
�
�

DOI: 10.2478/s12175-009-0113-8

Math. Slovaca 59 (2009), No. 2, 121–136

CLASSIFICATION OF RESOLVABLE BALANCED

INCOMPLETE BLOCK DESIGNS

— THE UNITALS ON 28 POINTS

Petteri Kaski* — Patric R. J. Österg̊ard**

Dedicated to Alex Rosa on the occasion of his seventieth birthday

(Communicated by Peter Horák)

ABSTRACT. Approaches for classifying resolvable balanced incomplete block

designs (RBIBDs) are surveyed. The main approaches can roughly be divided

into two types: those building up a design parallel class by parallel class and

those proceeding point by point. With an algorithm of the latter type — and

by refining ideas dating back to 1917 and the doctoral thesis by Pieter Mulder

— it is shown that the list of seven known resolutions of 2-(28, 4, 1) designs is

complete; these objects are also known as the resolutions of unitals on 28 points.

c©2009
Mathematical Institute

Slovak Academy of Sciences

1. Introduction

A 2-(v, k, λ) balanced incomplete block design (BIBD) is a v-set V of points
together with a collection of k-subsets of V , called blocks, with the property that
every 2-subset of points is contained in exactly λ blocks. Two more parameters
are associated to a BIBD: the number of blocks, b, and the number of blocks in
which each point occurs, r. These central parameters of BIBDs are interrelated
by

vr = bk, r(k − 1) = λ(v − 1). (1)

2000 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 05B05.

Keywords: classification, RBIBD, resolution, Steiner system, unital.
This research was supported in part by the Academy of Finland, Grants No. 107493, 110196,

and 117499.

Unauthenticated
Download Date | 7/27/18 11:00 AM

PETTERI KASKI — PATRIC R. J. ÖSTERGÅRD

A resolution of a design is a partition of the blocks into parallel classes, which
in turn partition the point set. A design with a resolution is said to be resolvable.
Two resolutions of designs are isomorphic if there exists a bijection between the
point sets of the resolutions that takes the parallel classes of one resolution onto
the parallel classes of the other.

The most basic question with respect to resolvability — given a set of param-
eters, v, k, and λ — is whether 2-(v, k, λ) resolvable BIBDs (RBIBDs for short)
exist. Obvious necessary conditions for existence are that (1) has an integer
solution and that k divides v. A comprehensive account of constructions and
existence results for RBIBDs is [8]. If the existence question is answered in the
affirmative, one may proceed and classify the RBIBDs and/or their resolutions
up to isomorphism (RBIBDs may have several nonisomorphic resolutions).

In the 1980s, M a t h o n and R o s a [22], [23] collected and published the
then known classification results for BIBDs and resolutions of RBIBDs (exact
values and bounds) — an important undertaking, since the number of papers
published on these topics had increased at the same speed as computers had be-
come available to design theorists. Earlier surveys had been solely devoted to the
existence problem. The seminal survey, with its range r ≤ 41, became the stan-
dard reference, and updated versions have later been published by M a t h o n
and R o s a in [24], [25], [26]. Tables of classification results for RBIBDs have
later also been published in [2], [9], [15].

The first part of this paper, Section 2, gives a survey of the main computa-
tional approaches used to classify RBIBDs. These can roughly be divided into
two types: those building up a design parallel class by parallel class and those
proceeding point by point. In Section 3 we use an algorithm of the latter type
to classify the 2-(28, 4, 1) RBIBDs and show that the list of seven known reso-
lutions of 2-(28, 4, 1) designs is complete. These objects are also known as the
resolutions of unitals on 28 points. The paper is concluded in Section 4.

2. Classification of RBIBDs

The survey of classification methods for RBIBDs to be presented here will
be on a rather high level, emphasizing the main principles rather than details
(in particular, implementational ones). The interested reader is encouraged to
consult [15] for an in-depth treatment of any aspects of such a classification.

One obvious way of carrying out a classification of RBIBDs is to extract the
desired objects from an exhaustive catalogue of BIBDs. However, since RBIBDs
have more restrictions that BIBDs, direct construction of RBIBDs — to be more

122

Unauthenticated
Download Date | 7/27/18 11:00 AM

CLASSIFICATION OF RESOLVABLE BALANCED INCOMPLETE BLOCK DESIGNS

precise, resolutions of RBIBDs — is to be preferred for computational reasons.
Hence we do not consider this indirect approach further but refer the reader to
[15, Sect. 6.3.1]. Modern classification results along this line include [20], [21],
[32], [35], [36]. For certain sets of parameters, every BIBD is uniquely resolvable;
see [15, Theorems 2.62, 2.63, 2.120, 2.127], and [19] for the particular case of
2-(27, 9, 4) RBIBDs.

Accidentally, from the early history of design theory and the first decades
of the 20th century, there is a concrete example of obtaining resolutions either
directly or indirectly: C o l e [4] used a classification [5], [40] of Steiner triple
systems of order 15 to get the Kirkman triple systems of order 15 — that is, the
resolutions of the 2-(15, 3, 1) RBIBDs — whereas M u l d e r [33] used a direct
approach.

On a general level, the computational problem of classifying RBIBDs is about
backtrack search with isomorph rejection. The connection between resolutions
and codes to be discussed next is very useful when setting up a framework for
the computational work.

2.1. Resolutions are codes

We first recall some coding-theoretic definitions and notations. Let Zq be an
alphabet of q symbols; here Zq = {0, 1, . . . , q − 1}. A word of length n is an
n-tuple x = (x1, x2, . . . , xn) ∈ Zn

q . The (Hamming) distance d(x, y) between
two words x, y ∈ Zn

q is the number of coordinates in which the words differ.
Formally, d(x, y) = |{j ∈ {1, 2, . . . , n} : xj �= yj}|.

An (n, M, d)q code is a set of M words of length n over Zq, with the property
that the distance between any two distinct words is at least d. A code is said to
be equidistant if any two distinct codewords have the same mutual distance.

A post is a pair (j, v) where 1 ≤ j ≤ n is a coordinate and v ∈ Zq is an
alphabet symbol. A post (j, v) is flagged by a word x ∈ Zn

q if xj = v. In
particular, every word x ∈ Zn

q flags exactly n posts. A code is equireplicate if
every post is flagged by the same number of codewords.

Two codes are equivalent if one can be transformed into the other by a per-
mutation of the coordinates followed by permutations of the coordinate values,
independently for each coordinate.

S e m a k o v and Z i n o v’ e v [39] made the following observation.

������� 1� There is a one-to-one correspondence between the resolutions of
2-(qk, k, λ) designs and the (r, qk, r−λ)q codes, where r = λ(qk−1)/(k−1) and
q > 1. Such codes are necessarily equidistant and equireplicate.

123

Unauthenticated
Download Date | 7/27/18 11:00 AM

PETTERI KASKI — PATRIC R. J. ÖSTERGÅRD

This correspondence is one-to-one in the strongest sense: nonisomorphic res-
olutions lead to inequivalent codes and vice versa; cf. [15, Theorem 3.82]. The
correspondence is illustrated by the following example.

Example. Consider the Kirkman triple system on 9 points, that is, the unique
resolution of the unique 2-(9, 3, 1) BIBD. Construct a 9 × 4 matrix with one
column for each parallel class and one row for each point. The three blocks of
each parallel class are indicated by a number from {0, 1, 2}.

0 0 00
0111
0222
1012
1120
1201
2021
2102
2210

(2)

The rows of (2) form the codewords of an equidistant and equireplicate (4, 9, 3)3
code, as anticipated by Theorem 1. This code is known as the ternary Hamming
code of length 4.

2.2. Classification point by point

There are two main approaches for building up resolutions of designs when
carrying out a classification. The two approaches proceed point by point and
parallel class by parallel class, or, in the framework of codes, codeword by code-
word and coordinate by coordinate, respectively. The design parameters restrict
the candidates that need to be considered in both approaches. When proceeding
point by point (in other words, codeword by codeword), the restrictions have
a notable effect on the branching of the search tree from the very first levels;
indeed, this approach is the one that has been used more often in the literature.
Finally, adding isomorph rejection to this scheme gives a complete classification
algorithm.

From here on, we use the framework of codes. When building up a code with
the parameters given by Theorem 1 codeword by codeword, the only restriction
applied is that the distance between codewords must be r−λ. Isomorph rejection
can be accomplished by any of three main methods: recorded canonical forms of
objects (not feasible if there are too many objects to store in memory), orderly
generation ([7], [38]), and canonical augmentation ([29]); see also [15, Sect. 4.2].

Orderly generation, first used for classifying RBIBDs in [11], is the method
commonly used in recent studies: then, after adding a row using a representation

124

Unauthenticated
Download Date | 7/27/18 11:00 AM

CLASSIFICATION OF RESOLVABLE BALANCED INCOMPLETE BLOCK DESIGNS

as in the earlier example, the matrix is accepted iff it is minimal in its equiva-
lence class. Equivalent matrices are obtained by permuting rows, columns, and
symbols column-wise; cf. the definition of equivalent codes. In the minimality
test, the strings obtained by concatenating the rows are compared. The rows
are concatenated starting from the top row, and the first symbol is the most
significant. See [15, Sect. 7.1.2] for details.

The calculations related to the isomorph rejection part use most of the CPU
time in a classification of RBIBDs using orderly generation. One may therefore
consider omitting isomorph rejection on certain levels of the search tree. If
isomorph rejection is omitted on all remaining levels from a given level, then
the search problem can be viewed as a clique problem in the graph with one
vertex for each word that is at distance r − λ from each of the fixed codewords,
inserting edges between vertices with mutual distance r − λ.

Orderly generation codeword by codeword implies that the value of the first
coordinate will be 0 in the first k codewords, 1 in the next k codewords, and so on.
To minimize the size of the search tree, it is worth considering alternative ways
of building up the RBIBD. Instead of considering candidates with a given value
in the first coordinate, one may in fact consider any post that has been flagged
less than k times and corresponding candidates. The choice with the smallest
number of candidates should be preferred; it turns out that it is generally a good
choice to consider posts that have been flagged k − 1 times. This idea is in fact
implicitly used already in P i e t e r M u l d e r ’s doctoral thesis [33], published
in 1917, where the seven nonisomorphic Kirkman triple systems of order 15 are
classified by hand calculation. In the classification in Section 3, this idea will
also be employed. Note that other isomorph rejection methods than orderly
generation are required in this case.

In the following studies, RBIBDs have been classified using a point-by-point
approach: [10], [11], [12], [36].

2.3. Classification parallel class by parallel class

The constraints when classifying RBIBDs parallel class by parallel class —
coordinate by coordinate for codes — are rather weak in the beginning of the
search. Favorable parameters are small λ, especially λ = 1, and small v, perhaps
together with large k (for a small number of candidate parallel classes).

However, the main reason for using this approach has been the possibility
of letting combinatorial properties of the resolutions restrict the search space,
as shown by M o r a l e s and V e l a r d e [30], [31] and briefly discussed in the
following.

125

Unauthenticated
Download Date | 7/27/18 11:00 AM

PETTERI KASKI — PATRIC R. J. ÖSTERGÅRD

Let Q = {B1, B2, . . . , Bq} and Q′ = {B′
1, B

′
2, . . . , B

′
q} be two different parallel

classes in a resolution of a 2-(qk, k, λ) design. The (Q, Q′) parallel class inter-
section matrix is the q×q matrix A = (aij) with entries given by aij = |Bi∩B′

j |
for all 1 ≤ i, j ≤ q.

If v/k = q = 2, then the parallel class intersection matrices are of the form
[

k − i i

i k − i

]
,

where we without loss of generality may assume that k ≥ 2i. For an arbitrary
parallel class Q, we denote by ni the corresponding number of matrices with
parameter i associated with Q. Then

�k/2�∑
i=0

ni = r − 1. (3)

Moreover, by counting pairs of elements in any block of Q, we get that

�k/2�∑
i=0

[(
k − i

2

)
+

(
i

2

)]
ni =

(
k

2

)
(λ − 1). (4)

The integer solutions of (3), (4) can now be used to restrict the search.
Analogous restrictions are obtained for larger q, and the approach is still

feasible for q = 3 and small v ([30]).
In the following studies, RBIBDs have been classified parallel class by parallel

class: [30], [31] and partially [10].

3. The resolutions of unitals on 28 points

A unital is a 2-(q3 + 1, q + 1, 1) design. For q = 3, we get 2-(28, 4, 1) BIBDs,
the resolutions of which are (9, 28, 8)7 codes by Theorem 1. This section docu-
ments the seven known nonisomorphic resolutions of unitals on 28 points and the
classification algorithm used to establish that the known isomorphism classes in
fact constitute a complete set. Our aim is to include all details needed to repeat
the search and to check the results for consistency; without the latter objective,
presentation of several implementational details could have been omitted.

126

Unauthenticated
Download Date | 7/27/18 11:00 AM

CLASSIFICATION OF RESOLVABLE BALANCED INCOMPLETE BLOCK DESIGNS

R1

000000000
011111111
022222222
033333333
101234444
202315555
303126666
241440236
431552560
153650125
256523401
316054253
362560314
426616034
440364621
512643640
560155432
623461450
646102345
650246513
124045361
165412603
235066142
344631502
464203156
534424015
555301264
615535026

R2

000000000
011111111
022222222
033333333
101234444
202315555
303126666
241440236
421553560
153650125
136506251
164142503
214604362
255263601
325405143
346351402
362560314
415346024
456012346
460625431
513462450
534255016
540514623
565031265
626164035
632641640
644023154
650436512

R3

000000000
011111111
022222222
033333333
101234444
202143555
303425166
414523604
525603416
645021345
166502135
244636120
250312646
365216503
456035512
463640241
536241660
543514052
610446432
654104263
115355250
142460613
226454301
334062451
352651034
421366065
560165324
631550526

R4

000000000
011111111
022222222
033333333
101234444
202143555
304412366
440155324
555024351
125166063
136405152
254256130
265301426
326350541
343046412
434061245
462436601
513265506
615440234
641362650
153510625
246614203
361625035
416523460
524603614
560542143
632554016
650631562

R5

000000000
011111111
022222222
033333333
101234444
202441355
303555512
244205631
355213056
132106566
145450123
164643210
220563164
256026413
312664603
366302145
614536025
636415204
643162450
651340662
415042534
424351406
440616342
463424061
526630551
535521640
550154235
561065326

R6

000000000
011111111
022222222
033333333
101234444
202341555
303452166
440535125
552036616
662660134
163516502
220656341
330164652
356205531
451643062
466354210
513625450
546142304
636521046
641406253
144320661
155461320
235015264
264103426
325540413
414062543
524414035
615253605

R7

000000000
011111111
022222222
033333333
101234444
202143555
304415236
145542031
451626530
361052653
136165620
160421365
214662304
240316642
255404123
326536105
352360461
425150346
434501452
443064215
515035562
532456014
553241606
566603241
616324056
620645413
644253160
663510524

Figure 1. The seven nonisomorphic resolutions of unitals on 28 points

3.1. The seven resolutions

For completeness, we list the seven known resolutions of unitals on 28 points
in Figure 1. Each resolution is given as a 28 × 9 array; each row of an array is
a codeword of a corresponding (9, 28, 8)7 code. The rows are listed in the order
they are constructed by the algorithm used in this work.

These seven resolutions are presented by M a t h o n and R o s a in [22].
B r o u w e r [3] obtained all but one (R7) of the resolutions and underlying re-
solvable unitals a few years earlier. P e n t t i l a and R o y l e [37] classified all
unitals on 28 points that admit embedding in a projective plane of order 9, find-
ing four nonisomorphic resolvable unitals and resolutions. K r č a d i n a c [17]
classified all unitals on 28 points admitting a nontrivial automorphism, finding
six nonisomorphic resolvable unitals and seven resolutions.

127

Unauthenticated
Download Date | 7/27/18 11:00 AM

PETTERI KASKI — PATRIC R. J. ÖSTERGÅRD

The automorphism groups of the seven resolutions are, in the order they
appear in Fig. 1, 432, 216, 48, 48, 1512, 168, and 72, and the underlying unitals
have automorphism groups of order 12096, 216, 48, 48, 1512, 1512, and 72,
respectively.

The resolution R1 is the unique resolution of the classical (hermitian) unital
in PG(2, 9).

A succinct description of R2 is given by H a l l [9]: expand the three base
blocks

{(0, 2, 1), (0, 0, 1), (1, 1, 2), (1, 1, 0)},
{(0, 2, 0), (1, 2, 2), (0, 0, 2), (1, 0, 0)},
{∞, (0, 1, 1), (1, 1, 1), (2, 1, 1)}

modulo (3, 3, 3) while keeping the special point ∞ fixed; a parallel class of the
resolution is obtained by adding (0, 0, 0), (1, 0, 0), (2, 0, 0) to the base blocks.
The unital underlying R2 admits an embedding into PG(2, 9).

The resolutions R3 and R4 form a dual pair in terms of embeddability of
their underlying unitals; the unital underlying R3 embeds into the Hall plane of
order 9, whereas its nonisomorphic dual (underlying R4) embeds into the dual
Hall plane of order 9.

The resolutions R5 and R6 are the two nonisomorphic resolutions of the Ree
unital on 28 points; this unital cannot be embedded in a projective plane of
order 9.

A succinct description of R7 is given by M a t h o n and R o s a [22] (who also
present the other six resolutions in a similar, compact form): expand the parallel
class

{(0, 1)0, (2, 0)0, (1, 0)1, (0, 2)2}, {(1, 1)0, (1, 2)0, (2, 1)0, (2, 2)1},
{(0, 1)1, (2, 0)1, (1, 0)2, (0, 2)0}, {(1, 1)1, (1, 2)1, (2, 1)1, (2, 2)2},
{(0, 1)2, (2, 0)2, (1, 0)0, (0, 2)1}, {(1, 1)2, (1, 2)2, (2, 1)2, (2, 2)0},
{∞, (0, 0)0, (0, 0)1, (0, 0)2}

modulo (3, 3) while keeping the special point ∞ fixed. The unital underlying R7

cannot be embedded in a projective plane of order 9.

3.2. Classification

We rely on a point by point (that is, word by word) approach to classify the
resolutions of unitals on 28 points. For reasons of performance, the search is
divided into three phases:

(a) word by word generation with isomorph rejection,

128

Unauthenticated
Download Date | 7/27/18 11:00 AM

CLASSIFICATION OF RESOLVABLE BALANCED INCOMPLETE BLOCK DESIGNS

(b) clique search in a compatibility graph,

(c) completion to a resolution of a unital.

Before describing the individual phases in more detail, however, it is convenient
to first outline the basic algorithm that generates individual words that extend
a given partial resolution.

3.2.1. Generating compatible words

By virtue of Theorem 1 and the earlier discussion, we consider codes with
M = 28 words of length n = 9 over an alphabet of q = 7 symbols, such that

(i) any two distinct words have distance d = 8;

(ii) every post is flagged exactly M/q = 4 times by the codewords.

Put otherwise, to extend a code C ⊆ Zn
q corresponding to a partial solution, it

suffices to find all words x ∈ Zn
q such that

(i) x has distance d to all the words in C;

(ii) each post is flagged at most M/q times by the words in C ∪ {x}.
We say that such words x are compatible with C.

At implementation level, the algorithm for generating compatible words is
a backtrack search that sets the values x1, x2, . . . , xn one at a time so that all
words x compatible with C are generated in lexicographical order from smallest
to largest. Here we assume lexicographical ordering defined by the rule x < y if
and only if there exists an 1 ≤ i ≤ n such that both xi < yi and xj = yj holds
for all 1 ≤ j < i.

As it turns out, the equireplication property of resolutions of unitals provides
additional control over the compatible words that need to be considered. To see
this, consider a code C corresponding to a partial solution. Because some words
remain to be added to C, some posts are flagged by less than M/q words of C. To
complete C, these posts must eventually be flagged by M/q words. Thus, when
extending C with a new word, instead of considering every compatible word in
turn, one can (arbitrarily) select one post that is not flagged M/q times, and
consider only those compatible words that flag the selected post.

In essence, word by word generation of resolutions of unitals now amounts
to recursively extending a given code with each compatible word that flags a
selected post. However, to obtain a practical algorithm, equivalent codes need
to be rejected during the first few recursive steps, which makes taking advantage
of the equireplication property somewhat more elaborate.

129

Unauthenticated
Download Date | 7/27/18 11:00 AM

PETTERI KASKI — PATRIC R. J. ÖSTERGÅRD

3.2.2. Word by word generation with isomorph rejection

For codes with at most 9 words, we employ full rejection of equivalent codes.
More precisely, at each recursive invocation, we check whether the input code
is equivalent to a code encountered at an earlier invocation. If yes, the code
is considered no further. At implementation level, the codes encountered are
represented as colored graphs, whose canonical forms produced by nauty ([27])
are stored in memory; we refer to [15, Chaps. 3 and 4] for a detailed discussion.

To avoid generating an abundance of equivalent codes, we constrain the gener-
ation of compatible words. To motivate these constraints, we make the following
observations. First of all, the first codeword is without loss of generality the all-
zero word; in the sequel we therefore assume that |C| ≥ 1. For a code C ⊆ Zn

q ,
let x be a word compatible with C. If yi = yi+1 holds for every y ∈ C, then we
can require xi ≤ xi+1. Indeed, if xi > xi+1, then by virtue of lexicographical
generation of compatible words, we have already encountered a code equivalent
to C ∪ {x}. Finally, by similar reasoning, we can require that xi ≤ 1 + max

y∈C
yi.

It remains to develop these observations into an algorithm that also takes
advantage of equireplication. Let a code C ⊆ Zn

q be given. Initially, let C

consist of only the all-zero word. Call a post (j, v) active with respect to C if
the following three properties hold:

(ii’) the words of C flag (j, v) less than M/q times;

(iii’) either j = 1 or there exists an y ∈ C such that yj−1 �= yj ; and

(iv’) v ≤ 1 + max
y∈C

yj.

For each active post (j, v), the algorithm generates, in lexicographical order,
all words x ∈ Zn

q that satisfy the following four properties:

(i) x has distance d to all the words in C;

(ii+) x flags (j, v) and C ∪ {x} flags every post at most M/q times;

(iii) for all 1 ≤ i < n with i �= j it holds that yi = yi+1 for all y ∈ C implies
xi ≤ xi+1; and

(iv) for all 1 ≤ i ≤ n it holds that xi ≤ 1 + max
y∈C

yi.

We say that these words are associated with (j, v). When all active posts have
been considered, we select an active post with the minimum number of associated
words. If there are many such active posts, then we select the minimum one
with respect to lexicographical ordering. Lexicographical ordering of posts is
defined by the rule (j1, v1) < (j2, v2) if and only if either j1 < j2 or both
j1 = j2 and v1 < v2. Once an active post has been selected, the algorithm

130

Unauthenticated
Download Date | 7/27/18 11:00 AM

CLASSIFICATION OF RESOLVABLE BALANCED INCOMPLETE BLOCK DESIGNS

considers, in lexicographical order, each word x associated with the selected
post and recursively invokes itself with the input C ∪ {x}.

The algorithm produces 140297 inequivalent codes with 9 words; in what
follows we call these codes seeds. Before proceeding to the next phase of the
search, the same algorithm is used to extend the seeds by one more word, but
the resulting 10-word codes are no longer checked for equivalence against codes
encountered earlier. (Note, however, that the constraints (iii), (iv), (iii’), and
(iv’) still eliminate some equivalent codes.)

3.2.3. Clique search

The next phase of the search takes as input the 10-word codes obtained by
the approach described in the previous section. For each such code C, we first
generate all words compatible with C. For a post (j, v), denote by f(j, v) the
number of times (j, v) is flagged by the words in C. Denote by N(j, v) the
number of words compatible with C that flag (j, v). Next, we find a pair of posts
of the form (j, v1), (j, v2), v1 �= v2, such that f(j, v1) < M/q, f(j, v2) < M/q,
and N(j, v1) + N(j, v2) is maximized. If there is more than one such pair, then
we select the pair with lexicographically minimum posts. Next, we construct a
graph whose vertices are the words compatible with C that flag neither of the
selected posts; an edge connects two words if and only if the words have mutual
distance d. Once the graph is constructed, we find all its cliques of size

M − 10 − (M/q − f(j, v1)) − (M/q − f(j, v2))

= M − 10 − 2M/q + f(j, v1) + f(j, v2)

using the program Cliquer ([34]). Whenever such a clique D is found, we invoke
the final phase with input C ∪ D.

The final phase of the search completes a given code to a code corresponding to
a resolution of a unital in all possible ways. This can again be done in a clique
search, or, since this is a computationally easy task, by a routine backtrack
search.

3.2.4. Search statistics

In total, the algorithm outputs 1284 codes corresponding to resolutions of uni-
tals. After rejection of equivalent codes, seven inequivalent codes remain. The
search was executed in batch jobs of 100 seeds using the batch system autoson
([28]) on a network of 139 Linux PCs, the majority of which are equipped with
2.8-GHz Pentium 4 CPUs and 512KB of in-processor cache. In total, about 1.5
years of CPU time was consumed.

131

Unauthenticated
Download Date | 7/27/18 11:00 AM

PETTERI KASKI — PATRIC R. J. ÖSTERGÅRD

3.3. Validation of the results

Validation of the results is of central importance in any computer-aided study;
see [15, Chap. 10] for a survey of validation methods. In particular, consistency
checking ([18]) in various form has turned out to be practicable and has been
utilized frequently in recent work, including [13], [16].

Consistency checking of computational combinatorial results is almost with-
out exception based on double counting. Occasionally, it is possible to use data
obtained from the computations directly for this purpose. If the number of
objects in the final classification is small, then a more careful analysis can be
carried out to get an even higher confidence in the results than by mere double
counting. We will now discuss how such an analysis can be done for the current
classification; this analysis also illustrates the main ideas behind most of the
validation methods of this type.

To give a rough intuition for the following more technical development, the
idea is to dissect each of the seven inequivalent codes U ′ in all possible ways into
U ′ = S′ ∪ T ′, where S′ is a code equivalent to a seed, and T ′ is the part that
extends the seed. We then check whether the data obtained from this process is
consistent with the 1284 codes produced in the search.

In precise terms, we count in two different ways all three-tuples (S, x, T) such
that

(a) S is one of the 140297 seeds;

(b) S ∪ T is a completed code; and

(c) x ∈ T flags the active post selected by the classification algorithm when
extending S.

The first count uses the 1284 codes obtained in the search. Indeed, observe
that the search constructs three-tuples (S, x, T) satisfying (a), (b), and (c). The
search has one additional restriction, however. Namely, x, the final word that
is added in the first phase of the algorithm, always satisfies (iii) and (iv) with
C = S. Thus, to arrive at the required three-tuples, all one has to do is to
relabel each (S, x, T) constructed in the search in all possible ways so that S

remains fixed and x flags the selected active post. In this way 2790 three-tuples
are obtained.

The second count relies on dissecting the seven classified codes and uses the
orbit-stabilizer theorem. To this end, it is convenient to work with a group action
that captures equivalence of codes. Denote by Sn the symmetric group of degree
n, and denote by Sq 	Sn the wreath product group that acts on Zn

q by permuting
the coordinates and the symbols independently in each coordinate. Extend the
action to an elementwise action on sets and tuples constructed from words in Zn

q .

132

Unauthenticated
Download Date | 7/27/18 11:00 AM

CLASSIFICATION OF RESOLVABLE BALANCED INCOMPLETE BLOCK DESIGNS

For such an object, X, denote by Aut(X) the stabilizer subgroup of X under
the action of Sq 	 Sn. For example, for a code C ⊆ Zn

q , Aut(C) = {g ∈ Sq 	 Sn :
Cg = C}. For a pair of codes, Aut(C1, C2) = {g ∈ Sq 	Sn : Cg

1 = C1, Cg
2 = C2}.

The second count is now carried out as follows. Each of the seven codes U ′

contains
(
28
9

)
= 6906900 subcodes with 9 words. Starting with the zero count and

considering each U ′ in turn, we dissect U ′ in all possible ways into U ′ = S′ ∪T ′,
where |S′| = 9 and |T ′| = 19. Whenever S′ is equivalent to a seed S, we ac-
cumulate the count as follows. First, we determine the number h(S) of words
in S that flag the active post selected by the classification algorithm when ex-
tending S. Next, we accumulate the count by |Aut(S′)|(M/q−h(S))/|Aut(U ′)|;
note that this number is in general not an integer. Once all codes U ′ and all
dissections are considered, we output the accumulated count.

To see that the correct count is obtained, consider an arbitrary seed S and
its extension T . Each such pair (S, T) needs to be counted M/q−h(S) times to
obtain the correct count. By the orbit-stabilizer theorem, the Aut(S)-orbit of
(S, T) has exactly |Aut(S)|/|Aut(S, T)| pairs. Thus, it suffices to accumulate the
count by |Aut(S)|/|Aut(S, T)|(M/q−h(S)) units for each such Aut(S)-orbit. By
the orbit stabilizer theorem, a pair from this Aut(S)-orbit is encountered exactly
|Aut(U)|/|Aut(S, T)| times while dissecting (any code U ′ equivalent to) U =
S∪T . In particular, as each encounter accumulates the count by |Aut(S)|(M/q−
h(S))/|Aut(U)|, the correct count is obtained.

As it turns out, the second count is identical to the first count. Furthermore,
as an additional validation measure, both authors independently implemented
the algorithm for classifying the seeds, with identical results. This gives us
confidence that the classification is correct.

4. Conclusions

In this paper general approaches for classifying RBIBDs have been outlined,
and the particular case of resolutions of unitals on 28 points has been studied and
settled. In the future, with increasing computing speeds, a few more instances
can certainly be settled without any fundamentally new ideas. For parameters
with a prohibitively large number of nonisomorphic RBIBDs there is perhaps
not so much more to hope for. For parameters with very few RBIBDs — or even
none — on the other hand, the prospects of a breakthrough are much better.
Throwing out an idea, perhaps linear programming could be useful in proving
nonexistence; cf. [1].

133

Unauthenticated
Download Date | 7/27/18 11:00 AM

PETTERI KASKI — PATRIC R. J. ÖSTERGÅRD

Finally, note that 1-factorizations of complete graphs can be viewed as res-
olutions of 2-(v, 2, 1) designs. Recent computational studies on the problem of
classifying such objects include [6], [14].

REFERENCES

[1] APPA, G.—MAGOS, D.—MOURTOS, I.: An LP-based proof for the non-existence of

a pair of orthogonal Latin squares of order 6, Oper. Res. Lett. 32 (2004), 336–344.

[2] BETH, T.—JUNGNICKEL, D.—LENZ, H.: Design Theory, Vol. I, II (2nd ed.), Cam-

bridge University Press, Cambridge, 1999.

[3] BROUWER, A. E.: Some unitals on 28 points and their embeddings in projective planes

of order 9. In: Geometries and Groups (M. Aigner, D. Jungnickel, eds.). Lecture Notes

in Math. 893, Springer, Berlin, 1981, pp. 183–188.

[4] COLE, F. N.: Kirkman parades, Bull. Amer. Math. Soc. 28 (1922), 435–437.

[5] COLE, F. N.—CUMMINGS, L. D.—WHITE, H. S.: The complete enumeration of triad

systems in 15 elements, Proc. Natl. Acad. Sci. USA. 3 (1917), 197–199.

[6] DINITZ, J. H.—GARNICK, D. K.—MCKAY, B. D.: There are 526, 915, 620 noniso-

morphic one-factorizations of K12, J. Combin. Des. 2 (1994), 273–285.

[7] FARADŽEV, I. A.: Constructive enumeration of combinatorial objects. In: Problèmes

Combinatoires et Théorie des Graphes (Université d’Orsay, July 9–13, 1977), CNRS,

Paris, 1978, pp. 131–135.

[8] FURINO, S.—MIAO, Y.—YIN, J.: Frames and Resolvable Designs. Uses, Construc-

tions, and Existence, CRC Press, Boca Raton, 1996.

[9] HALL, M., Jr.: Combinatorial Theory (2nd ed.), Wiley, New York, 1986.

[10] KASKI, P.—MORALES, L. B.—ÖSTERGÅRD, P. R. J.—ROSENBLUETH, D. A.—

VELARDE, C.: Classification of resolvable 2-(14, 7, 12) and 3-(14, 7, 5) designs, J. Com-

bin. Math. Combin. Comput. 47 (2003), 65–74.

[11] KASKI, P.—ÖSTERGÅRD, P. R. J.: There exists no (15, 5, 4) RBIBD, J. Combin. Des.

9 (2001), 357–362.

[12] KASKI, P.—ÖSTERGÅRD, P. R. J.: Miscellaneous classification results for 2-designs,

Discrete Math. 280 (2004), 65–75.

[13] KASKI, P.—ÖSTERGÅRD, P. R. J.: The Steiner triple systems of order 19, Math.

Comp. 73 (2004), 2075–2092.

[14] KASKI, P.—ÖSTERGÅRD, P. R. J.: One-factorizations of regular graphs of order 12,

Electron. J. Combin. 12 (2005) No. 1, #R2, 25pp.

[15] KASKI, P.—ÖSTERGÅRD, P. R. J.: Classification Algorithms for Codes and Designs,

Springer, Berlin, 2006.

[16] KASKI, P.—ÖSTERGÅRD, P. R. J.—POTTONEN, O.: The Steiner quadruple systems

of order 16, J. Combin. Theory Ser. A 113 (2006), 1764–1770.

[17] KRČADINAC, V.: Steiner 2-designs S(2, 4, 28) with nontrivial automorphisms, Glas.

Mat. Ser. III 37(57) (2002), 259–268.

[18] LAM, C. W. H.—THIEL, L.: Backtrack search with isomorph rejection and consistency

check, J. Symbolic Comput. 7 (1989), 473–485.

[19] LAM, C.—TONCHEV, V. D.: Classification of affine resolvable 2-(27, 9, 4) designs,

J. Statist. Plann. Inference 56; 86 (1996; 2000), 187–202; 277–278.

134

Unauthenticated
Download Date | 7/27/18 11:00 AM

CLASSIFICATION OF RESOLVABLE BALANCED INCOMPLETE BLOCK DESIGNS

[20] MATHON, R.—LOMAS, D.: A census of 2-(9, 3, 3) designs, Australas. J. Combin. 5

(1992), 145–158.

[21] MATHON, R.—ROSA, A.: A census of Mendelsohn triple systems of order nine, Ars

Combin. 4 (1977), 309–315.

[22] MATHON, R.—ROSA, A.: Some results on the existence and enumeration of BIBD’s.

Mathematics Report 125-Dec-1985, Department of Mathematics and Statistics, McMas-

ter University, Hamilton, 1985.

[23] MATHON, R.—ROSA, A.: Tables of parameters of BIBDs with r ≤ 41 including exis-

tence, enumeration, and resolvability results, Ann. Discrete Math. 26 (1985), 275–307.

[24] MATHON, R.—ROSA, A.: Tables of parameters of BIBDs with r ≤ 41 including exis-

tence, enumeration and resolvability results: An update, Ars Combin. 30 (1990), 65–96.

[25] MATHON, R.—ROSA, A.: 2-(v, k, λ) designs of small order. In: The CRC Handbook

of Combinatorial Designs (C. J. Colbourn, J. H. Dinitz, eds.), CRC Press, Boca Raton,

1996, pp. 3–41.

[26] MATHON, R.—ROSA, A.: 2-(v, k, λ) designs of small order. In: Handbook of Combi-

natorial Designs (C. J. Colbourn, J. H. Dinitz, eds.; 2nd ed.), Chapman & Hall/CRC

Press, Boca Raton, 2007, pp. 25–58.

[27] MCKAY, B. D.: nauty User’s guide (version 1.5). Technical Report TR-CS-90-02, Com-

puter Science Department, Australian National University, Canberra, 1990.

[28] MCKAY, B. D.: autoson — A distributed batch system for UNIX workstation net-

works (version 1.3). Technical Report TR-CS-96-03, Computer Science Department,

Australian National University, Canberra, 1996.

[29] MCKAY, B. D.: Isomorph-free exhaustive generation, J. Algorithms 26 (1998), 306–324.

[30] MORALES, L. B.—VELARDE, C.: A complete classification of (12, 4, 3)-RBIBDs,

J. Combin. Des. 9 (2001), 385–400.

[31] MORALES, L. B.—VELARDE, C.: Enumeration of resolvable 2-(10, 5, 16) and

3-(10, 5, 6) designs, J. Combin. Des. 13 (2005), 108–119.

[32] MORGAN, E. J.: Some small quasi-multiple designs, Ars Combin. 3 (1977), 233–250.

[33] MULDER, P.: Kirkman-Systemen. PhD Thesis, Rijksuniversiteit Groningen, 1917.

[34] NISKANEN, S.— ÖSTERGÅRD, P. R. J.: Cliquer user’s guide, version 1.0. Technical

Report T48, Communications Laboratory, Helsinki University of Technology, Espoo,

2003.

[35] ÖSTERGÅRD, P. R. J.: Enumeration of 2-(12, 3, 2) designs, Australas. J. Combin. 22

(2000), 227–231.

[36] ÖSTERGÅRD, P. R. J.—KASKI, P.: Enumeration of 2-(9, 3, λ) designs and their res-

olutions, Des. Codes Cryptogr. 27 (2002), 131–137.

[37] PENTTILA, T.—ROYLE, G. F.: Sets of type (m, n) in the affine and projective planes

of order nine, Des. Codes Cryptogr. 6 (1995), 229–245.

[38] READ, R. C.: Every one a winner; or, How to avoid isomorphism search when cata-

loguing combinatorial configurations, Ann. Discrete Math. 2 (1978), 107–120.

[39] SEMAKOV, N. V.—ZINOV’EV, V. A.: Equidistant q-ary codes with maximal dis-

tance and resolvable balanced incomplete block designs, Problemy Peredachi Informatsii

4 (1968), No. 2, 3–10 (Russian). [English translation: Probl. Inf. Transm. 4 (1968), No.

2, 1–7].

135

Unauthenticated
Download Date | 7/27/18 11:00 AM

PETTERI KASKI — PATRIC R. J. ÖSTERGÅRD

[40] WHITE, H. S.—COLE, F. N.—CUMMINGS, L. D.: Complete classification of triad

systems on fifteen elements, Memoirs Natl. Acad. Sci. USA. 27 (1919) No. 2, 1–89.

Received 23. 8. 2007 *Department of Computer Science

Helsinki Institute for Information Technology HIIT

University of Helsinki

P.O. Box 68, 00014 University of Helsinki

FINLAND

E-mail : petteri.kaski@cs.helsinki.fi

** Department of Electrical and Communications Engineering

Helsinki University of Technology

P.O. Box 3000, 02015 TKK

FINLAND

E-mail : patric.ostergard@tkk.fi

136

Unauthenticated
Download Date | 7/27/18 11:00 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [498.898 708.661]
>> setpagedevice

