causal connections between subsequent unit
activations, e.g., from input units through hidden
units to output units in feedforward NNs (FNNs)
without feedback connections or through trans-
formations over time in RNNs. FNNs with fixed
topology have a problem-independent maximal
problem depth bounded by the number of layers

http://dx.doi.org/10.1007/978-1-4899-7687-1_67
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of units. RNNs, the deepest of all NNs, may
learn to solve problems of potentially unlimited
depth, for example, by learning to store in their
activation-based “short-term memory” represen-
tations of certain important previous observations
for arbitrary time intervals.

The difficulty of a problem may have little to
do with its depth. Some NNs can quickly learn to
solve certain deep but simple problems through
random weight guessing (e.g., Hochreiter and
Schmidhuber 1997b). In general, however, find-
ing an NN that precisely models a given training
set (of input patterns and corresponding labels) is
an NP-complete problem and also in the case of
deep NNs (e.g., Sima 1994).

First Deep Learners

Certain early NNs (McCulloch and Pitts 1943)
did not learn at all. Hebb (1949) published ideas
about unsupervised learning. The following
decades brought shallow unsupervised NNs
and supervised NNs (e.g., Rosenblatt 1958).
Early supervised NNs were essentially variants
of linear regressors dating back two centuries
(Gauss, Legendre).

Deep learning networks originated in the
1960s when Ivakhnenko and Lapa (1965)
published the first general, working learning
algorithm for supervised deep feedforward mul-
tilayer perceptrons. Their units had polynomial
activation functions combining additions and
multiplications in Kolmogorov-Gabor polyno-
mials. Ivakhnenko (1971) already described a
deep network with eight layers trained by the
“group method of data handling,” still popular
in the new millennium. Given a training set of
input vectors with corresponding target output
vectors, layers are incrementally grown and
trained by regression analysis and then pruned
with the help of a separate validation set, where
regularization is used to weed out superfluous
units. The numbers of layers and units per layer
can be learned in problem-dependent fashion.

Like later deep NNs, Ivakhnenko’s nets
learned to create hierarchical, distributed, internal
representations of incoming data. Many later

nonneural methods of Artificial Intelligence and
Machine Learning also learn more and more
abstract, hierarchical data representations. For
example, syntactic pattern recognition methods
(Fu 1977) such as grammar induction discover
hierarchies of formal rules to model observations.

Architectures of Convolutional NNs
(CNNs)

The 1970s also saw the birth of the convolutional
NN (CNN) architecture (Fukushima’s Neocog-
nitron, 1979) inspired by neurophysiological in-
sights. Today such architectures are widely used
for computer vision. Here the (typically rectan-
gular) receptive field of a unit with given weight
vector (a filter) is shifted step by step across a
two-dimensional array of input values, such as
the pixels of an image (usually there are several
such filters). The resulting array of subsequent
activation events of this unit can then provide
inputs to higher-level units and so on. Due to
massive weight replication, relatively few param-
eters may be necessary to describe the behavior
of such convolutional layers, which typically feed
downsampling layers consisting of units whose
fixed-weight connections originate from physi-
cal neighbors in the convolutional layers below.
Downsampling units use “spatial averaging” to
become active if at least one of their inputs is
active; their responses are insensitive to certain
small image shifts. Weng (1993) later replaced
spatial averaging by “max-pooling” (MP), which
is widely used today. Here a two-dimensional
layer or array of unit activations is partitioned
into smaller rectangular arrays. Each is replaced
in a downsampling layer by the activation of its
maximally active unit.

Backpropagation

Ivakhnenko and Fukushima did not yet use super-
vised backpropagation (BP) to train the weights
of their nets by gradient descent in an objective
function, such as the total classification error on
a given training set of input patterns and corre-
sponding labels, although BP was also developed
back then.
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BP’s continuous form was derived in the early
1960s (Kelley 1960; Bryson 1961; Bryson and
Ho 1969). Dreyfus (1962) published the elegant
derivation of BP based on the chain rule only.
BP’s modern efficient version for discrete sparse
networks (including FORTRAN code) was pub-
lished by Linnainmaa (1970). Here the complex-
ity of computing the derivatives of the output
error with respect to each weight is proportional
to the number of weights. That’s the method still
used today. Dreyfus (1973) used BP to change
weights of controllers in proportion to such gra-
dients. By 1980, automatic differentiation could
derive BP for any differentiable graph (Speelpen-
ning 1980). Werbos (1982) published the first ap-
plication of BP to NNs, extending thoughts in his
1974 thesis, which did not yet have Linnainmaa’s
modern, efficient form of BP. In 1980–1990,
computers became 10,000 times faster than those
of 1960–1970 and widely accessible in academic
labs. Computational experiments then demon-
strated that BP in NNs can indeed yield useful
internal representations in hidden layers of NNs
(Rumelhart et al. 1986). Wan (1994) produced the
first BP-trained NN to win a controlled pattern
recognition contest with secret test set. Amari
(1998) described BP for natural gradient-based
NNs. By 2003, deep BP-based standard FNNs
with up to seven layers were used to successfully
classify high-dimensional data (e.g., Vieira and
Barradas 2003).

In the 2000s, computing hardware had again
become 10,000 times faster than in the 1980s.
Cheap massively parallel graphics processing
units (GPUs, originally developed for video
games) started to revolutionize NN research.
Standard FNNs implemented on GPU were 20
times faster than on CPU (Oh and Jung 2004).
A plain GPU-based FNN trained by BP with
pattern distortions (Baird 1990) set a new record
of 0.35 % error rate (Ciresan et al. 2010) on
the MNIST handwritten digit dataset, which by
then had been the perhaps most famous machine
learning benchmark for decades. This seemed
to suggest that advances in exploiting modern
computing hardware were more important than
advances in algorithms.

Backpropagation for CNNs

LeCun et al. (1989) first applied BP to
Neocognitron-like CNNs, achieving good
performance on MNIST. Similar CNNs were
used commercially in the 1990s. Ranzato et al.
(2007) first applied BP to max-pooling CNNs
(MPCNNs); advantages of doing this were
pointed out subsequently (Scherer et al. 2010).

Efficient parallelized GPU-based MPCNNs
(Ciresan et al. 2011) further improved the
MNIST record dramatically, achieving human
performance (around 0.2 %) for the first time
(Ciresan et al. 2012c). To detect human actions
in surveillance videos, a three-dimensional CNN,
combined with support vector machines, was
part of a larger system using a bag of features
approach to extract regions of interest. The
system won three 2009 TRECVID competitions.
These were possibly the first official international
contests won with the help of (MP)CNNs;
compare (Ji et al. 2013).

In 2011, an ensemble (Breiman 1996;
Schapire 1990) of GPU-based MPCNNs also
was the first system to achieve superhuman visual
pattern recognition in a controlled competition,
namely, the IJCNN 2011 traffic sign recognition
contest in Silicon Valley (Ciresan et al. 2012c).
The system was twice better than humans and
three times better than the nearest nonhuman
competitor. Subsequently, similar committees of
GPU-MPCNNs became widely used and also
won the 2012 ImageNet classification contest
(Krizhevsky et al. 2012), which is popular in the
computer vision community. Further progress on
ImageNet was achieved through variants of such
systems (e.g., Zeiler and Fergus 2013; Szegedy
et al. 2014; Simonyan and Zisserman 2015).

In 2012, a GPU-MPCNN committee also was
the first deep learning NN to win a contest on
visual object discovery in large images (Ciresan
et al. 2013), namely, the ICPR 2012 Contest on
Mitosis Detection in Breast Cancer Histologi-
cal Images. Here deep MPCNNs are trained on
labelled patches of big images and then used as
feature detectors to be shifted across unknown
visual scenes, using various rotations and zoom
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factors. Image parts that yield highly active out-
put units are likely to contain objects similar to
those the NN was trained on. A similar GPU-
MPCNN committee was the first deep learner
to win a pure image segmentation contest (Cire-
san et al. 2012a), namely, the ISBI 2012 seg-
mentation of neuronal structures in EM stacks
challenge. The MPCNN learned to predict for
each pixel whether it belongs to the background.
Fast MPCNN image scanners avoid redundant
computations and speed up naive implementa-
tions by up to three orders of magnitude (Masci
et al. 2013), extending earlier efficient methods
for CNNs without MP (Vaillant et al. 1994).

It is fair to say that deep GPU-CNNs have
revolutionized computer vision. For example,
GPU-MPCNNs helped to recognize multi-
digit numbers in Google Street View images
(Goodfellow et al. 2014b), where part of the
NN was trained to count visible digits. Other
successful recent CNN applications include scene
parsing (Farabet et al. 2013), shadow detection
(Khan et al. 2014), and video classification
(Karpathy et al. 2014), to name a few.

Fundamental Deep Learning Problem
and Unsupervised Pre-training of
RNNs and FNNs

There are extensions of backpropagation (BP) for
supervised RNNs (e.g., Williams 1989; Robinson
and Fallside 1987; Werbos 1988). During training
by “BP through time” (BPTT), the RNN is “un-
folded” into an FNN that has essentially as many
layers as there are time steps in the observed
sequence of input vectors.

The drawbacks of BP and BPTT became obvi-
ous in 1991, when the vanishing/exploding gra-
dient problem or “Fundamental Deep Learning
Problem” was identified and analyzed (Hochre-
iter 1991): With standard activation functions,
cumulative backpropagated error signals either
shrink exponentially in the number of layers (or
time steps) or grow out of bounds. The prob-
lem is most apparent in RNNs, the deepest of
all NNs.

To some extent, Hessian-free optimization
can alleviate the problem for FNNs (Moller
1993; Pearlmutter 1994) and RNNs (Martens
and Sutskever 2011).

To overcome the vanishing gradient problem,
an early generative model was proposed, namely,
an unsupervised stack of RNNs called the neural
history compressor (Schmidhuber 1992b). A first
RNN uses unsupervised learning to predict its
next input. Each higher level RNN tries to learn a
compressed representation of the info in the RNN
below, trying to minimize the description length
(or negative log probability) of the data. The top
RNN may then find it easy to classify the data
by supervised learning. One can also “distill” the
knowledge of a higher RNN (the teacher) into
a lower RNN (the student) by forcing the lower
RNN to predict the hidden units of the higher
one. In the early 1990s, such systems could solve
previously unsolvable “very deep learning” tasks
involving hundreds of subsequent computational
stages.

A conceptually very similar but FNN-based
system was the deep belief network (DBN, Hin-
ton and Salakhutdinov 2006), a stack of restricted
Boltzmann machines (RBMs, Smolensky 1986)
with a single layer of feature-detecting units.
They can be trained by the contrastive diver-
gence algorithm (Hinton 2002). At least in theory
under certain assumptions, adding more layers
improves a bound on the data’s negative log
probability (Hinton et al. 2006), equivalent to
the data’s description length – just like with the
RNN history compressor above. A GPU-DBN
implementation (Raina et al. 2009) was orders of
magnitudes faster than previous CPU-DBNs; see
also Coates et al. (2013). DBNs achieved good
results on phoneme recognition (Mohamed and
Hinton 2010). Autoencoder stacks (Ballard 1987)
became a popular alternative way of pre-training
deep FNNs in unsupervised fashion, before fine-
tuning them through BP (e.g., Bengio et al. 2007).

Generally speaking, unsupervised learning
(UL) can help to encode input data in a
form advantageous for further processing. For
example, FNNs may profit from pre-training by
competitive UL prior to BP-based fine-tuning
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(Maclin and Shavlik 1995). Many UL methods
generate distributed, sparse representations of
input patterns. Ideally, given an ensemble of
input patterns, redundancy reduction through a
deep NN will create a factorial code (a code
with statistically independent components) of
the ensemble (Barlow et al. 1989). Such codes
may be sparse and can be advantageous for (1)
data compression, (2) speeding up subsequent
BP, and (3) trivializing the task of subsequent
naive yet optimal Bayes classifiers. Methods
for deep UL FNNs include hierarchical self-
organizing Kohonen maps (e.g., Koikkalainen
and Oja 1990), hierarchical Gaussian potential
function networks (Lee and Kil 1991), layer-
wise UL of feature hierarchies fed into SL
classifiers (Behnke 1999), the self-organizing tree
algorithm (Herrero et al. 2001), and nonlinear
autoencoders (AEs) with five or more layers
(e.g., Kramer 1991). Predictability minimization
(Schmidhuber 1992c) searches for factorial codes
through nonlinear feature detectors that fight
nonlinear predictors, trying to become both as
informative and as unpredictable as possible.
Hierarchical CNNs in a Neural Abstraction
Pyramid (e.g., Behnke 2003b) can be trained
to reconstruct images corrupted by structured
noise, thus enforcing increasingly abstract image
representations in deeper and deeper layers.

In many applications of the 2000s, however,
DBNs and other unsupervised methods were
largely replaced by purely supervised FNNs,
especially MPCNNs (see above). Here history
repeated itself, because already in the 1990s,
unsupervised RNN-based history compressors
(see above) were largely replaced by purely
supervised LSTM RNNs (see below).

Very Deep Learning in Supervised
Sequence-Processing RNNs

Supervised long short-term memory (LSTM)
RNNs have been developed since the 1990s
(e.g., Hochreiter and Schmidhuber 1997b; Gers
and Schmidhuber 2001; Graves et al. 2009).
Parts of LSTM RNNs are designed such that
backpropagated errors can neither vanish nor

explode but flow backward in “civilized” fashion
for thousands or even more steps. Thus, LSTM
variants could learn previously unlearnable very
deep learning tasks (including some unlearnable
by the 1992 history compressor above) that
require to discover the importance of (and
memorize) events that happened thousands of
discrete time steps ago, while previous standard
RNNs already failed in case of minimal time
lags of ten steps. It is possible to evolve good
problem-specific LSTM-like topologies (Bayer
et al. 2009).

Recursive NNs (Goller and Küchler 1996)
generalize RNNs, by operating on hierarchical
structures, recursively combining child represen-
tations into parent representations. Bidirectional
RNNs (BRNNs) (Schuster and Paliwal 1997)
are designed for input sequences whose starts
and ends are known in advance, such as spo-
ken sentences to be labeled by their phonemes.
DAG-RNNs (Baldi and Pollastri 2003) generalize
BRNNs to multiple dimensions. Recursive NNs,
BRNNs, and DAG-RNNs unfold their full poten-
tial when combined with LSTM (Graves et al.
2009).

Particularly successful in competitions were
stacks of LSTM RNNs (Fernandez et al.
2007b) trained by connectionist temporal
classification (CTC, Graves et al. 2006), a
gradient-based method for finding RNN weights
that maximize the probability of teacher-given
label sequences, given (typically much longer
and more high-dimensional) streams of real-
valued input vectors. CTC performs simultaneous
segmentation (alignment) and recognition. In
2009, CTC-trained LSTM became the first RNN
to win controlled international contests, namely,
three competitions in connected handwriting
recognition. Hannun et al. (2014) used CTC-
trained RNNs to break a famous speech
recognition benchmark record, without using
any traditional speech processing methods such
as hidden Markov models (HMMs) or Gaussian
mixture models.

Unlike HMMs and previous RNNs, LSTM can
learn to recognize context-sensitive languages.
By 2007, LSTM had started to revolutionize
speech recognition, outperforming traditional
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HMMs in keyword spotting tasks (Fernandez
et al. 2007b). By 2013, LSTM achieved best
known results on the famous TIMIT phoneme
recognition benchmark (Graves et al. 2013).
Hybrids of traditional methods and LSTM RNNs
obtained best known performance on large-
vocabulary speech recognition (Sak et al.; Google
2014a; Li and Wu 2015). LSTM also helped to
improve the state of the art in numerous other
fields, including image caption generation (in
conjunction with CNNs) (Vinyals et al.; Google
2014a), machine translation (Sutskever et al.;
Google 2014), text-to-speech synthesis (Fan
et al. 2015; Zen and Sak 2015, now available
for Google Android), photo-real talking heads
(Fan et al.; Microsoft 2015), syntactic parsing
for natural language processing (Vinyals et al.;
Google, 2014b), and many other applications. In
2015, CTC-trained LSTM dramatically improved
Google Voice (by 49 %) and is now available to a
billion smartphone users (Sak et al. 2015).

Gradient-based LSTM is no panacea though.
Other methods sometimes outperformed LSTM
at least on certain tasks (e.g., Jaeger 2004;
Schmidhuber et al. 2007; Martens and Sutskever
2011; Zimmermann et al. 2012; Pascanu et al.
2013b; Koutnik et al. 2014). Several alternative
RNN-related methods with fast memory control
have been proposed over the decades (e.g.,
AMAmemory 2015).

Some Tricks to Improve NNs

BP-like methods can be used to search for
“simple,” low-complexity NNs with high
generalization capability. For example, weight
decay (e.g., Hanson and Pratt 1989) encourages
near-zero weights, by penalizing large weights.
Related weight priors are implicit in additional
penalty terms (MacKay 1992) or in methods
based on validation sets (e.g., Hastie and
Tibshirani 1990). Similar priors (or biases
towards simplicity) are implicit in constructive
and pruning algorithms, e.g., layer-by-layer se-
quential network construction (e.g., Ivakhnenko
1971), input pruning (Moody 1992), unit pruning
(e.g., Ivakhnenko 1971; Mozer and Smolensky

1989), weight pruning (e.g., LeCun et al. 1990b),
fast and short weight matrix-computing programs
(Schmidhuber 1997), and flat minimum search
(FMS, Hochreiter and Schmidhuber 1999). DBN
training can be improved (Cho et al. 2012)
through Tikhonov-type regularization (Tikhonov
et al. 1977). See also sparsity-enforcing methods
mentioned earlier.

Dropout (Hinton et al. 2012b) removes units
from NNs during training to improve generaliza-
tion. It is closely related to older, biologically
plausible techniques for adding noise to neurons
or synapses during training (e.g., Hanson 1990).
NNs with competing units (e.g., Schmidhuber
1989b; Maass 2000; Goodfellow et al. 2013) tend
to outperform those with noncompeting units and
avoid catastrophic forgetting through BP when
training sets change over time (Srivastava et al.
2013).

The popular activation function f of rectified
linear units (ReLUs) is f.x/ D x for x > 0;
f.x/ D 0 otherwise. ReLU NNs are useful for
RBMs (Nair and Hinton 2010; Maas et al. 2013),
outperformed sigmoidal activation functions in
deep NNs (Glorot et al. 2011), and helped to ob-
tain best results on several benchmark problems
across multiple domains (e.g., Krizhevsky et al.
2012).

Many additional tricks for improving NNs
have been described (e.g., Montavon et al. 2012;
Schmidhuber 2015).

Consequences for Neuroscience

Artificial NNs (ANNs) can help to better un-
derstand biological NNs (BNNs). The feature
detectors learned by single-layer visual ANNs are
similar to those found in early visual processing
stages of BNNs. Likewise, the feature detectors
learned in deep layers of visual ANNs should
be highly predictive of what neuroscientists will
find in deep layers of BNNs. While the visual
cortex of BNNs may use quite different learning
algorithms, its objective function to be mini-
mized may be rather similar to the one of visual
ANNs. In fact, results obtained with relatively
deep artificial NNs (e.g., Yamins et al. 2013)
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seem compatible with insights about the visual
pathway in the primate cerebral cortex, which has
been studied for many decades.

Deep Learning with Spiking Neurons?

Current deep NNs greatly profit from GPUs,
which are little ovens, much hungrier for energy
than biological brains, whose neurons efficiently
communicate by brief spikes (e.g., Hodgkin and
Huxley 1952) and often remain quiet. Many com-
putational models of such spiking neurons have
been proposed and analyzed (e.g., Gerstner and
Kistler 2002). Future energy-efficient hardware
for DL in NNs may implement aspects of such
models – see numerous references in the survey
(Schmidhuber 2015, Sect. 5.26). In practical ap-
plications, however, current artificial networks of
spiking neurons cannot yet compete with the best
traditional deep NNs.

Deep Reinforcement Learning (RL)

Reinforcement learning (RL) is the most general
type of learning. General RL agents must dis-
cover, without the aid of a teacher, how to interact
with a dynamic, initially unknown, partially ob-
servable environment in order to maximize their
expected cumulative reward signals (e.g., Kael-
bling et al. 1996; Sutton and Barto 1998; Wiering
and van Otterlo 2012). There may be arbitrary,
a priori unknown delays between actions and
perceivable consequences. The RL problem is as
hard as any problem of computer science, since
any task with a computable description can be
formulated in the general RL framework (e.g.,
Hutter 2005). Deep FNNs and RNNs are useful
tools for various types of RL. Many references
on this since the 1980s can be found in the recent
survey (Schmidhuber 2015, Sect. 6).

Outlook

Deep learning in NNs is more than a temporary
fad. Physics seems to dictate that any future

efficient computational hardware will have to
be brain-like, with many compactly placed
processors in three-dimensional space, sparsely
connected by many short and few long wires,
to minimize total connection cost (even if the
“wires” are actually light beams). The basic
architecture is essentially the one of a deep,
sparsely connected, three-dimensional RNN,
and deep learning methods for such RNNs are
expected to become even much more important
than they are today.

The contents of this article may be used for ed-
ucational and noncommercial purposes, includ-
ing articles for Wikipedia and similar sites.
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Density Estimation

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Synonyms

Kernel density estimation

Definition

Given a set of observations, x1; : : : ; xN , which
is a random sample from a probability density
function fX .x/, density estimation attempts to
approximate fX .x/ by bf X .x0/.

A simple way of estimating a probability den-
sity function is to plot a histogram from a random
sample drawn from the population. Usually, the
range of data values is subdivided into equally
sized intervals or bins. How well the histogram
estimates the function depends on the bin width
and the placement of the boundaries of the bins.
The latter can be somewhat improved by modi-
fying the histogram so that fixed boundaries are
not used for the estimate. That is, the estimate
of the probability density function at a point
uses that point as the centre of a neighborhood.
Following Hastie et al. (2009), the estimate can
be expressed as:

cfX .x0/ D
#xi 2 N.x0/

N�
(1)

where x1; : : : ; xN is a random sample drawn
from a probability density function fX .x/ and
cfX .x0/ is the estimate of fX at point x0.N.x0/ is
a neighborhood of width �, around x0. That is, the
estimate is the normalized count of the number of
values that fall within the neighborhood of x0.

The estimate above is still bumpy, like the
histogram. A smoother approximation can be
obtained by using a kernel function. Each xi in

http://arxiv.org/pdf/1411.4555v1.pdf
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the sample is associated with a kernel function,
usually Gaussian. The count in formula (1) above
is replaced by the sum of the kernel function
applied to the points in the neighborhood of x0:

cfX .x0/ D
1

N�

NX

iD1

K�.x0; xi / (2)

where K is the kernel function associated with
sample xi near x0. This is called the Parzen
estimate (Parzen 1962). The bandwidth, �,
affects the roughness or smoothness of the kernel
histogram. The kernel density estimate is said to
be under-smoothed if the bandwidth is too small.
The estimate is over-smoothed if the bandwidth
is too large.

Density estimation is most often used in
association with memory-based classification
methods, which can be thought of as weighted
� nearest neighbor classifiers.

�Mixture models and �Locally weighted re-
gression are forms of kernel density estimation.

Cross-References

�Kernel Methods
�Locally Weighted Regression for Control
�Mean Shift
�Mixture Model
�Nearest Neighbor
� Support Vector Machines
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ments of statistical learning: data mining, inference
and perception, 2nd edn. Springer, New York
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Density-Based Clustering

Joerg Sander
University of Alberta, Edmonton, AB, Canada
Statistical Machine Learning Group, NICTA,
Canberra, ACT, Australia

Abstract

The chapter gives a concise explanation of the
basic principles of density-based clustering
and points out important ”milestone papers”
in this area.

Synonyms

Estimation of density level sets; Mode analysis;
Nonparametric cluster analysis

Definition

Density-based clustering refers to unsupervised
learning methods that identify distinctive
groups/clusters in the data, based on the idea
that a cluster in a data space is a contiguous
region of high point density, separated from other
such clusters by contiguous regions of low point
density. The data points in the separating regions
of low point density are typically considered
noise/outliers.

Motivation and Background

Clustering in general is an unsupervised learning
task that aims at finding distinct groups in data,
called “clusters.” The minimum requirements for
this task are that the data is given as some set
of objects O for which a dissimilarity-distance
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function d : O � O ! RC is given. Often,
O is a set of d -dimensional real-valued points,
O � Rd , which can be viewed as a sample from
some unknown probability density p.x/, with d
as the Euclidean or some other form of distance.

There are different approaches to characteriz-
ing what establishes distinct groups in the data.

From a procedural point of view, many clus-
tering methods try to find a partition of the data
into k groups so that the within-cluster dissimi-
larities are minimized, while the between-cluster
dissimilarities are maximized. The notions of
within-cluster and between-cluster dissimilarity
are defined using the given distance function d .
Such methods correspond, from a statistical point
of view, to a parametric approach where the un-
known density p.x/ of the data is assumed to be a
mixture of k densities pi .x/, each corresponding
to one of the k groups in the data; the pi .x/ are
assumed to come from some parametric family
(e.g., Gaussian distributions) with unknown pa-
rameters, which are then estimated from the data.

In contrast, density-based clustering is a non-
parametric approach where the groups in the
data are considered to be the high-density areas
of the density p.x/. Density-based clustering
methods do not require the number of clusters as
input parameters, nor do they make assumptions
about the underlying density p.x/ or the variance
within the groups that may exist in the data.
Consequently, density-based clusters are not nec-
essarily groups of points with high within-cluster
similarity as measured by the distance function
d but can have “arbitrary shape” in the feature
space; they are sometimes also referred to as
“natural clusters.” This property makes density-
based clustering particularly suitable for applica-
tions where clusters cannot be well described as
distinct groups of low within-cluster dissimilar-
ity, as, for instance, in spatial data where clusters
of points in the space may form along natural
structures such a rivers, roads, seismic faults, etc.
Figure 1 illustrates density-based clusters using
two-dimensional example, where the assumed
dissimilarity function between the points is the
Euclidean distance: there are three clusters in-

Density-Based Clustering, Fig. 1 Illustration of a
density-based clustering, showing three distinguishable
groups

dicated by triangles, points, and rectangles, as
well as some noise points, indicated by diamond
shapes. Note that the distance between some
points within the clusters is much larger than
the distance between some points from different
clusters, yet the regions containing the clusters
have clearly a higher point density than the region
between them, and they can easily be separated.

Density-based clustering is one of the promi-
nent paradigms for clustering large data sets in
the data mining community. It has been exten-
sively studied and successfully used in many
applications.

Structure of Learning System

Assuming that the data set O � Rd is a sample
from some unknown probability density p.x/,
there are different ways of determining high-
density areas of the density p.x/. Commonly,
the notion of a high-density area is (implicitly
or explicitly) based on a local density estimate
at each point (typically some kernel or nearest
neighbor density estimate) and a notion of con-
nection between objects (typically points are con-
nected if they are within a certain distance " from
each other); clusters are essentially constructed
as maximal sets of objects which are directly or
transitively connected to objects whose density
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exceeds some threshold �. The set fx j p(x) > �g
of all high-density objects is called the density
level set of p at �. Objects that are not part of
such clusters are called noise or outliers.

Different proposed density-based methods
distinguish themselves mainly by how the density
p.x/ is estimated, how the notion of connectivity
is defined, and how the algorithm for finding
connected components of the induced graph is
implemented and supported by suitable data
structures to achieve scalability for large data
sets. Some methods include in a cluster only
objects whose density exceed the threshold �;
others also include objects with lower density
if they are connected to an object with density
above the threshold �.

Density-based clustering was probably intro-
duced the first time by Wishart (1969). His al-
gorithm for one level mode analysis consists of
six steps: “(a) Select a distance threshold r, and a
frequency (or density) threshold k. (b) Compute
the triangular similarity matrix of all inter-point
distances. (c) Evaluate the frequency ki of each
data point, defined as the number of points which
lie within a distance r of point i (: : :). (d) Remove
the ‘noise’ or non-dense points, those for which
ki < k. (e) Cluster the remaining dense points
(ki > k/ by single linkage, forming the mode
nuclei. (f) Reallocate each non-dense point to a
suitable cluster according to some criterion (: : :).”
(Wishart 1969).

Hartigan (1975) suggested a more general def-
inition of a density-based cluster, a density con-
tour cluster at level �, as a maximally connected
set of points x for which p.x/ > �, given a
density p.x/ at each point x, a density threshold
�, and links specified for some pairs of objects.
For instance, given a particular distance function,
points can be defined as linked if the distance
between them is no greater than some threshold
r , or, if only direct links are available, one can
define a “distance” for pairs of objects x and y in
the following way:

d.x; y/D

�
�minŒp.x/; p.y/� x and y are linked

0 otherwise

To compute the density contour clusters,
Hartigan, like Wishart, suggest a version of
single-linkage clustering, which will construct
the maximal connected sets of objects of density
greater than the given threshold �.

The DBSCAN algorithm (Ester et al.
1996) introduced density-based clustering
independently to the Computing Science
Community, also proposing the use of spatial
index structures to achieve a scalable clustering
algorithm. Assuming a distance threshold r , and
a density threshold k, DBSCAN, like Wishart’s
method, estimates the density for each point xi as
the number ki of points that lie inside a radius r
around x. Core points are defined as data points
for which ki > k. Points are considered directly
connected if the distance between them is no
greater than r . Density-based clusters are defined
as maximally connected components of the set of
points that lie within distance r from some core
object (i.e., a cluster may contain points xi with
ki < k, called border objects, if they are within
distance r of a core object of that cluster). Objects
not part of a cluster are considered as noise.
The algorithm DBSCAN constructs clusters
iteratively, starting a new cluster C with a non-
assigned core object x and assigning all points to
C that are directly or transitively connected to x.
To determine directly and transitively connected
points for a given point, a spatial index structure
is used to perform range queries with radius r
for each object that is newly added to a current
cluster, resulting in an algorithm that performs
well in practical situations when spatial index
structures are effective (typically for low- to
medium dimensional data), and has quadratic
worst case runtime when index structures are not
effective (e.g., for high-dimensional data).

DENCLUE (Hinneburg and Keim 1998) pro-
posed a notion of density-based clusters using
kernel density estimation. Each data point x is
associated with (“attracted by”) a local maxi-
mum (“density attractor”) of the overall den-
sity function that lies in the direction of maxi-
mum increase in density from x. Density-based
clusters are defined as connected components
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of density attractors with their associated points
whose density estimate is above a given threshold
�. In this formulation, DBSCAN and Wishart’s
method can be seen as special cases of DEN-
CLUE, using a uniform spherical kernel and, for
Wishart’s method, not including attracted points
whose density is below �. DENCLUE essentially
uses a truncated Gaussian kernel for the imple-
mentation, which is based on a clever data struc-
ture to speed up local density estimation. The
data space is partitioned into d -dimensional cells;
nonempty cells are mapped to one-dimensional
keys which are stored together with some suffi-
cient statistics about the cell (number of points,
pointers to points, and linear sum of the points
belonging to the cell) in a search tree for ef-
ficient retrieval of neighboring cells and local
density estimation (Hinneburg and Keim (1998)
report that in an experimental comparison on
11-dimensional data sets of different sizes, DEN-
CLUE runs up to 45 times faster than DBSCAN).

A large number of related methods and
extensions have been proposed, particularly
in computing science and application-oriented
domains, some motivated by algorithmic
considerations that could improve efficiency of
the computation of density-based clusters, others
motivated by special applications, proposing
essentially density-based clustering algorithms
using specific density measures and notions of
connectivity. An algorithmic framework, called
GDBSCAN, that generalizes the topological
properties of density-based clusters can be found
in Sander et al. (1998). GDBSCAN generalizes
the notion of a density-based clustering to that
of a density-connected decomposition, assuming
only a reflexive and symmetric neighborhood
relation for pairs of objects (direct links between
some objects), and an arbitrary predicate, called
“MinWeight,” that evaluates to true for some
neighborhood sets of objects and false on others,
a core object can be defined as an object whose
neighborhood satisfies the MinWeight predicate.
Then, a density-connected decomposition
consists of the maximally connected components
of the set of objects that are in the neighborhood
of some core object, and they can be computed

with the same algorithmic scheme as density-
based clusters by DBSCAN.

One of the principal problems of finding the
density-based clusters of a density level set for
a single level � is how to determine a suitable
level �. The result of a density-based clustering
method depends critically on the choice of �,
which may be difficult to determine even in situ-
ations when a meaningful level exists, depending
on how well the clusters are separated in the given
sample. In other situations, it may not even be
possible to characterize the cluster structure ap-
propriately using a single density threshold, when
modes exist in different regions of the data space
that have very different local densities or when
clusters are nested within clusters. The problem
of selecting suitable density threshold parameters
has been already observed by Wishart (1969) who
also proposed a hierarchical algorithm to repre-
sent the clusters at different density levels. Harti-
gan (1975) also observed that density-based clus-
ters at different density levels have a hierarchical
structure, a density contour tree, based on the fact
that two clusters (i.e., connected components)
of different density levels are either disjoint or
the cluster of higher density is completely con-
tained in the cluster of lower density. Recent pro-
posals for hierarchical clustering methods based
on a density estimate and a notion of linkage
are, e.g., Ankerst et al. (1999), Stuetzle (2003),
and Campello et al. (2013). These hierarchical
methods are closely related and are essentially
processing and rendering a minimum spanning
tree of the data –with edge weights defined in dif-
ferent ways– and are thus also closely related to
single-linkage clustering. Hierarchical methods
do not, in a strict sense, compute a partition of the
data but compute a representation of the overall
hierarchical density structure of the data from
which particular density-based clusters at differ-
ent density levels or a global density threshold
(a “cut level”) could be determined. Recent work
(Campello et al. 2013) provides an efficient hi-
erarchical version DBSCAN, called HDBSCAN,
which includes a method for automatically ex-
tracting a flat partitioning from possibly different
levels of a density-based clustering hierarchy,
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containing only significant clusters according to
a cluster stability measure.

Cross-References

�Clustering
�Density Estimation
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Dependency Directed Backtracking

� Intelligent Backtracking

Detail

In �Minimum Message Length, detail is the code
or language shared between sender and receiver
that is used to describe the data conditional on
the asserted model.

Diagonal Matrix

�K-Way Spectral Clustering

Differential Prediction

�Uplift Modeling

Digraphs

Synonyms

Directed graphs

Definition

A digraph D consists of a (finite) set of vertices
V(D/ and a set A.D/ of ordered pairs, called
arcs, of distinct vertices. An arc .u; v/ has tail u
and head v, and it is said to leave u and enter v.

Figure 1 shows a digraph D with vertex set
V.D/ D fu; v;w; x; y; ´g and arc set A.D/ D
f.u; v/; .u;w/; .v;w/; .w; x/; .x;w/; .x; ´/; .y; x/;

u

v

w x

y

z

Digraphs, Fig. 1 A digraph
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.´; x/g. Digraphs can be viewed as generaliza-
tions of � graphs.

Dimensionality Reduction

Michail Vlachos
IBM Research, Zurich, Switzerland

Abstract

Dimensionality reduction in an important data
pre-processing when dealing with Big Data.
We explain how it can be used for speeding
up search operation and show applications for
time-series datasets.

Synonyms

Feature selection; Feature projection; lossy com-
pression

Introduction

Every data object in a computer is represented
and stored as a set of features, for example, color,
price, dimensions, and so on. Instead of the term
features, one can interchangeably use the term
dimensions because an object with n features
can also be represented as a multidimensional
point in an n-dimensional space. Therefore, di-
mensionality reduction (dR) refers to the process
of mapping an n-dimensional point into a lower
k-dimensional space. This operation reduces the
size for representing and storing an object or a
dataset in general; hence, dimensionality reduc-
tion can be seen as a method for data compres-
sion. In addition, this process promotes data vi-
sualization, particularly when objects are mapped
onto two or three dimensions. Finally, in the
context of classification, dimensionality reduc-
tion can be a useful tool for (a) making tractable
classification schemes that are superlinear with
respect to dimensionality tractable, (b) reducing
the variance of classifiers that are plagued by

large variance in higher dimensionalities, and (c)
removing the noise that may be present, thus
boosting classification accuracy.

Motivation and Background

There are many techniques for dimensionality
reduction. The objective of these techniques is
to appropriately select the k dimensions (and
also the number k) so that the important char-
acteristics of the original object are retained.
For example, when performing dimensionality
reduction on an image, e.g., using a wavelet-
based technique, the desirable outcome is that
the difference between the original and the final
images is almost imperceptible.

When performing dimensionality reduction
not on a single object, but on a dataset, an
additional requirement is that the relationship
between the objects in the original space be
preserved. This is particularly important for
reasons of classification and visualization in the
new space.
Two important categories of dimensionality re-
duction techniques exist:

• Feature selection techniques, in which
only the most important or descriptive
features/dimensions are retained, and the
rest are discarded. More details on such
techniques can be found under the entry
� Feature Selection

• Feature projection methodologies, which
project the existing features onto different
dimensions or axes. The aim here is, again, to
find those new data axes that retain the dataset
structure and preserve its variance as closely
as possible.

Feature projection techniques typically exploit
the correlations between the various data dimen-
sions, with the goal of creating dimensions/axes
that are uncorrelated and sufficiently describe the
data.

One of the most popular dimensionality reduc-
tion techniques is principal component analysis
or PCA. It attempts to discover those axes (or

http://dx.doi.org/10.1007/978-1-4899-7687-1_352
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_100166
http://dx.doi.org/10.1007/978-1-4899-7687-1_100280
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
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Dimensionality Reduction, Fig. 2 Nonlinear dimensionality reduction techniques produce a better low-dimensional
data mapping than PCA if the original data lie on a high-dimensional manifold

components) onto which the data can be pro-
jected while maintaining the original correlation
between the dimensions. Consider, for example,
a dataset that contains records of environmental
measurements over a period of time, such as
humidity and temperature. The two attributes
can be highly correlated, as shown in Fig. 1. By
deploying PCA, this trend will be discovered,
and the original two-dimensional points can be
reduced to one-dimensional by projecting the
original points onto the first principal component.
In that way, the derived dataset can be stored in
less space.

PCA uses the Euclidean distance as the
measure of dissimilarity among objects. The
first principal component (or axis) indicates the
direction of maximum variance in the original
dimensions. The second component shows the
direction of the next highest variance (and is
uncorrelated to the first component), etc.

Other dimensionality reduction techniques
optimize or preserve other criteria than PCA
does. Manifold-inspired methods such as
ISOMAP (Tenenbaum et al. 2000) preserve the
geodesic distances between objects. The notion
here is to approximate the distance between
objects “through” the remaining ones. The result
of such dimensionality reduction techniques is
that when the data lie on a manifold, the projected
dimensions effectively “unfold” the underlying
high-dimensional manifold. An example of this
mapping is illustrated in Fig. 2, where it is also
compared with the respective PCA mapping.

Other recent dimensionality reduction tech-
niques include locally linear embedding (LLE)
(Roweis and Saul 2000) and Laplacian eigen-
maps (Belkin and Niyogi 2002). We also refer
the interested practitioner to van der Maaten
et al. (2009), for a detailed comparison of var-
ious techniques and also for Matlab implemen-
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tations on a variety of dimensionality reduction
algorithms.

In general, dimensionality reduction is a com-
monly practiced and useful operation in database
and machine-learning systems because it offers
the following desirable properties:

• Data compression: the dataset objects are
represented in fewer dimensions, hence saving
important disk storage space and offering
faster loading of the compressed data from the
disk.

• Better data visualization: the relationships be-
tween the original high-dimensional objects
can be visualized in two- or three-dimensional
projections.

• Improved classification accuracy: this can be
attributed to both variance reduction and noise
removal from the original high-dimensional
dataset.

• More efficient data retrieval: dimensionality
reduction techniques can also assist in making
the retrieval of the original uncompressed data
faster and more efficient, by offering very fast
prefiltering with the help of the compressed
data representation.

• High index performance: more effective use
of indexing structures can be achieved by
using the compressed data, because indexing
techniques only work efficiently with lower-
dimensional data (e.g., from 1 to 30 dimen-
sions, depending on the type of the index).

The fact that indexing structures do not per-
form efficiently for higher-dimensional data is
also known as the �Curse of Dimensionality.
Suppose that we are interested in performing
search operations on a set of high-dimensional
data. For simplicity, let us assume that the data
lie in a unit hypercube C D Œ0; 1�d , where d
is the data dimensionality. Given a query point,
the probability Pw that a match (neighbor) exists
within radius w in the data space of dimensional-
ity d is given by Pw.d/ D wd .

Figure 3 illustrates this probability for various
values of w. Evidently, at higher dimensionali-
ties the data becomes very sparse, and even at
large radii, only a small portion of the entire
space is covered. In simple terms the “curse
of dimensionality” translates into the following
fact: for large dimensionalities, existing indexing
structures outperform a linear scan of all the
data, only when the dataset size (number of
objects) grows exponentially with respect to the
dimensionality.

Applications: Dimensionality
Reduction for Time-Series Data

In this section, we provide more detailed exam-
ples of dimensionality reduction techniques for
time-series data. We chose time series to convey
visually the effect of dimensionality reduction
particularly for high-dimensional data such as

Dimensionality
Reduction, Fig. 3
Probability Pw.d/ against
dimensionality d . The data
becomes sparse in higher
dimensions
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Dimensionality Reduction, Fig. 4 Decomposition of a signal into the first 7 Fourier coefficients. We can see that by
using even only few of the Fourier coefficients we can achieve a good reconstruction of the original signal

time series. Later, we also show how dimension-
ality reduction on large datasets can help speed up
search operations over the original uncompressed
data.

Dimensionality reduction for one- and two-
dimensional signals is commonly accomplished
using Fourier decomposition. This method for
data representation was first presented in the
beginning of the nineteenth century by Jean
Baptiste Fourier (1768–1830), in his seminal
work “On the Propagation of Heat in Solid
Bodies.” Fourier came to the conclusion that
every function could be expressed as a sum of
trigonometrical series (i.e., sines and cosines).
This original work was initially met with
doubt (even by famous mathematicians such as
Lagrange and Laplace), because of its unexpected
result, and moreover, the solution was considered
impractical because of the complex integration
functions.

However, in the twentieth century, no one
can deny the importance of Fourier’s findings.
With the introduction of fast ways to compute
the Fourier decomposition in the 1960s (fast
Fourier transform or FFT), the barrier of the high
computational complexity was lifted. What the
Fourier transform attempts to achieve is to rep-
resent the original signal as a linear combination
of sinusoids. Therefore, each Fourier coefficient
is a complex number that essentially encodes the
amplitude and the phase of each of these sinu-
soids, after the original signal has been projected
on them.

For most signals, the original sequence can
be reconstructed with high accuracy using just
few of the coefficients. This is where the great
power of the Fourier transformation lies: by ne-
glecting the majority of the coefficients, we can
essentially compress the signal or describe it with
fewer numbers. For stock market data or other
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PAA                
 e= 48.3, coeffs=10

APCA              
 e= 46, coeffs=5

Chebyshev          
 e= 47.7, coeffs=10

Fourier (first coeffs) 
 e= 47.4, coeffs=5     

Fourier (best coeffs) 
 e= 29.3, coeffs=5    

PAA                
 e= 22.5, coeffs=10

APCA              
 e= 23.1, coeffs=5

Chebyshev          
 e= 19.2, coeffs=10

Fourier (first coeffs) 
 e= 19.5, coeffs=5     

Fourier (best coeffs) 
 e= 15.4, coeffs=5    

Dimensionality Reduction, Fig. 5 Comparison of var-
ious dimensionality reduction techniques for time-series
data. The darker line indicates the approximation us-
ing the number of coefficients reported. Each figure

also shows the error e introduced by the dimensionality
reduction technique. Lower errors indicate better low-
dimensional approximation of the original object

time series that follow the pattern of a random
walk, the first few coefficients, which capture the
low frequencies of the signal, are sufficient to
describe the signal accurately (or, equivalently,
to capture most of its energy). Figure 4 depicts a
signal of 1024 points and its reconstruction using
7 Fourier coefficients (i.e., using 7 � 2 D 14
numbers).

Other popular dimensionality reduction
techniques for time-series data are the various
wavelet transforms; piecewise linear approx-
imations; piecewise aggregate approximation
(PAA), which can be regarded as a projection
in time of the wavelet coefficients adaptive
piecewise constant approximation (APCA
Keogh et al. 2001) and uses the highest energy
wavelet coefficients; Chebyshev polynomial
approximation symbolic approximation of time
series (such as the SAX representation Lin et al.
2003).

No dimensionality reduction technique is uni-
versally better than all the others. Depending
on the dataset characteristics, one method may
provide a better approximation of a dataset than
the other techniques. Therefore, the key is to
carefully pick the representation that best suits
the specific application or the task at hand. In
Fig. 5, we demonstrate various dimensionality

reduction techniques and the quality of the time-
series approximation. For all methods, the same
storage space is allocated for the compressed se-
quences. The time-series reconstruction is shown
in a darker color, and the approximation error to
the original sequence is also reported. In general,
we notice that dimensionality reduction tech-
niques based on selection of the highest energy
coefficients consistently provide a high-quality
sequence approximation.

Dimensionality Reduction and Lower
Bounding
Dimensionality reduction can be a useful tool
for speeding up search operations. Figure 6
illustrates dimensionality reduction for high-
dimensional time-series data. After dimension-
ality reduction, each object is represented using
fewer dimensions (attributes), so it is represented
in a lower-dimensional space. Then, suppose that
a user poses another high-dimensional object as
query and wishes to find all the objects closest to
this query.

To avoid the search on the original high-
dimensional space, the query is also transformed
into a point in the lower-dimensional space, and
its closest matches can be discovered in the
vicinity of the projected query point. However,
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Dimensionality
Reduction, Fig. 6 Search
and dimensionality
reduction. Every object
(time series in this case) is
transformed into a
lower-dimensional point.
User queries are also
projected into the new
space. Similarity search
consists of finding the
closest points to the query
projection

Query

x

when searching using the compressed objects,
one needs to provide an estimate of the distance
between the original objects. Typically, it is
preferable that the distance in the new space
underestimates (or lower bounds) the distance in
the original high-dimensional space. The reason
for this is the following.

Suppose that we are seeking the 1-Nearest-
Neighbor (1-NN) a query Q in a database D.
By examining all objects (linear scan), one can
guarantee that the best match will be found. Can
one provide the same guarantee (i.e., that the
same best match will be returned) when examin-
ing the compressed objects (after dimensionality
reduction)?

The answer is positive, as long as the distance
on the compressed data underestimates or lower
bounds the distance on the raw data. In other
words, the dimensionality reduction (dR) that is
performed on the raw data must have the follow-
ing property:

Having A � D dR
��! a and Q

dR
��! q

then

Δ.q; a/ � Δ.Q;A/

As the computed distance Δ between any
two compressed objects is underestimated, false
alarms may arise. Suppose, for example, that our
database consists of 6 two-dimensional points
(Fig. 7). If the user query is: “Find everything that
lies within a radius of 1 around A,” then B is the
only result.

Let us assume for a minute that the dimension-
ality reduction performed on the data is simply
a projection on the x-axis (Fig. 8). In this new
space, seeking for points within a range of 1
from A would also retrieve point C , which is
called a false alarm. However, this does not con-
stitute a problem; in a post-processing, in a post-
processing phase, the calculation of the exact
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Dimensionality
Reduction, Fig. 7 Range
search in the original space
returns only object B
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false alarm

Dimensionality Reduction, Fig. 8 Because of the dimensionality reduction, false alarms may arise

1 2 3 4 5
Query

A FDC EB

false dismissal

Dimensionality Reduction, Fig. 9 False dismissals may happen when the lower-bounding lemma is not obeyed

distance will remove any false alarms. Suppose
now that another dimensionality reduction results
in the projection of Fig. 9. Here, we have a case
of a false dismissal, because object B lies outside
the range of search.

This generic framework for similarity search
using dimensionality reduction and lower-
bounding distance functions was proposed in
Agrawal et al. (1993) and is called GEMINI
(GEneric Multimedia INdexIng). One can
show that orthonormal dimensionality reduction

techniques (PCA, Fourier, wavelets) satisfy the
lower-bounding lemma when the distance used is
the Euclidean distance.

In conclusion, by using dimensionality reduc-
tion for search operations, one can first examine
the compressed objects and eliminate many of
the uncompressed objects from examination by
using a lower-bounding approximation of the
distance function. This initial search will return
a superset of the correct answers (no false dis-
missals). False alarms can be filtered out by



Dirichlet Process 361

D

computing the original distance between the re-
maining uncompressed objects and the query.
Therefore, a significant speedup is achieved by
examining only a small subset of the original raw
data.
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Definition

The Dirichlet process (DP) is a stochastic pro-
cess used in �Bayesian nonparametric models
of data, particularly in Dirichlet process mixture
models (also known as infinite mixture mod-
els). It is a distribution over distributions, that
is, each draw from a Dirichlet process is it-
self a distribution. It is called a Dirichlet pro-
cess because it has Dirichlet distributed finite
dimensional marginal distributions, just as the
�Gaussian process, another popular stochastic
process used for Bayesian nonparametric regres-
sion, has Gaussian distributed finite dimensional
marginal distributions. Distributions drawn from
a Dirichlet process are discrete, but cannot be
described using a finite number of parameters,
thus the classification as a nonparametric model.

Motivation and Background

Probabilistic models are used throughout ma-
chine learning to model distributions over ob-
served data. Traditional parametric models using
a fixed and finite number of parameters can suffer
from over- or under-fitting of data when there is a
misfit between the complexity of the model (often
expressed in terms of the number of parameters)
and the amount of data available. As a result,
model selection, or the choice of a model with
the right complexity, is often an important issue
in parametric modeling. Unfortunately, model
selection is an operation that is fraught with
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difficulties, whether we use � cross validation or
marginal probabilities as the basis for selection.
The Bayesian nonparametric approach is an al-
ternative to parametric modeling and selection.
By using a model with an unbounded complex-
ity, underfitting is mitigated, while the Bayesian
approach of computing or approximating the full
posterior over parameters mitigates overfitting.
For a general overview of Bayesian nonparamet-
rics, see �Bayesian Nonparametric Models.

Nonparametric models are also motivated
philosophically by Bayesian modeling. Typically
we assume that we have an underlying and un-
known distribution which we wish to infer given
some observed data. Say we observe x1; : : : ; xn,
with xi � F independent and identical draws
from the unknown distribution F . A Bayesian
would approach this problem by placing a prior
overF then computing the posterior overF given
data. Traditionally, this prior over distributions
is given by a parametric family. But constraining
distributions to lie within parametric families
limits the scope and type of inferences that can
be made. The nonparametric approach instead
uses a prior over distributions with wide support,
typically the support being the space of all
distributions. Given such a large space over
which we make our inferences, it is important
that posterior computations are tractable.

The Dirichlet process is currently one of the
most popular Bayesian nonparametric models.
It was first formalized in Ferguson (1973) for
general Bayesian statistical modeling, as a prior
over distributions with wide support yet tractable
posteriors. (Note however that related models in
population genetics date back to Ewens 1972).
Unfortunately the Dirichlet process is limited by
the fact that draws from it are discrete distribu-
tions, and generalizations to more general priors
did not have tractable posterior inference until the
development of MCMC (�Markov chain Monte
Carlo) techniques (Escobar and West 1995; Neal
2000). Since then there has been significant de-
velopments in terms of inference algorithms, ex-
tensions, theory and applications. In the machine
learning, community work on Dirichlet processes
date back to Neal (1992) and Rasmussen (2000).

Theory

The Dirichlet process (DP) is a stochastic process
whose sample paths are probability measures
with probability one. Stochastic processes are
distributions over function spaces, with sample
paths being random functions drawn from the
distribution. In the case of the DP, it is a dis-
tribution over probability measures, which are
functions with certain special properties, which
allow them to be interpreted as distributions over
some probability space ‚. Thus draws from a
DP can be interpreted as random distributions.
For a distribution over probability measures to be
a DP, its marginal distributions have to take on
a specific form which we shall give below. We
assume that the user is familiar with a modicum
of measure theory and Dirichlet distributions.

Before we proceed to the formal definition,
we will first give an intuitive explanation of
the DP as an infinite dimensional generalization
of Dirichlet distributions. Consider a Bayesian
mixture model consisting of K components:

�j˛ � Dir
�

˛
K
; : : : ; ˛

K

�
��

k
jH � H

´i j� �Mul t.�/ xi j´i ; f�
�
k
g � F

�
��

´i

�

(1)

where � is the mixing proportion, ˛ is the pseu-
docount hyperparameter of the Dirichlet prior,
H is the prior distribution over component pa-
rameters ��

k
, and F.�/ is the component dis-

tribution parametrized by � . It can be shown
that for large K, because of the particular way
we parametrized the Dirichlet prior over � , the
number of components typically used to model
n data items becomes independent of K and is
approximately O.˛ logn/. This implies that the
mixture model stays well defined as K ! 1,
leading to what is known as an infinite mix-
ture model (Neal 1992; Rasmussen 2000). This
model was first proposed as a way to sidestep the
difficult problem of determining the number of
components in a mixture, and as a nonparametric
alternative to finite mixtures whose size can grow
naturally with the number of data items. The
more modern definition of this model uses a DP

http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_928
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
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and with the resulting model called a DP mixture
model. The DP itself appears as the K ! 1

limit of the random discrete probability measurePK
kD1 �kı��

k
, where ı� is a point mass centered

at � . We will return to the DP mixture toward the
end of this entry.

Dirichlet Process

For a random distribution G to be distributed ac-
cording to a DP, its marginal distributions have to
be Dirichlet distributed (Ferguson 1973). Specif-
ically, let H be a distribution over ‚ and ˛

be a positive real number. Then for any finite
measurable partition A1; : : : ; Ar of ‚ the vector
.G.A1/; : : : ; G.Ar // is random since G is ran-
dom. We say G is Dirichlet process distributed
with base distribution H and concentration pa-
rameter ˛, written G � DP.˛;H/, if

.G.A1/; : : : ; G.Ar //

� Dir.˛H.A1/; : : : ; ˛H.Ar // (2)

for every finite measurable partition A1; : : : ; Ar

of ‚.
The parametersH and ˛ play intuitive roles in

the definition of the DP. The base distribution is
basically the mean of the DP: for any measurable
set A � ‚, we have EŒG.A/� D H.A/. On the
other hand, the concentration parameter can be
understood as an inverse variance: V ŒG.A/� D
H.A/.1 � H.A//=.˛ C 1/. The larger ˛ is, the
smaller the variance, and the DP will concentrate
more of its mass around the mean. The con-
centration parameter is also called the strength
parameter, referring to the strength of the prior
when using the DP as a nonparametric prior over
distributions in a Bayesian nonparametric model,
and the mass parameter, as this prior strength can
be measured in units of sample size (or mass)
of observations. Also, notice that ˛ and H only
appear as their product in the definition (3) of
the DP. Some authors thus treat eH D ˛H , as
the single (positive measure) parameter of the
DP, writing DP.eH/ instead of DP.˛;H/. This
parametrization can be notationally convenient,

but loses the distinct roles ˛ and H play in
describing the DP.

Since ˛ describes the concentration of mass
around the mean of the DP, as ˛ ! 1, we
will have G.A/ ! H.A/ for any measurable A,
that is G ! H weakly or pointwise. However
this not equivalent to saying that G ! H . As
we shall see later, draws from a DP will be
discrete distributions with probability one, even
if H is smooth. Thus G and H need not even be
absolutely continuous with respect to each other.
This has not stopped some authors from using the
DP as a nonparametric relaxation of a parametric
model given by H . However, if smoothness is
a concern, it is possible to extend the DP by
convolving G with kernels so that the resulting
random distribution has a density.

A related issue to the above is the coverage
of the DP within the class of all distributions
over ‚. We already noted that samples from
the DP are discrete, thus the set of distributions
with positive probability under the DP is small.
However it turns out that this set is also large in
a different sense: if the topological support of H
(the smallest closed set S in ‚ with H.S/ D 1/
is all of ‚, then any distribution over ‚ can be
approximated arbitrarily accurately in the weak
or pointwise sense by a sequence of draws from
DP.˛;H/. This property has consequence in the
consistency of DPs discussed later.

For all but the simplest probability spaces, the
number of measurable partitions in the definition
(3) of the DP can be uncountably large. The
natural question to ask here is whether objects
satisfying such a large number of conditions as
(3) can exist. There are a number of approaches
to establish existence. Ferguson (1973) noted
that the conditions (3) are consistent with each
other, and made use of Kolmogorov’s consistency
theorem to show that a distribution over functions
from the measurable subsets of ‚ to [0, 1] exists
satisfying (3) for all finite measurable partitions
of ‚. However it turns out that this construction
does not necessarily guarantee a distribution over
probability measures. Ferguson (1973) also pro-
vided a construction of the DP by normalizing a
gamma process. In a later section we will see that
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the predictive distributions of the DP are related
to the Blackwell–MacQueen urn scheme. Black-
well and MacQueen (1973) made use of this,
along with de Finetti’s theorem on exchangeable
sequences, to prove existence of the DP. All the
above methods made use of powerful and general
mathematical machinery to establish existence,
and often require regularity assumptions on H
and‚ to apply these machinery. In a later section,
we describe a stick-breaking construction of the
DP due to Sethuraman (1994), which is a direct
and elegant construction of the DP, which need
not impose such regularity assumptions.

Posterior Distribution
Let G � DP.˛;H/. Since G is a (random)
distribution, we can in turn draw samples from
G itself. Let �1; : : : ; �n be a sequence of indepen-
dent draws from G. Note that the �i ’s take values
in ‚ since G is a distribution over ‚. We are
interested in the posterior distribution of G given

observed values of �1; : : : ; �n. Let A1; : : : ; Ar be
a finite measurable partition of ‚, and let nk D

#fi W �i 2 Akg be the number of observed values
in Ak . By (3) and the conjugacy between the
Dirichlet and the multinomial distributions, we
have

.G.A1/; : : : ; G.Ar //j�1; : : : ; �n

� Dir.˛H.A1/C n1; : : : ; ˛H.Ar /C nr / (3)

Since the above is true for all finite measurable
partitions, the posterior distribution over G must
be a DP as well. A little algebra shows that the
posterior DP has updated concentration param-

eter ˛ C n and base distribution
˛HC

Pn
iD1 ı�i

˛Cn
,

where ıi is a point mass located at �i and nk DPn
iD1 ıi .Ak/. In other words, the DP provides a

conjugate family of priors over distributions that
is closed under posterior updates given observa-
tions. Rewriting the posterior DP, we have

Gj�1; : : : ; �n � DP

�
˛ C n;

˛

˛ C n
H C

n

˛ C n

Pn
iD1 ı�i

n

�
(4)

Notice that the posterior base distribution is a
weighted average between the prior base distri-

bution H and the empirical distribution
Pn

iD1 ı�i

n
.

The weight associated with the prior base distri-
bution is proportional to ˛, while the empirical
distribution has weight proportional to the num-
ber of observations n. Thus we can interpret ˛ as
the strength or mass associated with the prior. In
the next section we will see that the posterior base
distribution is also the predictive distribution of
�nC1 given �1; : : : ; �n. Taking ˛ ! 0, the prior
becomes non-informative in the sense that the
predictive distribution is just given by the empiri-
cal distribution. On the other hand, as the amount
of observations grows large, n� ˛, the posterior
is simply dominated by the empirical distribution,
which is in turn a close approximation of the true
underlying distribution. This gives a consistency
property of the DP: the posterior DP approaches
the true underlying distribution.

Predictive Distribution and the
Blackwell–MacQueen Urn Scheme
Consider again drawing G � DP.˛;H/, and
drawing an i.i.d. (independently and identically
distributed) sequence �1; �2; : : : � G. Consider
the predictive distribution for �nC1, conditioned
on �1; : : : ; �n and withG marginalized out. Since
�nC1jG; �1; : : : ; �n � G, for a measurable A �
‚, we have

P.�nC1 2 Aj�1; : : : ; �n/ D EŒG.A/j�1; : : : ; �n�

D
1

˛ C n

 
˛H.A/C

nX

iD1

ı�i
.A/

!
(5)

where the last step follows from the posterior
base distribution of G given the first n observa-
tions. Thus with G marginalized out:



Dirichlet Process 365

D

�nC1j�1; : : : ; �n �
1

˛ C n

 
˛H C

nX

iD1

Cı�i

!

(6)

Therefore the posterior base distribution given
�1; : : : ; �n is also the predictive distribution of
�nC1.

The sequence of predictive distributions (6)
for �1; �2; : : : is called the Blackwell–MacQueen
urn scheme (Blackwell and MacQueen 1973).
The name stems from a metaphor useful in in-
terpreting (6). Specifically, each value in ‚ is a
unique color, and draws � � G are balls with
the drawn value being the color of the ball. In
addition we have an urn containing previously
seen balls. In the beginning there are no balls in
the urn, and we pick a color drawn from H , that
is, draw �1 � H , paint a ball with that color,
and drop it into the urn. In subsequent steps, say
the nC 1st, we will either, with probability ˛

˛Cn
,

pick a new color (draw �nC1 � H/, paint a ball
with that color and drop the ball into the urn, or,
with probability n

˛Cn
, reach into the urn to pick

a random ball out (draw �nC1 from the empirical
distribution), paint a new ball with the same color,
and drop both balls back into the urn.

The Blackwell–MacQueen urn scheme has
been used to show the existence of the DP (Black-
well and MacQueen 1973). Starting from (6),
which are perfectly well defined conditional dis-
tributions regardless of the question of the exis-
tence of DPs, we can construct a distribution over
sequences �1; �2; : : : by iteratively drawing each
�i given �1; : : : ; �i�1. For n 	 1 let

P.�1; : : : ; �n/ D

nY

iD1

P.�i j�1; : : : ; �i�1/ (7)

be the joint distribution over the first n obser-
vations, where the conditional distributions are
given by (6). It is straightforward to verify that
this random sequence is infinitely exchangeable.
That is, for every n, the probability of generating
�1; : : : ; �n using (6), in that order, is equal to the
probability of drawing them in any alternative
order. More precisely, given any permutation �
on 1; : : : ; n, we have

P.�1; : : : ; �n/ D P.��.1/
; : : : ; ��.n// (8)

Now de Finetti’s theorem states that for any
infinitely exchangeable sequence �1; �2; : : : there
is a random distribution G such that the sequence
is composed of i.i.d. draws from it:

P.�1; : : : ; �n/ D

Z nY

iD1

G.�i /dP.G/ (9)

In our setting, the prior over the random distri-
bution P.G/ is precisely the Dirichlet process
DP.˛;H/, thus establishing existence.

A salient property of the predictive distribu-
tion (6) is that it has point masses located at the
previous draws �1; : : : ; �n. A first observation is
that with positive probability draws from G will
take on the same value, regardless of smoothness
of H . This implies that the distribution G itself
has point masses. A further observation is that
for a long enough sequence of draws from G, the
value of any draw will be repeated by another
draw, implying that G is composed only of a
weighted sum of point masses, that is, it is a
discrete distribution. We will see two sections
below that this is indeed the case, and give a sim-
ple construction for G called the stick-breaking
construction. Before that, we shall investigate the
clustering property of the DP.

Clustering, Partitions, and the Chinese
Restaurant Process
In addition to the discreteness property of draws
from a DP, (6) also implies a � clustering prop-
erty. The discreteness and clustering properties
of the DP play crucial roles in the use of DPs
for clustering via DP mixture models, described
in the application section. For now we assume
that H is smooth, so that all repeated values
are due to the discreteness property of the DP
and not due to H itself. (Similar conclusions
can be drawn when H has atoms, there is just
more bookkeeping.) Since the values of draws
are repeated, let ��

1 ; : : : ; �
�
m be the unique val-

ues among �1; : : : ; �n, and nk be the number of
repeats of ��

k
. The predictive distribution can be

equivalently written as

http://dx.doi.org/10.1007/978-1-4899-7687-1_943
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�nC1

ˇ̌
�1; : : : ; �n �

1

˛ C n

 
˛H C

mX

kD1

nkı��

k

!

(10)

Notice that value ��
k

will be repeated by �nC1

with probability proportional to nk , the number
of times it has already been observed. The larger
nk is, the higher the probability that it will grow.
This is a rich-gets-richer phenomenon, where
large clusters (a set of �i ’s with identical values
��

k
being considered a cluster) grow larger faster.
We can delve further into the clustering prop-

erty of the DP by looking at partitions induced
by the clustering. The unique values of �1; : : : ; �n

induce a partitioning of the set Œn� D f1; : : : ; ng
into clusters such that within each cluster, say
cluster k, the �i ’s take on the same value ��

k
.

Given that �1; : : : ; �n are random, this induces a
random partition of [n]. This random partition in
fact encapsulates all the properties of the DP, and
is a very well-studied mathematical object in its
own right, predating even the DP itself (Aldous
1985; Ewens 1972; Pitman 2002). To see how it
encapsulates the DP, we simply invert the genera-
tive process. Starting from the distribution over
random partitions, we can reconstruct the joint
distribution (7) over �1; : : : ; �n, by first drawing
a random partition on [n], then for each cluster
k in the partition draw a ��

k
� H , and finally

assign �i D ��
k

for each i in cluster k. From
the joint distribution (7) we can obtain the DP by
appealing to de Finetti’s theorem.

The distribution over partitions is called the
Chinese restaurant process (CRP) due to a differ-
ent metaphor. (The name was coined by Lester
Dubins and Jim Pitman in the early 1980s (Al-
dous 1985)) In this metaphor we have a Chinese
restaurant with an infinite number of tables, each
of which can seat an infinite number of cus-
tomers. The first customer enters the restaurant
and sits at the first table. The second customer
enters and decides either to sit with the first
customer, or by herself at a new table. In general,
the n C 1st customer either joins an already
occupied table k with probability proportional to
the number nk of customers already sitting there,
or sits at a new table with probability proportional

to ˛. Identifying customers with integers 1; 2; : : :
and tables as clusters, after n customers have sat
down the tables define a partition of [n] with the
distribution over partitions being the same as the
one above. The fact that most Chinese restaurants
have round tables is an important aspect of the
CRP. This is because it does not just define a
distribution over partitions of [n], it also defines
a distribution over permutations of [n], with each
table corresponding to a cycle of the permutation.
We do not need to explore this aspect further and
refer the interested reader to Aldous (1985) and
Pitman (2002).

This distribution over partitions first appeared
in population genetics, where it was found to
be a robust distribution over alleles (clusters)
among gametes (observations) under simplifying
assumptions on the population, and is known un-
der the name of Ewens sampling formula (Ewens
1972). Before moving on we shall consider just
one illuminating aspect, specifically the distribu-
tion of the number of clusters among n observa-
tions. Notice that for i 	 1, the observation �i

takes on a new value (thus incrementing m by
one) with probability ˛

˛Ci�1 independently of the
number of clusters among previous � ’s. Thus the
number of cluster m has mean and variance:

EŒmjn� D

nX

iD1

˛

˛ C i � 1
D ˛. .˛ C n/� .˛//

' log
�

1C
n

˛

�
forN; ˛ � 0; (11)

V Œmjn� D ˛. .˛ C n/ �  .˛//

C ˛2. 0.˛ C n/ �  0.˛//

' ˛ log
�

1C
n

˛

�
for n > ˛ � 0;

(12)

where  . � / is the digamma function. Note that
the number of clusters grows only logarithmically
in the number of observations. This slow growth
of the number of clusters makes sense because of
the rich-gets-richer phenomenon: we expect there
to be large clusters thus the number of clusters m
has to be smaller than the number of observations
n. Notice that ˛ controls the number of clusters in
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a direct manner, with larger ˛ implying a larger
number of clusters a priori. This intuition will
help in the application of DPs to mixture models.

Stick-Breaking Construction
We have already intuited that draws from a DP
are composed of a weighted sum of point masses.
Sethuraman (1994) made this precise by pro-
viding a constructive definition of the DP as
such, called the stick-breaking construction. This
construction is also significantly more straight-
forward and general than previous proofs of the
existence of DPs. It is simply given as follows:

ˇk � Beta.1; ˛/ ��
k
� H

�k D ˇk

k�1Q
lD1

G D
1P

kD1
�kı��

k

(13)

Then G � DP.˛;H/. The construction of � can
be understood metaphorically as follows. Starting
with a stick of length 1, we break it at ˇ1, as-
signing �1 to be the length of stick we just broke
off. Now recursively break the other portion to
obtain �2; �3, and so forth. The stick-breaking
distribution over � is sometimes written � �

GEM.˛/, where the letters stand for Griffiths,
Engen, and McCloskey (Pitman 2002). Because
of its simplicity, the stick-breaking construction
has lead to a variety of extensions as well as novel
inference techniques for the Dirichlet process
(Ishwaran and James 2001).

Applications

Because of its simplicity, DPs are used across a
wide variety of applications of Bayesian analysis
in both statistics and machine learning. The
simplest and most prevalent applications include
Bayesian model validation, density estimation,
and clustering via mixture models. We shall
briefly describe the first two classes before
detailing DP mixture models.

How does one validate that a model gives a
good fit to some observed data? The Bayesian
approach would usually involve computing the
marginal probability of the observed data under
the model, and comparing this marginal proba-

bility to that for other models. If the marginal
probability of the model of interest is highest
we may conclude that we have a good fit. The
choice of models to compare against is an issue
in this approach, since it is desirable to compare
against as large a class of models as possible.
The Bayesian nonparametric approach gives an
answer to this question: use the space of all
possible distributions as our comparison class,
with a prior over distributions. The DP is a
popular choice for this prior, due to its simplicity,
wide coverage of the class of all distributions,
and recent advances in computationally efficient
inference in DP models. The approach is usually
to use the given parametric model as the base
distribution of the DP, with the DP serving as a
nonparametric relaxation around this parametric
model. If the parametric model performs as well
or better than the DP relaxed model, we have
convincing evidence of the validity of the model.

Another application of DPs is in � density
estimation (Escobar and West 1995; Lo 1984;
Neal 1992; Rasmussen 2000). Here we are in-
terested in modeling the density from which a
given set of observations is drawn. To avoid lim-
iting ourselves to any parametric class, we may
again use a nonparametric prior over all densities.
Here again DPs are a popular. However note that
distributions drawn from a DP are discrete, thus
do not have densities. The solution is to smooth
out draws from the DP with a kernel. Let G �
DP.˛;H/ and let f .xj�/ be a family of densities
(kernels) indexed by � . We use the following as
our nonparametric density of x:

p.x/ D

Z
f .xj�/G.�/d� (14)

Similarly, smoothing out DPs in this way is also
useful in the nonparametric relaxation setting
above. As we see below, this way of smoothing
out DPs is equivalent to DP mixture models, if the
data distributions F.�/ below are smooth with
densities given by f .xj�/.

Dirichlet Process Mixture Models
The most common application of the Dirich-
let process is in clustering data using mixture

http://dx.doi.org/10.1007/978-1-4899-7687-1_210
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models (Escobar and West 1995; Lo 1984; Neal
1992; Rasmussen 2000). Here the nonparamet-
ric nature of the Dirichlet process translates to
mixture models with a countably infinite num-
ber of components. We model a set of observa-
tions fx1; : : : ; xng using a set of latent parameters
f�1; : : : ; �ng. Each �i is drawn independently and
identically fromG, while each xi has distribution
F.�i / parametrized by �i :

xi j�i � F.�i /

�i jG � G

Gj˛;H � DP.˛;H/ (15)

Because G is discrete, multiple �i ’s can take on
the same value simultaneously, and the above
model can be seen as a mixture model, where
xi ’s with the same value of �i belong to the same
cluster. The mixture perspective can be made
more in agreement with the usual representation
of mixture models using the stick-breaking con-
struction (13). Let ´i be a cluster assignment
variable, which takes on value k with probability
�k . Then (15) can be equivalently expressed as

�j˛ � GEM.˛/ ��
k
jH � H

´i j� �Mul t.�/ xi j´if�
�
k
g � F.��

´i
/

(16)

with G D
P1

kD1 �kı��

k
and �i D ��

´i
. In

mixture modeling terminology, � is the mixing
proportion, ��

k
are the cluster parameters, F.��

k
/

is the distribution over data in cluster k, and H
the prior over cluster parameters.

The DP mixture model is an infinite mixture
model – a mixture model with a countably in-
finite number of clusters. However, because the
�k’s decrease exponentially quickly, only a small
number of clusters will be used to model the
data a priori (in fact, as we saw previously, the
expected number of components used a priori is
logarithmic in the number of observations). This
is different than a finite mixture model, which
uses a fixed number of clusters to model the
data. In the DP mixture model, the actual number
of clusters used to model data is not fixed, and

can be automatically inferred from data using
the usual Bayesian posterior inference framework
(see Neal (2000) for a survey of MCMC infer-
ence procedures for DP mixture models). The
equivalent operation for finite mixture models
would be model averaging or model selection
for the appropriate number of components, an
approach that is fraught with difficulties. Thus
infinite mixture models as exemplified by DP
mixture models provide a compelling alternative
to the traditional finite mixture model paradigm.

Generalizations and Extensions

The DP is the canonical distribution over proba-
bility measures and a wide range of generaliza-
tions have been proposed in the literature. First
and foremost is the Pitman–Yor process (Ish-
waran and James 2001; Pitman and Yor 1997),
which has recently seen successful applications
modeling data exhibiting power-law properties
(Goldwater 2006; Teh 2006). The Pitman–Yor
process includes a third parameter d 2 Œ0; 1/,
with d D 0 reducing to the DP. The various
representations of the DP, including the Chi-
nese restaurant process and the stick-breaking
construction, have analogues for the Pitman–
Yor process. Other generalizations of the DP are
obtained by generalizing one of its representa-
tions. These include Pólya trees, normalized ran-
dom measure, Poisson–Kingman models, species
sampling models and stick-breaking priors.

The DP has also been used in more complex
models involving more than one random prob-
ability measure. For example, in nonparametric
regression we might have one probability mea-
sure for each value of a covariate, and in multi-
task settings each task might be associated with
a probability measure with dependence across
tasks implemented using a hierarchical Bayesian
model. In the first situation, the class of models
is typically called dependent Dirichlet processes
(MacEachern 1999), while in the second the
appropriate model is a hierarchical Dirichlet pro-
cess (Teh et al. 2006).
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Future Directions

The Dirichlet process, and Bayesian nonpara-
metrics in general, is an active area of research
within both machine learning and statistics. Cur-
rent research trends span a number of directions.
Firstly, there is the issue of efficient inference
in DP models. Reference Neal (2000) is an ex-
cellent survey of the state-of-the-art in 2000,
with all algorithms based on Gibbs sampling
or small-step Metropolis–Hastings MCMC sam-
pling. Since then there has been much work,
including split-and-merge and large-step auxil-
iary variable MCMC sampling, sequential Monte
Carlo, expectation propagation, and variational
methods. Secondly, there has been interest in
extending the DP, both in terms of new random
distributions, as well as novel classes of non-
parametric objects inspired by the DP. Thirdly,
theoretical issues of convergence and consistency
are being explored to provide frequentist guaran-
tees for Bayesian nonparametric models. Finally,
there are applications of such models, to cluster-
ing, transfer learning, relational learning, models
of cognition, sequence learning, and regression
and classification among others. We believe DPs
and Bayesian nonparametrics will prove to be
rich and fertile grounds for research for years to
come.

Cross-References

�Bayesian Methods
�Bayesian Nonparametric Models
�Clustering
�Density Estimation
�Gaussian Process
� Prior Probability
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Discrete Attribute

A discrete attribute assumes values that can be
counted. The attribute cannot assume all values
on the number line within its value range. See
�Attribute and �Measurement Scales.

Discretization

Ying Yang
Australian Taxation Office, Box Hill, VIC,
Australia

Synonyms

Binning

Definition

Discretization is a process that transforms a
� numeric attribute into a � categorical attribute.
Under discretization, a new categorical attribute
X 0 is formed from and replaces an existing
numeric attribute X . Each value x0 of X 0

corresponds to an interval (a,b] of X . Any
original numeric value x of X that belongs to
(a,b] is replaced by x0. The boundary values of
formed intervals are often called “cut points.”

Motivation and Background

Many learning systems require categorical data,
while many data are numeric. Discretization al-
lows numeric data to be transformed into categor-
ical form suited to processing by such systems.
Further, in some cases effective discretization
can improve either computational or prediction

performance relative to learning from the original
numeric data.

Taxonomy
The following taxonomy identifies many key di-
mensions along which alternative discretization
techniques can be distinguished.

Supervised vs. Unsupervised (Dougherty et al.
1995). Supervised methods use the class informa-
tion of the training instances to select discretiza-
tion cut points. Methods that do not use the class
information are unsupervised.
Global vs. Local (Dougherty et al. 1995). Global
methods discretize with respect to the whole
training data space. They perform discretization
only once, using a single set of intervals through-
out a single classification task. Local methods
allow different sets of intervals to be formed
for a single attribute, each set being applied in
a different classification context. For example,
different discretizations of a single attribute might
be applied at different nodes of a decision tree
(Quinlan 1993).
Eager vs. Lazy (Hsu et al. 2000). Eager methods
perform discretization prior to classification time.
Lazy methods perform discretization during the
process of classification.
Disjoint vs. Nondisjoint (Yang and Webb 2002).
Disjoint methods discretize the value range of
a numeric attribute into disjoint intervals. No
intervals overlap. Nondisjoint methods discretize
the value range into intervals that can overlap.
Parameterized vs. Unparameterized. Parame-
terized discretization requires input from the user,
such as the maximum number of discretized inter-
vals. Unparameterized discretization uses infor-
mation only from data and does not need input
from the user, for instance, the entropy minimiza-
tion discretization (Fayyad and Irani 1993).
Univariate vs. Multivariate (Bay 2000). Meth-
ods that discretize each attribute in isolation are
univariate. Methods that take into consideration
relationships among attributes during discretiza-
tion are multivariate.
Split vs. Merge (Kerber 1992) vs. Single-scan
(Yang and Webb 2001). Split discretization ini-
tially has the whole value range as an interval
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and then continues splitting it into subintervals
until some threshold is met. Merge discretization
initially puts each value into an interval and then
continues merging adjacent intervals until some
threshold is met. Single-scan discretization uses
neither split nor merge process. Instead, it scans
the ordered values only once, sequentially form-
ing the intervals.
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Discriminative Learning

Definition

Discriminative learning refers to any � classifi-
cation learning process that classifies by using
a model or estimate of the probability P.yjx/

without reference to an explicit estimate of any
of P(x), P(y; x), or P(xjy), where y is a class and
x is a description of an object to be classified.
Discriminative learning contrasts to � generative
learning which classifies by using an estimate
of the joint probability P(y; x) or of the prior
probability P(y) and the conditional probability
P(xjy).

It is also common to categorize as discrim-
inative any approaches that are directly based
on a decision risk function (such as �Support
Vector Machines, �Artificial Neural Networks,
and �Decision Trees), where the decision risk is
minimized without estimation of P(x), P(y; x), or
P(xjy).

Cross-References

�Generative and Discriminative Learning

Disjunctive Normal Form

Bernhard Pfahringer
University of Waikato, Hamilton, New Zealand

Disjunctive normal form is an important normal
form for propositional logic. A logic formula
is in disjunctive normal form if it is a single
disjunction of conjunctions of (possibly negated)
literals. No more nesting and no other negations
are allowed. Examples are:

a

:b

a _ b

.a ^ :b/ _ .c ^ d/

:a _ .b ^ :c ^ d/ _ .a ^ :d/

Any arbitrary formula in propositional logic
can be transformed into disjunctive normal form
by application of the laws of distribution, De
Morgan’s laws, and by removing double nega-
tions. It is important to note that this process
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can lead to exponentially larger formulas which
implies that the process in the worst case runs in
exponential time. An example for this behavior
is the following formula given in � conjunctive
normal form (CNF), which is linear in the number
of propositional variables in this form. When
transformed into disjunctive normal form (DNF),
its size is exponentially larger.

CNF: .a0 _ a1/^ .a2 _ a3/^ � � � ^ .a2n _ a2nC1/

DNF: .a0 ^ a2 ^ � � � ^ a2n/ _ .a1 ^ a2 ^ � � �

^ a2n/ _ � � � _ .a1 ^ a3 ^ � � � ^ a2nC1/

Recommended Reading

Mendelson E (1997) Introduction to mathematical
logic, 4th edn. Chapman & Hall, Princeton, p 30

Distance

� Similarity Measures

Distance Functions

� Similarity Measures

Distance Measures

� Similarity Measures

Distance Metrics

� Similarity Measures

Distribution-Free Learning

� PAC Learning

Divide-and-Conquer Learning

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Synonyms

Recursive partitioning; TDIDT strategy

Definition

The divide-and-conquer strategy is a learning al-
gorithm for inducing �Decision Trees. Its name
reflects its key idea, which is to successively
partition the dataset into smaller sets (the divide
part) and recursively call itself on each subset (the
conquer part). It should not be confused with the
separate-and-conquer strategy which is used in
the �Covering Algorithm for rule learning.

Cross-References

�Covering Algorithm
�Decision Tree

Document Categorization

�Document Classification

Document Classification

Dunja Mladenić1, Janez Brank2, and
Marko Grobelnik2

1Artificial Intelligence Laboratory, Jožef Stefan
Insitute, Ljubljana, Slovenia
2Jožef Stefan Institute, Ljubljana, Slovenia

Abstract

Document Classification analogous to
general classification of instances, deals with

http://dx.doi.org/10.1007/978-1-4899-7687-1_158
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_100400
http://dx.doi.org/10.1007/978-1-4899-7687-1_100466
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_75


Document Classification 373

D

assigning labels to documents. The documents
can be written in different natural languages,
can be of different length and structure, can
be written by different authors using variety
of writing styles. Moreover, the documents to
classify can be obtained from different sources
including official news, internal company
documentation, as well as public Web pages
and texts from social media. In document
classification, in addition to the algorithm we
are using for constructing a classifier, data
representation is crucial. Commonly used
is word vector representation, where either
raw data in the form of words and phrases is
used or a more abstract form is constructed.
Deep learning has been shown very effective
for learning text representation using various
deep learning architectures.

Synonyms

Document categorization; Supervised learning on
text data

Definition

Document classification refers to a process of
assigning one or more � labels for a document
from a predefined set of labels (also referred
to class values). The main issues in document
classification are connected to classification of
free text giving document content, for instance,
classifying Web documents on the content topic
as being about arts, education, science, etc., or
on the page type (personal homepage, company
page, etc.), classifying news articles by their
topic (politics, technology, science, health, etc.),
and classifying movie reviews by their opinion
(positive review, negative review). In general, one
can consider different properties of a document in
document classification and combine them, such
as document type, authors, links to other docu-
ments, content, etc. Machine � learning methods
applied to document classification are based on
general classification methods adjusted to handle
some specifics of text data.

Motivation and Background

Documents and text data provide for valuable
sources of information and their growing
availability in electronic form naturally led to
application of different analytic methods. One of
the common ways is to take a whole vocabulary
of the natural language in which the text is
written as a feature set, resulting in several tens
of thousands of features. In a simple setting, each
feature gives a count of the word occurrences in
a document. In this way, text of a document
is represented as a vector of numbers. The
representation of a particular document contains
many zeros, as most of the words from the
vocabulary do not occur in a particular document.
In addition to the already mentioned two common
specifics of text data, having a large number
of features and a sparse data representation, it
was observed that frequency of words in text
generally follows Zipf’s law – a small subset
of words occur very frequently in texts, while
a large number of words occur only rarely.
Document classification takes these and some
other data specifics into account when developing
the appropriate classification methods.

Structure of Learning System

Document classification is usually performed by
representing documents as vectors of feature;
usually the features are words so each document
is a word vector and the representation is referred
to as the “bag-of-words” or “vector space model”
representation. Classifier is then built using a set
of documents that have been manually classified
(Cohen and Singer 1996; Mladenić and Grobel-
nik 2003; Sebastiani 2002; Yang 1997).

Data Representation

In the word vector representation of a document,
a vector of word weights is formed taking all
the words occurring in all the documents. Most
researchers have used single words when rep-
resenting text, but there is also research that
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proposes using additional information to improve
classification results. For instance, the feature
set might be extended with various multi-word
features, e.g., n-grams (sequences of n adjacent
words), loose phrases (n-grams in which word
order is ignored), or phrases based on grammat-
ical analysis (noun phrases, verb phrases, etc.).
Information external to the documents might also
be used if it is available, for example, when deal-
ing with Web pages, their graph organization can
be a source of additional features (e.g., features
corresponding to the adjacency matrix, features
based on graph vertex statistics such as degree or
PageRank, or features taken from the documents
that are adjacent to the current document in the
Web graph).

The commonly used approach to weighting
words is based on �TF-IDF weights where
the number of occurrences of the word in the
document, referred to as term frequency (TF), is
multiplied by the importance of the word with
regard to the whole corpus (� (IDF) inverse
document frequency). The IDF weight for the
i th word is defined as IDFi = log(N /DFi ), where
N is total number of documents and DFi is
the document frequency of the i th word (the
number of documents from the whole corpus in
which the i th word appears). The IDF weight
decreases the influence of common words (which
are not as likely to be useful for discriminating
between classes of documents) and favors the less
common words. However, the least frequently
occurring words are often deleted from the
documents as a preprocessing step, based on
the notion that if a word that does not occur
often enough in the training set cannot be
useful for learning and generalization and would
effectively be perceived as noise by the learning
� algorithm. A stopword list is also often used
to delete some of the most common and low-
content words (such as “the,” “of,” “in,” etc.)
during preprocessing. For many purposes, the
vectors used to represent documents should
be normalized to unit length so that the vector
reflects the contents and themes of the document
but not its length (which is typically not relevant
for the purposes of document categorization).

Even in a corpus of just a few thousand docu-
ments, this approach to document representation
can easily lead to a feature space of thousands,
possibly tens of thousands, of features. Therefore,
feature selection is sometimes used to reduce
the feature set before training. Such questions
as whether feature selection is needed and/or
beneficial, and which feature selection method
should be used, depend considerably on the learn-
ing algorithm used; the number of features to be
retained depends both on the learning algorithm
and on the feature selection method used. For
example, � naive Bayes tends to benefit, indeed
require, heavy feature selection, while � support
vector machines (SVMs) tend to benefit little or
nothing from it. Similarly, odds ratio tends to
value (some) rare features highly and therefore
requires a lot of features to be kept, while in-
formation gain tends to score some of the more
frequent features highly and thus often works
better if a smaller number of features is kept (see
also � Feature Selection in Text Mining).

Due to the large number of features in the orig-
inal data representation, some of the more com-
putationally expensive feature selection methods
from traditional machine learning cannot be used
with textual data. Typically, simple feature scor-
ing measures, such as information gain, odds
ratio, and chi-squared, are used to rank the fea-
tures, and the features whose score falls below
a certain threshold are discarded. A better but
computationally more expensive feature scoring
method is to train a linear classifier on the full
feature set first (e.g., using linear �SVM, see
below) and rank the features by the absolute value
of their weights in the resulting linear model (see
also � Feature Construction in Text Mining).

Classification

Different � classification algorithms have been
adjusted and applied on text data. A few more
popular are described here.

�Naive Bayes based on the multinomial
model, where the predicted class for document
d is the one that maximizes the � posterior
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probability P.cjd/ / P.c/ΠtP.t jc/ TF(t ,
d/, where P.c/ is the � prior probability that
a document belongs to class c, P.t jc/ is the
probability that a word chosen randomly in
a document from class c equals t , and TF(t ,
d/ is the “term frequency,” or the number of
occurrences of word t in a document d . Where
there are only two classes, say cC and c�,
maximizing P.cjd/ is equivalent to taking the
sign of ln P.cCjd//P.c�jd/, which is a linear
combination of TF(w, d/. Thus, the naive Bayes
classifier can be seen as a linear classifier as well.
The training consists simply of estimating the
probabilities P.t jc/ and P.c/ from the training
documents.

� Perceptron trains a linear classifier in an
incremental way as a neural unit using an addi-
tive update rule. The prediction for a document
represented by the vector x is sgn(wT x), where
w is a vector of weights obtained during train-
ing. Computation starts with w D 0 and then
considers each training example xi in turn. If the
present w classifies document xi correctly, it is
left unchanged; otherwise, it is updated according
to the additive rule: w  w C yi xi , where
yi is the correct class label of the document xi ,
namely, yi D C1 for a positive document and
yi D 1 for a negative one.

� SVM trains a linear classifier of the form sgn
(wT xCb/. Learning is posed as an optimization
problem with the goal of maximizing the margin,
i.e., the distance between the separating hyper-
plane wT xCb D 0 and the nearest training vec-
tors. An extension of this formulation, known as
the soft margin, also allows for a wider margin at
the cost of misclassifying some of the � training
examples. The dual form of this optimization task
is a quadratic programming problem and can be
solved numerically.

Results of numerous experiments reported
in research papers suggest that among the
classification algorithms that have been adjusted
to text data SVM, � naive Bayes and k-nearest
neighbor are among the best performing (Lewis
et al. 1996). Moreover, experimental evaluation
on some standard Reuters news datasets shows
that SVM tends to outperform other classifiers

including naive Bayes and perceptron (Mladenic
et al. 2004).

In many applications, a document may belong
to multiple classes, e.g., because it includes dis-
cussion relevant to several topics. The classifiers
described above can naturally provide multi-label
predictions in a multi-class learning problem sim-
ply by treating each class as a two-class problem
separately from the other classes. However, there
are also methods that try to model the multi-
class nature of individual documents directly. For
example, recently there has been an increase of
interest in using artificial neural networks for text
classification, with a multiunit output layer that
can generate predictions for all classes at once
(Zhang and Zhou 2006; Nam et al. 2014).

Evaluation Measures

A � characteristic property of machine learning
problems arising in document classification is
a very unbalanced class distribution. In a typ-
ical dataset, there may be tens (or sometimes
hundreds or thousands) of categories, most of
which are very small. When we train a binary
(two-class) classification model for a particular
category, documents belonging to that category
are treated as the positive class, while all other
documents are treated as the negative class. Thus,
the negative class is typically vastly larger as
the positive one. These circumstances are not
well suited to some traditional machine learning
� evaluation measures, such as � accuracy (if
almost all documents are negative, then a useless
classifier that always predicts the negative class
will have very high accuracy). Instead, evaluation
measures from information retrieval are more
commonly used, such as � precision, � recall, the
F1-measure, the � breakeven point (BEP), and
the area under the � receiver operating character-
istic (ROC) curve (see also �ROC Analysis).

The evaluation of a binary classifier for a given
category c on a given � test set can be conve-
niently summarized in a contingency table. We
can divide documents into four groups depending
on whether they belong to c and whether our
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classifier predicted them as positive (i.e., suppos-
edly belonging to c) or not:

Given the number of documents in each of
the four groups (TP, FP, TN, and FN), we can
compute various evaluation measures as follows:

• Precision D TP/(TPC FP)
• Recall D TPrate D TP/(TPC FN)
• FPrate D FP/(TN C FP)
• F1 D 2 •precision •recall/(precision + recall)

Belongs to c Not in c

Predicted
positive

TP (true positives) FP (false positives)

Predicted
negative

FN (false negatives) TN (true negatives)

Thus, precision is the proportion of documents
predicted positive that are really positive, while
recall is the proportion of positive documents that
have been correctly predicted as positive. The F1

is the � harmonic mean of precision and recall;
thus, it lies between � precision and recall but
is closer to the lower of these two values. This
means that a classifier with high F1 has both good
precision and good recall. In practice, there is
usually a tradeoff between precision and recall;
by making the classifier more liberal (i.e., more
likely to predict positive), we can increase recall
at the expense of precision, while by making it
more conservative (less likely to predict positive),
we can usually increase precision at the expense
of recall. Often the classification model involves
a threshold which can be varied at will to obtain
various hprecision, recalli pairs. These can be
plotted on a chart, resulting in the precision-recall
curve. As we decrease the threshold (thus making
the classifier more liberal), precision decreases
and recall increases until at some point precision
and recall are equal; this value is known as the
(precision-recall) BEP (Lewis 1991). Instead of
hprecision, recalli pairs, one can measure hTPrate,
FPratei pairs, resulting in an �ROC curve (see
�ROC analysis). The � area under the ROC
curve is another valuable measure of the classifier
quality.

Document classification problems are typi-
cally multi-class, multi-label problems, which are
treated by regarding each category as a separate
two-class classification problem. After training a
two-class classifier for each category and evalu-
ating it, the question arises how to combine these
evaluation measures into an overall evaluation
measure. One way is macroaveraging, which
means that the values of precision, recall, F1,
or whatever other measure we are interested in
are simply averaged over all the categories. Since
small categories tend to be much more numerous
than large ones, macroaveraging tends to empha-
size the performance of our learning algorithm
on small categories. An alternative approach is
microaveraging, in which the contingency tables
for individual two-class classifiers are summed
up and measures such as precision, recall, and
F1 computed from the resulting aggregated table.
This approach emphasizes the performance of
our learning algorithm on larger categories.
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Definition

Dynamic programming is a method for model-
ing a sequential decision process in which past
decisions impact future possibilities. Decisions
can be made at fixed discrete time intervals or at
random time intervals triggered by some change
in the system. The decision process can last
for a finite period of time or run indefinitely
– depending on the application. Each time a
decision needs to be made, the decision-maker
(referred to as “he” in this entry with no sexist
connotation intended) views the current � state
of the system and chooses from a known set of
possible � actions. As a result of the state of the
system and the action chosen, the decision-maker
receives a reward (or pays a � cost) and the sys-
tem evolves to a new state based on known prob-
abilities. The challenge faced by the decision-
maker is to choose a sequence of actions that
will lead to the greatest reward over the length
of the decision-making horizon. To do this, he
needs to consider not only the current reward (or
cost) for taking a given action but the impact
such an action might have on future rewards. A
policy is a complete sequence of decisions that
dictates what action to take in any given state
and at any given time. Dynamic programming
finds the optimal policy by developing mathemat-
ical recursions that decompose the multi-decision
problem into a series of single-decision problems
that are analytically or computationally more
tractable.

Background and Motivation

The earliest concepts that later developed into
dynamic programming can be traced back to the
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calculus of variation problems in the seventeenth
century. However, the modern investigation of
stochastic sequential decision problems arguably
dates back to the work by Wald in 1947 on
sequential statistical analysis. At much the same
time, Pierre Masse was analyzing similar prob-
lems applied to water resource management in
France. However, the major name associated with
dynamic programming is that of Richard Bellman
who established the optimality equations that
form the basis of dynamic programming.

It is not hard to demonstrate the potential
scope of dynamic programming. Table 1 gives
a sense of the breadth of application as well
as highlighting the stochastic nature of most in-
stances.

Structure of the Learning System

A dynamic program is a general representation of
a sequential decision problem under uncertainty
about the future and is one of the main meth-
ods for solving Markov decision problems (see
�Markov Decision Processes). Like a decision
tree, it models a process where the decision we
make “today” impacts where we end up tomor-
row and therefore what decisions are available
to us tomorrow. It has distinct advantages over a
decision tree in that:

• It is a more compact representation of a deci-
sion process

• It enables efficient calculation
• It allows exploration of the structural proper-

ties of optimal decisions
• It can analyze and solve problems with infinite

or indefinite time horizons

The Finite-Horizon Setting

A finite-horizon MDP is a decision process with
a known end date. Thus, the decision-maker is
faced with the task of making a finite sequence
of decisions at fixed intervals. The MDP model is
based on five elements:

�Decision epochs: Sequences of decision times
n D 1; : : : ; N (in the infinite horizon, we set
N D 1). In a discrete-time MDP, these de-
cision times happen at regular, fixed intervals
while in a continuous-time model, they occur
at random times triggered by a change in the
system. The time between decision epochs is
called a period.

� State space: States represent the possible sys-
tem configurations facing the decision-maker
at each decision epoch. They contain all infor-
mation available to the decision-maker at each
decision epoch. The state space, S , is the set
of all such states (often assumed to be finite).
In choosing the state space, it is important
to include all the information that may be
relevant in determining a decision and that
may change from decision epoch to decision
epoch.

�Actions: Actions are the available choices
for the decision-maker at any given decision
epoch, in any given state. A.s/ is the set of all
actions available in state s (usually assumed
to be finite for all s). No action is taken in the
final decision epoch N .

�Transition probabilities: The probability of be-
ing in state s0 at time t C 1, given you take
action a from state s at time t , is written
as pt .s

0js; a/. It clearly makes sense to al-
low the transition probabilities to be condi-
tional upon the current state and the action
taken.

�Rewards/costs: In most MDP applications, the
decision-maker receives a reward each period.
This reward can depend on the current state,
the action taken, and the next state and is
denoted by rt .s; a; s0/. Since a decision must
be made before knowing the next state, s0,
the MDP formulation deals with the expected
reward:

rt .s; a/ D
X

s02S

rt .s; a; s
0/pt .s

0js; a/:

We also define the terminal rewards as rN .s/
for being in state s at the final decision epoch.
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Dynamic Programming, Table 1 Dynamic programming applications

Application System state Actions Rewards Stochastic aspect

Capacity Size of plant Maintain or add
capacity

Costs of expansion and
production at current
capacity

Demand for a product

Cash mgt Cash available Borrow or invest Transaction costs and
less interest

External demand for
cash

Catalog mailing Customer purchase
record

Type of catalog to send,
if any

Purchases in current
period less mailing costs

Customer purchase
amount

Clinical trials Number of successes
with each treatment

Stop or continue the trial Costs of treatment and
incorrect decisions

Response of a subject to
treatment

Economic growth State of the economy Investment or
consumption

Utility of consumption Effect of investment

Fisheries mgt Fish stock in each age
class

Number of fish to
harvest

Value of the catch Population size

Forest mgt Size and condition of
stand

Harvesting and
reforestation activities

Revenues and less
harvesting costs

Stand growth and price
fluctuation

Gambling Current wealth Stop or continue playing Cost of playing Outcome of the game

Inventory control Stock on hand Order additional stock Revenue per item sold
and less ordering,
holding, and penalty
costs

Demand for items

Project selection Status of each project Project to invest in at
present

Return from investing in
project

Change in project status

Queueing control Number in the queue Accept/reject new
customers or control
service rate

Revenue from serving
customers and less
delay costs

Interarrival times and
service times

Reliability Age or status of
equipment

Inspect and repair or
replace if necessary

Inspection, repair, and
failure costs

Failure and deterioration

Reservations Number of confirmed
reservations

Accept, wait-list, or
reject new reservation

Profit from satisfied
reservations and less
overbooking penalties

Number of arrivals and
the demand for
reservations

Scheduling Activities completed Next activity to schedule Cost of activity Length of time to
complete activity

Selling an asset Current offer Accept or reject the
offer

The offer is less than the
cost of holding the asset
for one period

Size of the offer

Water resource
management

Level of water in each
reservoir

Quantity of water to
release

Value of power
generated

Rainfall and runoff

These are independent of the action since no
action is taken at that point.

The objective in the finite-horizon model is to
maximize total expected reward:

max

�
E

	 NX

tD1

rt .st ; at ; stC1/CrN .sN /js1 D s


�
:

(1)

At any given time t , the decision-maker has
observed the history up to time t , represented
by ht D .s1; a1; s2; a2; : : : ; at�1; st /, and needs
to choose at in such a way as to maximize (1).
A � decision rule, dt , determines what action
to take, based on the history to date at a given
decision epoch and for any possible state. It is
deterministic if it selects a single member ofA.s/
with probability 1 for each s 2 S and for a
given ht , and it is � randomized (� randomized
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decision rule) if it selects a member of A.s/ at
random with probability qdt .ht /.a/. It is Marko-
vian (�Markovian decision rule) if it depends on
ht only through st . That is, dt .ht / D dt .st /.

A policy, � D .d1; : : : ; dN �1/, denotes
a complete sequence of decision rules over
the whole horizon. It can be viewed as a
“contingency plan” that determines the action
for each possible state at each decision epoch.
One of the major results in MDP theory is that,
under reasonable conditions, it is possible to
prove that there exists a Markovian, deterministic
policy that attains the maximum total expected
reward. Thus, for the purposes of this entry,
we will concentrate on this subset of all
policies.

If we define vt .s/ as the expected total
reward from time t to the end of the planning
horizon, given that at time t the system
occupies state s, then a recursion formula can
be built that represents vt in terms of vtC1.
Specifically,

vt .s/ D max
a2A.s/

�
rt .s; a/C

X

s02S

p.s0js; a/vtC1.s
0/

�

(2)
This is often referred to as the �Bellman equa-
tion, named after Richard Bellman who was re-
sponsible for the seminal work in this area. It
breaks the total reward at time t into the imme-
diate reward rt .s; a/ and the total future expected
reward,

P
s02S p.s

0js; a/vtC1.s
0/. Define A�

s;t as
the set of actions that attain the maximum in (2)
for a given state s and decision epoch t . Then the
finite-horizon discrete-time MDP can be solved
through the following backward induction algo-
rithm.

Backward Induction Algorithm
• Set t D N and vt .s/ D rN .s/ 8s 2 S

(since there is no decision at epoch N and
no future epochs, it follows that the optimal
reward-to-go function is just the terminal re-
ward).

• Let t D t � 1 and compute for each s 2 St

vt .s/ D max
a2A.s/

(
rt .s; a/C

X

s02S

p.s0js; a/vtC1.s
0/

)
:

• For each s 2 St , compute A�
s;t by solving

argmaxa2A.s/

(
rt .s; a/C

X

s02S

p.s0js; a/vtC1.s
0/

)
:

• If t D 1 then stop else return to step 2.

The function v1.s/ is the maximum expected
reward over the entire planning horizon given the
system starts in state s. The optimal policy is
constructed by choosing a member of A�

s;t for
each s 2 S and t 2 f1; : : : ; N g. In essence, the
algorithm solves a complex N -period decision
problem by solving N simple 1-period decision
problems.

Example – inventory control: Periodically
(daily, weekly, or monthly), an inventory
manager must determine how much of a product

to stock in order to satisfy random external
demand for the product. If too little is in stock,
potential sales are lost. Conversely, if too much is
on hand, a cost for carrying inventory is incurred.
The objective is to choose an ordering rule that
maximizes expected total profit (sales minus
holding and ordering costs) over the planning
horizon. To formulate an MDP model of this
system requires precise assumptions such as:

• The decision regarding the quantity to order
is made at the beginning of each period and
delivery occurs instantaneously.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100393
http://dx.doi.org/10.1007/978-1-4899-7687-1_518
http://dx.doi.org/10.1007/978-1-4899-7687-1_930
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• Demand for the product arrives throughout the
period, but all orders are filled on the last day
of the period.

• If demand exceeds the stock on hand, potential
sales are lost.

• The revenues, costs, and demand distribution
are the same each period.

• The product can only be sold in whole units.
• The warehouse has a capacity for M units.

(These assumptions are not strictly necessary but
removing them leads to a different formulation.)
Decisions epochs correspond to the start of a
period. The state, st 2 f0; : : : ;M g, represents
the inventory on hand at the start of period t

and the action, at 2 f0; 1; 2; : : : ;M � sg, is the
number of units to order that period; the action
0 corresponds to not placing an order. Let Dt

represent the random demand throughout period
t and assume that the distribution of demand is
given by pt .d/ D P.Dt D d/; d D 0; 1; 2; : : :.

The cost of ordering u units is O.u/ D K C c.u/
(a fixed cost plus variable cost) and the cost
of storing u units is h.u/, where c.u/ and h.u/
are increasing functions in u. We will assume
that leftover inventory at the end of the planning
horizon has value g.u/ and that the sale of u units
yields a revenue of f .u/. Thus, if there are u
units on hand at decision epoch t , the expected
revenue is

Ft .u/ D
u�1X

j D0

f .j /pt .j /C f .u/P.Dt 	 u/:

The expected reward is therefore

rt .s; a/ D F.s C a/ �O.a/ � h.s C a/

and the terminal rewards are rN .s; a/ D g.s/.
Finally, the transition probabilities depend on
whether or not there is enough stock on hand,
s C a, to meet the demand for that month, Dt .
Specifically,

pt .j js; a/ D

8
ˆ̂<

ˆ̂:

0 if j > s C a,
pt .j / if j D s C a �Dt ; s C a �M;

s C a > Dt ;P
1

dDsCa pt .d/ if j D 0; s C a �M; s C a � Dt .

Solving the finite-horizon version of this prob-
lem through backward induction reveals a simple
form to the optimal policy referred to as an .s; S/
policy. Specifically, if at time t , the inventory
is below some number st , then it is optimal to
order a quantity that raises the inventory level to
S t . It has been shown that a structured policy
of this type is optimal for several variants of
the inventory management problem with a fixed
ordering cost. Many variants of this problem have
been studied; these models underlie the field of
supply chain management.

The Infinite-Horizon Setting

In the infinite (or indefinite)-horizon setting, the
backward induction algorithm described above
no longer suffices as there are no terminal rewards
with which to begin the process.

In most finite-horizon problems, the optimal
policy begins to look the same at each decision
epoch as the horizon is pushed further and further
into the future. For instance, in the inventory
example above, st D stC1 and S t D S tC1 if t is
sufficiently removed from the end of the horizon.
The form of the optimal policy only changes as
the end of the time horizon approaches. Thus, if
there is no fixed time horizon, we should expect
the optimal policy to be stationary in most cases.
We call a policy stationary if the same decision
rule is applied at each decision epoch (i.e., dt D

d 8 t ). One necessary assumption for this to be
true is that the rewards and transition probabilities
are independent of time (i.e., rt .s; a/ D r.s; a/

and pt .s
0js; a/ D p.s0js; a/8 s;0 s 2 S and

a 2 A.s/). For the infinite-horizon MDP, the
theory again proves that under mild assumptions,
there exists an optimal policy that is stationary,
deterministic, and Markovian. This fact greatly
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simplifies the process of finding the optimal pol-
icy as we can concentrate on a small subset of all
potential policies.

The setup for the infinite-horizon MDP is en-
tirely analogous to the finite-horizon setting with
the same � decision epochs, � states, � actions,
� rewards, and � transition probabilities (with the
last two assumed to be independent of time).

The most obvious objective is to extend the
finite-horizon objective to infinity and seek to find
the policy, � , that maximizes the total expected
reward:

v�.s/ D lim
N !1

(
E�

s

	 NX

tD1

r.st ; at /


)
: (3)

This, however, is problematic since

1. The sum may be infinite for some or all poli-
cies

2. The sum may not even exist, or
3. Even if the sum exists, there may be no maxi-

mizing policy

In the first case, just because all (or a subset of
all) policies lead to infinite reward in the long run
does not mean that they are all equally beneficial.
For instance, one may give a reward of $100 each
epoch and the other $1 per epoch. Alternatively,
one may give large rewards earlier on while
another gives large rewards only much later. Gen-
erally speaking, the first is more appealing but
the above objective function will not differentiate
between them. Secondly, the limit may not exist
if, for instance, the reward each decision epoch
oscillates between 1 and �1. Thirdly, there may
be no maximizing policy simply because there is
an infinite number of policies and thus there may
be an infinite sequence of policies that converges
to a maximum limit but never reaches it. Thus,
instead we look to maximize either the total
expected discounted reward or the expected long-
run average reward depending on the application.

Let � 2 .0; 1/ be a discount factor. Assuming
the rewards are bounded (i.e., there exists an M
such that jr.s; a/j < M 8.s; a/ 2 S � A.s/),
the total expected discounted reward for a given
policy � is defined as

v�
� .s/ D lim

N !1
E�

s

(
NX

tD1

�t�1r.st ; dt .st //

)

D E�
s

(
1X

tD1

�t�1r.st ; dt .st //

)
:

Since � < 1 and the rewards are bounded,
this limit always exists. The second objective is
the expected average reward which, for a given
policy � , is defined as

g�.s/ D lim
N !1

1

N
E�

s

� NX

tD1

r.st ; dt .st //

�
:

Once again, we are dealing with a limit that may
or may not exist. As we will see later, whether the
above limit exists depends on the structure of the
Markov chain induced by the policy.

Let us, at this point, formalize what we mean
by an optimal policy. Clearly, that will depend on
which objective function we choose to use. We
say that

• �� is total reward optimal if v��

.s/ 	 v�.s/

8s 2 Sand 8� .
• �� is discount optimal if v��

�
.s/ 	 v�

�
.s/

8s 2 Sand 8� .
• �� is average optimal if g��

.s/ 	 g�.s/

8s 2 S and 8� .

For simplicity, we introduce matrix and vector
notation. Let rd .s/ D r.s; d.s// and pd .j js/ D

p.j js; d.s//. Thus rd is the vector of rewards
for each state under decision rule d , and Pd is
the transition matrix of states under decision rule
d . We will now take a more in-depth look at
the infinite-horizon model with the total expected
discounted reward as the optimality criterion.

Solving the Discounted Infinite-Horizon
MDP
Given a Markovian, deterministic policy
� D .d1; d2; d3; : : :/ and defining �k D

.dk ; dkC1; : : :/, we can compute

http://dx.doi.org/10.1007/978-1-4899-7687-1_198
http://dx.doi.org/10.1007/978-1-4899-7687-1_781
http://dx.doi.org/10.1007/978-1-4899-7687-1_5
http://dx.doi.org/10.1007/978-1-4899-7687-1_729
http://dx.doi.org/10.1007/978-1-4899-7687-1_849
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D

v�
� .s/ D E

�1
s

	 1X

tD1

�t�1r.st ; dt .st //




D E�1
s

	
r.s; d1.s//C �

1X

tD2

�t�2r.st ; dt .st //




D r.s; d1.s//C �
X

j 2S

pd1.j js/E
�2
j

	 1X

tD1

�t�1r.st ; dt .st //




D r.s; d1.s//C �
X

j 2S

pd1.j js/v
�2
�
.j /:

In matrix notation,

v
�1
�
D rd1 C �Pd1v

�2
�
:

If we follow our supposition that we need to only
consider stationary policies (so that the same
decision rule is applied to every decision epoch),
� D d1 D .d; d; : : :/, then this results in

vd1

� D rd C �Pdv
d1

� :

This implies that the value function generated by
a stationary policy satisfies the equation:

v D rd C �Pdv

) v D .I � �Pd /
�1rd :

The inverse above always exists since Pd is a
probability matrix (so that its spectral radius is
less than or equal to 1) and � 2 .0; 1/. Moving to
the maximization problem of finding the optimal
policy, we get the recursion formula

v.s/ D max
a2A.s/

�
r.s; a/C �

X

j 2S

p.sjs; a/v.j /

�
:

(4)

Note that the right-hand side can be viewed as a
function of a vector v (given r; p; �). We define a
vector-valued function

Lv D max
d2DMD

�
rd C �Pdv

�
;

where DMD is the set of all Markovian,
� deterministic decision rules. There are three
methods for solving the above optimization
problem in order to determine the optimal policy.
The first method, called value iteration, creates a
sequence of approximations to the value function
that eventually converges to the value function
associated with the optimal policy.

Value Iteration
1. Start with an arbitrary jS j-vector v0. Let n D

0 and choose � > 0 to be small.
2. For every s 2 S , compute vnC1.s/ as

vnC1.s/

D max
a2A.s/

�
r.s; a/C

X

j 2S

�p.j js; a/vn.j /

�
:

3. If maxs2S jv
nC1.s/ � vn.s/j 	 �.1 � �/=2�

let n! nC 1 and return to step 2.
4. For each s 2 S , choose

d�.s/ 2 argmaxa2A.s/

�
r.s; a/C

X

j 2S

�p.j js; a/vnC1.j /

�
:

http://dx.doi.org/10.1007/978-1-4899-7687-1_201
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It has been shown that value iteration identifies
a policy with expected total discounted reward
within � of optimality in a finite number of
iterations. Many variants of value iteration are
available such as using different stopping criteria
to accelerate convergence or combining value
iteration with the policy iteration algorithm de-
scribed below.

A second algorithm, called policy iteration,
iterates through a sequence of policies eventually
converging to the optimal policy.

Policy Iteration
1. Set d0 2 D to be an arbitrary policy. Let
n D 0.

2. (Policy evaluation) Obtain vn by solving

vn D .I � �Pdn
/�1rdn

:

3. (Policy improvement) Choose dnC1 to satisfy

dnC1 2 argmaxd2Dfrd C �Pdv
ng

componentwise. If dn is in this set, then
choose dnC1 D dn.

4. If dnC1 D dn, set d� D dn and stop.
Otherwise, let n! nC 1 and return to (2).

Note that value iteration and policy iteration
have different conceptual underpinnings. Value
iteration seeks a fixed point of the operator L
using successive approximations, while policy it-
eration can be viewed as using Newton’s method
to solve Lv � v D 0.

Finally, a third method for solving the dis-
counted infinite-horizon MDP takes advantage of
the fact that, because L is monotone, if Lv � v,
then L2v � Lv and more generally, Lkv � v.
Thus, induction implies that the value function
of the optimal policy, v�

�
, is less than or equal

to v for any v, where Lv � v. We define the
set U WD fv 2 V jLv � vg. Then, not only is
v�

�
in the set U , it is also the smallest element of

U . Therefore, we can solve for v�
�

by solving the
following linear program:

min
v

X

s2S

˛.s/v.s/

subject to

v.s/ 	 r.s; a/

C �
X

j 2S

p.j js; a/v.j / 8s 2 S; a 2 As :

(Note that the above set of constraints is equiv-
alent to Lv � v.) We call this the primal LP.
The coefficients ˛.s/ are arbitrarily chosen. The
surprising fact is that the solution to the above LP
will be v�

�
for any strictly positive ˛.

We can construct the dual to the above primal
to get

max
X

X

s2S

X

a2As

r.s; a/X.s; a/

subject to

X

a2Aj

X.j; a/

�
X

s2S

X

a2As

�p.j js; a/X.s; a/ D ˛.j / 8j 2 S

X.s; a/ 	 0 8s 2 S; a 2 As :

Let .X.s; a/ W s 2 S; a 2 As/ be a feasible
solution for the dual (i.e., satisfies the constraints
but not necessarily optimal). Every such feasible
solution corresponds to a randomized Markov
policy d1 and vice versa. Furthermore, for a
given feasible solution, X , and the corresponding
policy d1; X.s; a/ represents the expected total
number of times you will be in state s and take ac-
tion a following policy d1 before stopping in the
indefinite-horizon problem. Thus, the objective in
the dual can be interpreted as the total expected
reward over the length of the indefinite horizon.
The strong law of duality states that at the optimal
solution, the objective functions in the primal and
dual will be equal. But we already know that at
the optimal, the primal objective will correspond
to a weighted sum of v�

�
.s/; s 2 S , which is the

total expected discounted reward over the infinite
(or indefinite) horizon given you start in state s.
Thus our interpretations for the primal and dual
variables coincide.
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Solving the Infinite-Horizon
Average-Reward MDP
Recall that in the average-reward model, the ob-
jective is to find the policy that has the maximum
average reward, often called the gain. The gain of
a policy can be written as

g�.s/ D lim
n!1

1

N
v�

N C1

D lim
n!1

1

N

NX

nD1

ŒP n�1
� rds

�.s/: (5)

As mentioned earlier, the major drawback is
that for a given policy � , the gain may not even
exist. An important result, however, states that if
we confine ourselves to stationary policies, we
can in fact be assured that the gain is well defined.
Our ability to solve a given infinite- horizon
average-reward problem depends on the form of
the Markov chains induced by the deterministic,
stationary policies available in the problem. Thus,
we divide the set of average-reward MDPs ac-
cording to the structure of the underlying Markov
chains. We say that an MDP is

• Unichain if the transition matrix correspond-
ing to every deterministic stationary policy
is unichain, that is, it consists of a single
recurrent class plus a possibly empty set of
transient states, or

• Multichain if the transition matrix correspond-
ing to at least one stationary policy con-
tains two or more closed irreducible recurrent
classes

If an MDP is unichain, then the gain for
any given stationary, deterministic policy can
be defined by a single number (independent of
starting state). This makes intuitive sense since
if we assume that it is possible to visit every state
from every other one (possibly minus some set
of transient states that may be visited initially
but will eventually be abandoned), then it would
seem reasonable to assume that over the infinite
horizon, the initial starting state would not impact
the average reward. However, if the initial state
impacts what set of states can be visited in the

future (i.e., the MDP is multichain), then clearly
it is likely that the expected average reward will
be dependent on the initial state.

If the average-reward MDP is unichain, then
the gain can be uniquely determined by solving

v.s/ D max
a2A.s/

�
r.s; a/�gC

X

s02S

p.s0js; a/v.s0/

�
:

(6)
Notice that the above equation has jS j C 1 un-
knowns but only jS j equations. Thus, v is not
uniquely determined. To specify v uniquely, it
is sufficient to set v.s0/ D 0 for some s0 2 S .
If this is done, then v.s/ is called the relative
value function and v.j / � v.k/ is the difference
in expected total reward obtained in using an
optimal policy and starting in state j as opposed
to state k. It is also often represented by the letter
h and called the bias.

As in the discounted infinite-horizon MDP,
there are three potential methods for solving
the average-reward case. We present only policy
iteration here and refer the reader to the recom-
mended readings for value iteration and linear
programming.

Policy Iteration
1. Set n D 0, and choose an arbitrary decision
dn.

2. (Policy evaluation) Solve for gn; vn:

0 D rdn
� ge C .Pdn

� I /v:

3. Choose dnC1 to satisfy

dnC1 2 argmaxd2Dfrd C Pdvng:

Setting dnC1 D dn if possible.
4. If dnC1 D dn, stop, set d� D dn. Else,

increment n by 1 and return to step 2.

As mentioned earlier, the equation in step 2
fails to provide a unique vn since we have jS jC1
unknowns and only jS j equations. We therefore
need an additional equation. Any one of the
following three will suffice:
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1. Set vn.s0/ D 0 for some fixed s0 2 S .
2. Choose vn to satisfy P �

dn
vn D 0.

3. Choose vn to satisfy �vn C .Pd � I /w D 0
for some w 2 V .

Continuous-Time Models

So far, we have assumed that decision epochs
occur at regular intervals but clearly in many
applications this is not the case. Consider, for
instance, a queueing control model where the
service rate can be adjusted in response to the size
of the queue. It is reasonable to assume, however,
that changing the service rate is only possible
following the completion of a service. Thus, if
the service time is random, then the decision
epochs will occur at random time intervals. We
will therefore turn our attention now to systems
in which the state changes and decision epochs
occur at random times. At the most general level,
decisions can be made at any point in time, but
we will focus on the subset of models for which
decision epochs only occur at state transitions. It
turns out that this is usually sufficient as the added
benefit of being able to change decisions apart
from state changes does not generally improve
performance. Thus, the models we study gener-
alize the discrete-time MDP models by:

1. Allowing, or requiring, the decision-maker to
choose actions whenever the system changes
state

2. Modeling the evolution of the system in con-
tinuous time, and

3. Allowing the time spent in a particular state to
follow an arbitrary probability distribution

Semi-Markov decision processes (SMDP) are
continuous-time models where decisions are
made at some but not necessarily all state
transitions. The most common subset of these,
called exponential SMDPs, are SMDPs where
the intertransition times are exponentially
distributed.

We distinguish between two processes:

1. The natural process that monitors the state of
the system as if it were observed continually
through time and

2. The embedded Markov chain that monitors the
evolution of the system at the decision epochs
only

For instance, in a queueing control model, one
may decide only to change the rate of service
every time there is an arrival. Then the embed-
ded Markov chain would only keep track of the
system at each arrival while the natural process
would keep track of all state changes – including
both arrivals and departures.

While the actions are generally only going to
depend on the state of the system at each decision
epoch, it is possible that the rewards/costs to the
system may depend on the natural process. Cer-
tainly, in the queueing control model, the cost to
the system would go down as soon as a departure
occurs. In discrete models, it was sufficient to
let the reward depend on the current state s and
the current action a and possibly the next state
s0. However, in an SMDP, the natural process
may change between now and the next decision
epoch, and moreover, the time the process stays
in a given state is no longer fixed. Thus we need
to consider two types of rewards/costs. First, a
lump-sum reward, k.s; a/, for taking action a

when in state s. Second, a reward rate, c.j; s; a/,
paid out for each time unit that the natural process
spends in state j until the next decision epoch
when the state at the last decision epoch was s and
the action taken was a. Note that if we insist that
every state transition triggers a decision epoch,
we can reduce this to c.s; a/ since the system
remains in s until the next decision epoch.

Before we can state our objective, we need to
determine what we mean by discounting. Again,
because we are dealing with continuous time so
that decision epochs are not evenly spaced, it is
not sufficient to have a fixed discount factor �.
Instead, we will discount future rewards at rate
e�˛t , for some ˛ > 0. If we let � D e�˛ (the
discount rate for one time unit) then ˛ D 0:11
corresponds to � D 0:9. Thus an ˛ around 0.1 is
commonly used.
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We can now state our objective. We look to
find a policy that maximizes the total expected
discounted reward over the infinite horizon.
There is an average-reward model for continuous-
time models as well but we will not discuss that
here. Given a policy � , we can write its total
expected discounted reward as

v�
˛ .s/ D E

�
s

"
1X

nD0

e�˛�n .K.Xn; Yn/

C

Z �nC1

�n

e�˛.t��n/c.Wt ; Xn; Yn/ dt

�

;

(7)

where Xn and Yn are the random variables that
represent the state and action at time n, respec-
tively, Wt is the random variable that represents
the state of the natural process at time t , and �n is
the random time of the nth decision epoch. Again,
if we assume that each state transition triggers a
decision epoch, Xn D Wt for all t 2 Œ�n; �nC1/.
We seek to find a policy � such that

v�
˛ .s/ D v

�
˛.s/ D max

�2˘HR
v�

˛ .s/ (8)

for all s 2 S . Perhaps surprisingly, (7) can
be reduced to one that has the same form as
in the discrete-time case for any SMDP. As a
consequence, all the theory and the algorithms
that worked in the discrete version can be trans-
ferred to the continuous model! Again, we refer
the reader to the recommended readings for the
details.

Extensions

Partially Observed MDPs
In some instances, the state of the system may not
be directly observable, but instead, the decision-
maker receives a signal from the system that
provides information about the state. For exam-
ple, in medical decision-making, the health-care
provider will not know the patient’s true health
status but will have on hand some diagnostic

information that may be related to the patient’s
true health. These problems are modeled from a
Bayesian perspective. The decision-maker uses
the signal to update his estimate of the proba-
bility distribution of the system state. He then
bases his decision on this probability distribution.
The computational methods for solving partially
observed MDPs are significantly more complex
than in the fully observable case and only small
problems have been solved numerically.

Parameter-Adaptive Dynamic
Programming
Often the transition probabilities in an MDP are
derived from a system model, which is deter-
mined by a few parameters. Examples include
demand distributions in inventory control and
arrival and/or service distributions in queueing
systems. In these cases, the forms of the distribu-
tions are known (e.g., Poisson for demand mod-
els and exponential for arrival or service mod-
els) but their parameter values are not. Herein,
the decision-maker seeks a policy that combines
learning with control. A Bayesian approach is
used. The parameter is related to the system state
through a likelihood function, and after observing
the system state, the probability distribution on
the parameter is updated. This updated probabil-
ity distribution provides the basis for choosing a
policy.

Approximate Dynamic Programming
Arguably the greatest challenge to implementing
MDP theory in practice is “the curse of dimen-
sionality.” As the complexity of a problem grows,
the amount of information that needs to be stored
in the state space quickly reaches a point where
the MDP is no longer computationally tractable.
There now exist several methods for dealing with
this problem, all of which are grouped under
the title of approximate dynamic programming
or neuro-dynamic programming. These potential
methods begin by restricting the value function
to a certain class of functions and then seeking to
find the optimal value function within this class.
A typical approximation scheme is based on the
linear architecture:
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where 	i .s/; i D 1; : : : ; k are predefined basis
functions that attempt to characterize the state
space and r is a set of weights applied to the basis
functions. This reduces the problem from one
with jS j-dimensions to one with jkj-dimensions.
The questions are (1) how do you determine what
class of functions (determined by 	) to choose
and (2) how to find the best approximate value
function within the chosen class (i.e., the best
values for r). The first question is still very much
wide open.

Answers to the second question fall into two
main camps. On the one hand, there are a number
of methods that seek to iteratively improve the
approximation through the simulation of sam-
ple paths of the decision process. The second
method uses linear programming but restricts the
value function to the approximate form. This
reduces the number of variables in the primal
to a reasonable number (equal to the number of
basis functions chosen). One can then determine
the optimal set of weights, r , through column
generation. One of the major challenges facing
approximate dynamic programming is that it is
difficult to determine how close the approxi-
mate value function is to its true value. In other
words, how much more reward might have been
accumulated had the original MDP been solved
directly? Though there are some attempts in the
literature to answer this question, it remains a
significant challenge.
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