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Technische Universität Berlin, Germany
Computergestützte InformationsSysteme (CIS)

fbuebl@cs.tu-berlin.de

http://www.CoCons.org

Abstract Software evolution is a major challenge to software devel-
opment. When adapting a system model to new, altered or deleted re-
quirements, existing requirements should not unintentionally be violated.
One requirement can affect several possibly unassociated elements of a
system. A new constraint technique is introduced in this paper: One
context-based constraint (CoCon) specifies a requirement for those sys-
tem (model) elements that belong to the related context. The constrained
elements are indirectly selected via their meta-information. Thus, verify-
ing compliance with requirements can be supported automatically when
a system’s model is modified, during (re-)configuration and at runtime.

1 Introduction: Continuous Engineering

1.1 Continuous Engineering Requires ‘Design for Change’

The context for which a software system was designed changes continuously
throughout its lifetime. Continuous software engineering (CSE) is a para-
digm discussed in [18] for keeping track of the ongoing changes and to adapt
legacy systems to altered requirements as addressed in the KONTENG1 project.
The system must be prepared for adding, removing or changing requirements.
The examples in this paper concentrate on component-based software systems
because this rearrangeable software architecture is best suited for CSE.

New methods and techniques are required to ensure consistent modification
steps in order to safely transform the system from one state of evolution to
the next without unintentional violating existing dependencies or invariants.
This paper focuses on recording requirements via constraints in order to protect
them from unwanted modifications. However, an enhanced notion of ‘constraint’,
introduced in section 3, is needed for this approach.

1.2 Focus: Requirements Specification in System Models

This paper proposes to express important requirements via a new specification
technique that facilitates their consideration in different levels of the software
1 This work was supported by the German Federal Ministry of Education and Re-

search as part of the research project KONTENG (Kontinuierliches Engineering für
evolutionäre IuK-Infrastrukturen) under grant 01 IS 901 C.
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development process: some requirements should be reflected in models, some
during coding, some during deployment and some at runtime. This paper focuses
on specifying requirements in models. Thus, this paper discusses how to write
down which model elements are affected by a requirement. Obviously, there are
no model elements during configuration or at runtime. When applying the new
approach discussed here during configuration or at runtime, please read model
element as system element during configuration or system element at runtime
throughout the paper.

1.3 The New Concept in Brief

The basic idea introduced in this paper can be explained in just a few sentences.

1. Yellow sticky notes are stuck onto the model elements. They are called ‘con-
text properties’because they describe the context of their model element.

2. A new constraint mechanism refers to this meta-information for identifying
the part of the system where the constraint applies. Only those model ele-
ments whose meta-information fits the constraint’s ‘context condition’ must
fulfill the constraint. Up to now, no constraint technique exists that selects
the constrained elements according to their meta-information.

3. Via the new constraint technique a requirement for a group of model elements
that share a context can be protected automatically in system modifications.

This article is an overview on the new constraint technique – much more
details are provided in the corresponding technical report ([2]).

2 Introducing Context Properties

This section explains the concept of ‘context’ used here.

2.1 Describing Indirect Dependencies via Context Properties

A context property has a name and a set of values. A formal definition is
given in [2]. If its values are assigned to an element, they describe how or where
this element is used – they show the context of this element. The name of the
context property stays the same when assigning its values to several elements,
while its values might vary for each element. For example, the values of the
context property ‘Workflow’ reflect in which workflows the associated element
is used, as discussed in section 2.2. A graphical representation is indicated in
figure 1. The context property symbol resembles the UML symbol for comments
because both describe the model element they are attached to. The context
property symbol is assigned to one model element and contains the name and
values of one context property specified for this model element. However, it is
also possible to use one context property symbol for each context property that
is assigned to the same model element. The primary benefit of enriching model
elements with context properties is revealed in section 3, where such properties
are used to specify requirements.
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Figure 1. The Context Property Symbol

2.2 General Context Properties

Only three context properties are presented here. The proposed context proper-
ties may be ignored and others might be used by the developer as needed in the
application domain.

‘Workflow’ reflects the most frequent workflows and enables the designer to
write down requirement specifications for them. If preferred, the term ‘Busi-
ness Process’ or ‘Use Case’ may be used instead of ‘Workflow’. For example,
a requirement in a system could state that “all classes needed by the work-
flow ‘Integrate Two Contracts’ must be unreadable by the ‘Web Server’
component”. This requirement can be written down by identifying all of the
classes involved accordingly. This paper suggests taking only the names of
the workflows used most often into account for requirement specification.
Hiding avoidable granularity by only considering static aspects of behavior
(= nothing but workflow names) enables developers to ignore details. Oth-
erwise, the complexity would get out of hand. The goal of this paper is to
keep the requirement specifications as straightforward as possible.

‘Personal Data’ signals whether a model element handles data of private na-
ture. Thus, privacy policies, like, “all components handling Personal Data
must be unreadable by the components belonging to the workflow ‘Calculate
Financial Report’ ” can be specified.

‘Operational Area’ allows for the specification of requirements for certain de-
partments or domains in general, like “all components handling personal
data must be unreadable by all components belonging to the operational
area ‘Controlling”’. It provides an organizational perspective.

2.3 Belongs-To Relations

Elements can belong to each other. If, for instance, the model element e is a
package, then all the model elements inside this package belong to e. In this
case, a context property value assigned to e is automatically assigned to all
elements belonging to e. A Belongs-To relation is a directed, transitive relation
between elements. One set of values can be assigned to a single element e for
each context property cp . This set is called ConPropV alscp,e. The Belongs-To
relation of the element eowner of the ‘Owner’-type to other elements ei,...,j of the

‘Part’-type is represented via ‘Part BeTo−→ Owner’. A Belongs-To relation has
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the following impact: ∀i ≤ n ≤ j : ConPropV alscp,eowner ⊆ ConPropV alscp,en

— all values of cp assigned to eowner are also assigned to ei,...,j.
The values ConPropV alscp,eowner are ‘associated with’ eowner, and ‘assigned

to’ eowner and all ei,...,j due to the Belongs-To relation. The term ‘associated
with’ is only used for the root element eowner. When implementing a context-
property-aware tool, like a modeling tool, only the associated values must be
made persistent because the derived values can be derived from the associated
values as needed.

Some Belongs-To relations are implicit. An implicit Belongs-To Relation
e1

BeTo−→ e2 exists between the elements e1 and e2, if e1 is part of e2. For ex-
ample, all model elements inside a package implicitly belong to this package. No
model element inside this package does not belong to this package. The fact that
e1 is part of e2 usually is specified either as composition or aggregation in UML.
According to the modeling approach used, other implicit Belongs-To relations
can exist. On the contrary, some Belongs-To relations are explicit. They must
be manually defined, as discussed in [2].

Belongs-To relations create a hierarchy of context property values because
they are transitive: if a

BeTo−→ b
BeTo−→ c then a

BeTo−→ c. Thus, a context property
value associated with c automatically is assigned to b and a. This Belongs-
To hierarchy provides a useful structure. It enables the designer to associate
a context property value with the element that is as high as possible in the
Belongs-To hierarchy. It must be associated only once and usually applies to
many elements. Hence, redundant and possibly inconsistent context property
values can be avoided, and the comprehensibility is increased.

2.4 Additional Features of Context Properties

This section briefly outlines two more features of context properties. Details are
explained in [2]. The context property value assigned to an element can also de-
pend on other influences. For instance, the value can depend on the current state
at runtime or on other context property values assigned to the same element.

Usually, the context property values assigned to an element have to be de-
fined manually. Nevertheless, values of system properties, like ‘the current
user’ or ‘the current IP-address’, can only be queried from the middleware plat-
form during configuration or at runtime. This paper focuses on semantic context
properties that are not automatically available due to the underlying middleware
platform.

2.5 Research Related to Context Properties

Many techniques for writing down meta-information exist The notion of context
or container properties is well established in component runtime infrastructures
such as COM+ EJB, or .NET. Context properties are similar to tagged values
in UML - on the design level, tagged values can be used to express context
properties. In contrast to tagged values, the values of a context property must
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fulfill some semantic constraints. For example, the values of one context property
for one model element are not allowed to contradict. E.g., the values of ‘Personal
Data’ must not be both ‘Yes’ and ‘No’ for the same model element. Furthermore,
not every value may be allowed for a context property. For instance, only the few
names of existing workflows are valid values of the context property Workflow.

UML diagrams can express direct dependencies between model elements via
associations. In contrast, context properties allow the specification of indirect de-
pendencies between otherwise unassociated model elements that share the same
context. A context property groups model elements that share a context. Exist-
ing grouping mechanisms like inheritance, stereotypes ([1]) or packages are not
used because the values of a context property associated with one model element
might vary in different configurations or even change at runtime. The instances
of a model element are not supposed to change their stereotype or package dur-
ing (re-)configuration or at runtime. One context property can be assigned to
different types of model elements. For example, the values of ‘Workflow’ can be
associated both with ‘classes’ in a class diagram and with ’components’ in a
component diagram. Using packages or inheritance is not as flexible. According
to [13], stereotypes can group model elements of different types via the baseClass
attribute, too. However, this ‘feature’ has to be used carefully and the instances
of an model element are not allowed to change their stereotype. Context proper-
ties are a simple mechanism for grouping otherwise possibly unassociated model
elements - even across different views or diagram types.

3 Introducing Context-Based Constraints (CoCons)

This section presents a new constraint technique for requirements specification.

3.1 A New Notion of Invariants

One requirement can affect several possibly unassociated model elements in dif-
ferent diagrams. A context-based constraint (CoCon) specifies a requirement
for a group of model elements that share a context. The shared context is iden-
tified via the context property values assigned to these elements. If these values
comply with the CoCon’s context condition then their elements share same con-
text. The metamodel in figure 2 shows the abstract syntax for CoCons. The
metaclasses ‘ModelElement’ and ‘Constraint’ of the UML 1.4 ‘core’ package
used in figure 2 are explained in [13].

CoCons should be preserved and considered in model modifications, during
deployment, at runtime and when specifying another – possibly contradictory –
CoCon. Thus, a CoCon is an invariant. It describes which parts of the system
must be protected. If a requirement is written down via a CoCon, its violation
can be detected automatically as described in section 3.5.

As proposed in section 2.2, a context property ‘Workflow’ is assigned to
each model element. Thus, a CoCon can state that “All classes belonging to
the workflow ‘Integrate Two Contracts’ must be unreadable by the component
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Figure 2. The CoCon Metamodel

‘Customer Management’”(Example A). This constraint is based on the context
of the classes – it is a context-based constraint. Another requirement might
state that “the class ‘Employee’ must be unreadable by any class whose context
property ‘Operational Area’ contains the value ‘Field Service’ “ (Example B).

3.2 New: Indirect Selection of Constrained Elements

One CoCon applies to model elements that share a context. The shared context
is expressed using a ‘context condition’ that selects model elements via their
context property values. It describes a (possibly empty) set of model elements.
A context condition may be restricted to model elements of one metaclass – in
examples A and B, the context condition is restricted to ‘classes’ – no model
elements of other metatypes, e.g. ‘components’, are selected even if their con-
text property values otherwise fit the context condition. A range can limit the
number of model elements that are denoted by a context condition. The range
mechanism is not discussed in this paper – it is needed to specify ‘flexible Co-
Cons’. Two different kinds of sets can be selected by a context condition:

On the one hand, a context condition can determine the ‘target set’ con-
taining the elements that are checked by the CoCon. In example A, the target set
is selected via “all classes belonging to the workflow ‘Integrate Two Contracts’”.
On the other hand, a context condition can select the ‘scope set’ that represents
the part of the system, where the CoCon is enforced. In example A, the scope of
the CoCon is a single model element – the component ‘Customer Management’.
Nevertheless, the scope of a CoCon can be a ‘scope set’ containing any number
of elements, as illustrated in example B.

Both target set elements and scope set elements can be selected either directly
or indirectly: Set elements can be directly associated to a CoCon by naming
the model element(s) or by using the keyword this as in OCL. In example A,
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the CoCon is associated directly with the ‘Customer Management’ component.
This unambiguously identifies the only element of the scope set. The new key
concept of context-based constraints is indirect association. Set elements can
be indirectly associated with a CoCon via a context condition. The scope set in
example B contains all the classes whose context property ‘Operational Area’
contains the value ‘Field Service’. These scope set elements are anonymous. They
are not directly named or associated, but described indirectly via their context
property values. If no element fulfills the context condition, the set is empty.
This simply means that the CoCon does not apply to any element at all. This
‘indirect association’ is represented as a dotted line in fig. 2 because it is not a
UML association with an AssociationStart and an AssociationEnd. Instead, it
is a UML dependency. The ‘indirectly associated’ model elements are selected
by evaluating the context condition each time when the system is checked for
whether it complies with the CoCon.

As explained in section 2.3, the Belongs-To relation is transitive: if a
BeTo−→

b
BeTo−→ c then a

BeTo−→ c. If the context property value v is associated with the
element e then transitive closure BeTo∗v,e contains all elements where v is

assigned to due to a Belongs-To relation. If v is associated with c in a
BeTo−→

b
BeTo−→ c then BeTo∗v,c = {a, b} (if no other elements than a and b belong to c).

A context condition selects an element if the context property values assigned
to this element (ConPropV alscp,e) match the context condition. The transitive
closure BeTo∗v,e must be considered when evaluating a context condition. Many
algorithms exist for calculating a transitive closure. A well-known one is the
Floyd-Warshall algorithm. It was published by Floyd ([8]), and is based on one of
Warshall’s theorems ([17]). Its running time is cubed in the number of elements.

A CoCon can have two context conditions in different roles: one describing
which model elements are controlled by the CoCon (contained in the target set),
and one describing where (In which parts of the system? Only in the scope
set) the target elements are checked for whether or not they comply with the
CoCon. Yet, in some cases the names ‘target set’ and ‘scope set’ do not seem
appropriate. Mixing example A and example B, a CoCon could state that “All
classes belonging to the workflow ‘Integrate Two Contracts’ (Set1) must be
unreadable by all classes whose context property ‘Operational Area’ contains
the value ‘Field Service’ (Set2)”. In this paper, Set2 is called the scope set.
Nevertheless, which part of the system is the scope in this example? Should
those elements of the system be called ‘scope’ which are unreadable(Set1), or
does ‘scope’ refer to all elements (in Set2) that cannot read the elements in Set1?
Should Set1 be called ‘scope set one’ and Set2 ‘scope set two’ or is it better to
name one of them ‘target set’?Unfortunately, there is no intuitive answer yet.
Perhaps better names will be invented in the future. But, for most CoCon types
(see [2]) the names ‘target set’ for Set1 and ‘scope set’ for Set2 fit well.
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3.3 Handling Conflicts within CoCon Type Families

In this paper, only CoCons of the ‘UnreadableBy’ type are discussed due to
space limitations. They specify that the target set elements cannot be accessed by
the CoCon’s scope set elements. Many other CoCon types are discussed in [2]. A
CoCon type family groups CoCon types. For instance, the UnreadableBy CoCon
belongs to the family of Accessibility CoCon types. Conflicting requirements can
be automatically detected via CoCon family specific constraints. In the case of
UnreadableBy CoCons, the CoCon family specific constraints are:

1. No element of the target set may be both ReadableBy and UnreadableBy
any element in the scope set.

2. No model element of the target set may be UnreadableBy itself.

One kind of context conditions exists that doesn’t refer to context property
values: the joker context condition simply selects all model elements regardless
of their context. A context-based constraint is called simple, if either its target
set or its scope set contains all elements of the whole system via an unrestricted
joker condition or if it contains exactly one directly associated element. Conflicts
may arise if several CoCons of the same CoCon type family apply to the same
element. Defining a CoCon’s priority can prevent these conflicts. If several
CoCons of the same CoCon type family apply to the same model element then
only the CoCon with the highest priority is checked. If this CoCon is invalid
because its scope set is empty then the next CoCon with the second-highest
priority is checked. The value of the priority attribute should be a number.
This paper does not attempt to discuss priority rules in detail, but it offers the
following suggestion: a default CoCon which applies to all elements where no
other CoCon applies should have the lowest priority. Default CoCons can be
specified using a joker condition as introduced in section 3.1. CoCons using two
context conditions should have middle priority. These constraints express the
basic design decisions for two possibly large sets of elements. CoCons with one
context condition have high priority because they express design decisions for
one possibly large set of elements. CoCons that select both the target set and
the scope set directly should have the highest priority – they describe exceptions
for some individual elements.

A CoCon attribute can define details of its CoCon. Each attribute has a
name and one or more value(s). This paper only discusses two general attributes
that can be applied to all CoCon types: A CoCon can be named via the attribute
CoConName. This name must be unique because it is used to refer to this
CoCon. Moreover, the Priority of a CoCon can be defined via an attribute.

3.4 A Textual Language for CoCon Specification

This section introduces a textual language for specifying context-based con-
straints. The standard technique for defining the syntax of a language is the
Backus-Naur Form (BNF), where “::=” stands for the definition, “Text” for a
nonterminal symbol and “TEXT” for a terminal symbol.
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This paper only discusses one CoCon type: the UnreadableBy CoCons enforce
access permission. The model elements in its target set are unreadable by all the
model elements in its scope set. In the BNF rules, ‘UnreadableBy’ is abbreviated
‘UR’. Furthermore, all rules concerning concatenation via a separator (‘,’, ‘OR’
or ‘AND’) are abbreviated: “(Rule)+Separator” represents “Rule {Separator
Rule }*”.

URCoCon ::= URElementSelection+OR ‘MUST BE Unread-
ableBy’ URElementSelection+OR [‘WITH’
URAttribute+AND]

URElementSelection ::= URContextCondition | URDirectSelection |
‘THIS’

URDirectSelection ::= ‘THE’ URRestriction ElementName
URContextCondition ::= Range (URRestrictions | ‘ELEMENTS’)

[‘WHERE’ ContextQuery+AND or OR]
Range ::= ‘ALL’ | Number | ‘[’ LowerBoundNumber ‘,’

UpperBoundNumber ‘]’
ContextQuery ::= ContextPropertyName Condition

(ContextPropertyValue | SetOfConPropValues)
SetOfConPropValues ::= (‘{’ (ContextPropertyValue)+Comma‘}’) |

ContextPropertyName
Condition ::= ‘CONTAINS’ | ‘DOES NOT CONTAIN’ |

‘=’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’
URAttribute ::= (‘CoConNAME =’ Name) | (‘PRIORITY

=’ PriorityValue)

The URContextCondition rule allows for the indirect selection of the ele-
ments involved. In contrast, the ElementName rule directly selects elements by
naming them. The URRestriction(s) rules depend the CoCon type and on
the modeling approach used – [2] defines them as “‘Components’ | ‘Inter-
faces’)+” for the ‘UML Components’ approach ([4]).

The ConditionExpression describes (one or more) set(s) of
RequiredV aluescp. A context condition selects e, if for each context property cp
used in the context condition the RequiredV aluescp ⊆ ConPropV alscp,e. Be-
sides ‘CONTAINS’ (⊆), this paper suggests other expressions like ‘!=’ (does
not equal) and ‘DOES NOT CONTAIN’ (	⊆). Only simple comparisons (in-
clusion, equality,...) are used in order to keep CoCons comprehensible. Future
research might reveal the benefits of using complex logical expression, such as
temporal logic.

Different kinds of context conditions can be defined in simple CoCons. On
the one hand, a simple CoCon can have a joker condition instead of a context
condition. A joker condition can be defined by omitting the ‘WHERE ...’ clause
in the URContextCondition rule. For instance, ‘ALL COMPONENTS MUST BE
...’ is a joker condition. On the other hand, a simple CoCon can be specified
via the terminal symbol ‘THIS’ in the URElementSelection rule. ‘THIS’ in CCL
has the same semantic as ‘this’ in OCL (see [5, 16]). If the CoCon is directly
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associated with an model element via an UML association then ‘THIS’ refers to
this model element.

3.5 ‘Privacy Policy’ Example of Using UnreadableBy CoCons

In this section, an UnreadableBy CoCon illustrates the case where the target set
and the scope set of a CoCon can overlap. Moreover, the example shows how to
detect whether a system model complies with a CoCon. A requirement might
state that “All components belonging to the operational area ‘Controlling’ are
not allowed to access components that handle personal data”. This statement
can be specified as a CoCon in this way:
ALL COMPONENTS WHERE ‘Personal Data’ EQUALS ‘Yes’
MUST BE UnreadableBy
ALL COMPONENTS WHERE ‘Operational Area’ CONTAINS ‘Controlling’

If a component has the value ‘Yes’ in its context property ‘Personal Data’
and the value ‘Controlling’ in its context property ‘Operational Area’ then it
belongs both to the target set and to the scope set of the CoCon. This is absurd,
of course. It means that this component cannot read itself. The CoCon is valid,
but the system model does not comply with this CCL specification. Such bad
design is detected via the CoCon type family specific constraint number two in
section 3.3. Every component involved in this conflict must be changed until
either handles personal data or belongs to the ‘Controlling’. It must not belong
to both contexts. If it is not possible adjust the system accordingly, then it
cannot comply with the requirement.

3.6 Present Research Results

A CoCon language consists of different CoCon types. Up to now, two CoCon lan-
guages exist: The Distribution Constraint Language DCL supports the design
of distributed systems as described in [3]. It was developed in cooperation with
the Senate of Berlin, debis and the Technical University of Berlin. DCL concepts
have been implemented at the Technical University of Berlin by extending the
tool ‘Rational Rose’. A prototype is available for download in German only. It
turned out that Rose’s extensibility is inadequate for integrating DCL concepts.

The context-based Component Constraint Language CCL introduced in [2]
consists of CoCon types that describe requirements within the logical architec-
ture of a component-based system. It is currently being evaluated in a case study
undertaken in cooperation with the ISST Fraunhofer Institute, the Technical
University of Berlin and the insurance company Schwäbisch Hall. The Unread-
ableBy CoCon discussed in this paper is one of CCL’s many CoCon types.

UML profiles provide a standard way to use UML in a particular area without
having to extend or modify the UML metamodel. A profile tailors UML for a
specific domain or process. It does not extend the UML by adding any new basic
concepts. Instead, it provides conventions for applying and specializing standard
UML to a particular environment or domain. Hence, a UML profile for CoCons
can only be developed in future research if the CoCon concepts can be covered
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with current UML mechanisms and semantics. New metatypes are suggested in
figure 2. Usually, this would go beyond a true ‘profile’ of UML. However, the new
metatype ‘ContextBasedConstraint’ only specializes the ‘Constraint’ metatype.
‘ContextCondition’ is a utility class that only illustrate the difference between
the existing metatypes and the new one. Thus, the integration suggested is based
on standard UML concepts and refines them in the spirit of UML profiles. It falls
into the category of lightweight formal methods.

In the winter semester 2001/02 a ‘CCL-plugin’ for the open source UML
editor ‘ArgoUML’ wasimplemented at the TU Berlin in order to specify and
to automatically protect CoCon specifications during modeling. It is available
at ccl-plugin.berlios.de and demonstrates how the standard XMI format
for representing UML in XML must not be changed in order to save or load
models containing CoCons. Hence, CoCons can be integrated into UML without
modifying the standard.

3.7 Comparing OCL to Context-Based Constraints

According to [10, 15], three kinds of constraints exist: preconditions, postcondi-
tions and invariants. Typically, the Object Constraint Language OCL summa-
rized in [16] is used for the constraint specification of object-oriented models.
One OCL constraint refers to (normally one) directly identified element, while
a context-based constraint can refer both to directly identified and to (nor-
mally many) indirectly identified, anonymous and unrelated elements. A CoCon
selects the elements involved according to their meta-information. In the UML,
tagged values are a mechanism similar to context properties for expressing meta-
information. There is no concept of selecting the constrained elements via their
tagged values in OCL or any other existing formal constraint language.

An OCL constraint can only refer to elements that are directly linked to
its scope. On the contrary, a CoCon scope is not restricted. It can refer to
elements that are not necessarily associated with each other or even belong to
different models. When specifying an OCL constraint it is not possible to consider
elements that are unknown at specification time. In contrast, an element becomes
involved in one context-based constraint simply by having the matching context
property value(s). Hence, the target elements and the scope elements can change
without modifying the CoCon specification.

Before discussing another distinction, the OMG meta-level terminology will
be explained briefly. Four levels exist: Level ‘M0’ refers to a system’s objects
at runtime, ‘M1’ refers to a system’s model or schema, such as a UML model,
‘M2’ refers to a metamodel, such as the UML metamodel, and ‘M3’ refers to a
meta-metamodel, such as the Meta-Object Facility (MOF).

If an OCL constraint is associated with a model element on level Mi, then it
refers the instances of this model element on level Mi−1 — in OCL, the ‘context’
[5] of an invariant is an instance of the associated model element. If specified in
a system model on M1 level, an OCL constraint refers to runtime instances of
the associated model element on level M0. In order to refer to M1 level, OCL
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constraints must be defined at M2 level (e.g. within a stereotype). On the con-
trary, a CoCon can be verified automatically on the same meta-level where it is
specified. All CoCons discussed in this paper are specified and verified on M1

level because this paper focuses on using them during design. For example, if a
CoCon states that “package ‘X’ must contain all classes belonging to the oper-
ational area ‘field service’ ”, then the model should be checked for whether it
violates this CoCon already during design. Using OCL, the designer may cre-
ate a stereotype �contains-all-classes-belonging-to-the-field-service� and assign
a constraint to this stereotype on the M2 level. As discussed before, there is no
formal constraint language for selecting a model element due to its metadata.
Hence, the constraint must be written down in natural language and cannot be
verified automatically. Even if OCL constraints could iterate over all model ele-
ments in all diagrams and select those fulfilling the context condition, modifying
the metamodel each time the requirements change is not appropriate.

There used to be a lot of interest in machine-processed records of design
rationale. According to [11], the idea was that designers would not only record
the results of their design thinking, but also the reasons behind their decision.
Thus, they would also record their justification for why it is as it is. CoCons
record design decisions that can be automatically checked. They represent cer-
tain relevant requirements in the model. The problem is that designers simply
don’t like writing down design decisions. The challenge is to make the effort
of recording the rationale worthwhile and not too tedious for the designer. As
a reward for writing down essential design decisions via CoCons they reap the
benefits summarized in section 4.3.

4 Conclusion

4.1 Applying CoCons in the Development Process

In this section the application of CoCons throughout the software development
process is sketched. During requirements analysis the business experts must
be asked specific questions in order to find out useful context properties and
CoCons. They may be asked about which business exist rules for which context.
Examples: “Which important workflows exist in your business? And for each
workflow, which business objects belong to this workflow and which require-
ments belong to this workflow”. Then it is possible to state that all business
objects belonging to workflow ‘X’ must comply with requirement ‘Y’. Currently
a CoCon-aware method for requirements analysis is being developed at the Tech-
nical University of Berlin in cooperation with Eurocontrol, Paris.

The benefits of considering both requirements and architecture when model-
ing a system are discussed in [12]. The application of CoCons during modeling
is currently being evaluated in a case study being carried out in cooperation
with the ISST Fraunhofer Institute, the TU Berlin and the insurance company
Schwäbisch Hall. This paper cannot discuss how to verify or ‘proof’ CoCon spec-
ifications automatically because for each CoCon type and for each abstraction
level in the development process different requirement verification mechanisms
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are necessary. Please refer to the verification of CoCons integrated into the De-
sign Critiques ([14]) mechanism of ArgoUML via the CCL Plugin.

During deployment a CoCon-aware configuration file checker can auto-
matically protect requirements. Likewise, the notion of contextual diagrams is
introduced in [7] in order to cope with the intrinsic complexity of configura-
tion knowledge. A deployment descriptor checker for Enterprise Java Beans is
currently being developed at the TU Berlin.

The people who need a new requirement to be enforced often neither know
the details of every part of the system nor do they have access to the complete
source code. By using CoCons, developers don’t have to understand every detail
(‘glass box view’) or modify autonomous parts of the system in order to enforce
a new requirement on them. Instead, context properties can be assigned exter-
nally to an autarkic component and communication with this component can
be monitored externally for whether it complies with the CoCon specification
at runtime. A prototypical framework is currently beeing integrated into an
application server at the TU of Berlin in cooperation with BEA Systems and
the Fraunhofer ISST. Thus, legacy components or ‘off the shelf’ components can
be forced to comply with new requirements.

4.2 Limitations of Context-Based Constraints

Taking only the tagged values of a model element into consideration bears some
risks. It must be ensured that theses values are always up-to date. Whoever holds
the responsibility for the values must be trustworthy. Confidence can be assisted
with encryption techniques. Within one system, only one ontology should be
used. For instance, the workflow ‘New Customer’ must have exactly this name
in every part of the system, even if different companies manufacture its parts.
Otherwise, string matching gets complex when checking a context condition.

Context properties are highly abstract and ignore many details. For instance,
this paper disregards the dependencies between context property values. Han-
dling dependent context property values is explained in [2]

4.3 Benefits of Context-Based Constraints

In contrast to grouping techniques, e.g. packages or stereotypes, context proper-
ties facilitate handling of overlapping or varying groups of model elements that
share a context even across different model element types or diagrams. Hence,
one requirement referring to several, possibly unassociated model elements can
now be expressed via one constraint. Context properties allow subject-specific,
problem-oriented views to be concentrated on. For instance, only those model
elements belonging to workflow ‘X’ may be of interest in a design decision. Many
concepts for specifying metadata exist and can be used instead, if they enable a
constraint to select the constrained elements via their metadata.

Decision making is an essential activity performed by software architects in
designing software systems. The resulting design must satisfy the requirements
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while not violating constraints imposed on the problem domain and implemen-
tation technologies. However, in complex domains, no one architect has all the
knowledge needed to make a complex design. Instead, most complex systems are
designed by teams of stakeholders providing some of the needed knowledge and
their own goals and priorities. The ‘thin spread of application domain knowl-
edge’ has been identified by [6] as a general problem in software development.
In complex domains even experienced architects need knowledge support. For
instance, they need to be reminded which of the requirements apply to which
part of the system. The model should serve as a document understood by de-
signers, programmers and customers. CoCons can be specified in easily com-
prehensible, straightforward language. They enforce a system’s compliance with
requirements. Even the person who specifies a requirement via CoCons must
not have complete knowledge of the system due to the indirect association of
CoCons to the system parts involved. CoCons associate relevant requirements
with related elements of the system’s model.

In software engineering, it has long been recognized that inconsistency is a
fact of life. Evolving descriptions of software artefacts are frequently inconsistent,
and tolerating this inconsistency is important if flexible collaborative working is
to be supported. The abstract meta-information belonging to a model element
can be ascertained out is an early lifecycle activity. When identifying the context
property values the model element must not be specified in full detail. Metadata
can supplement missing data based on experience or estimates.

Maintenance is a key issue in continuous software engineering. CoCons help
to ensure consistency during system evolution. A context-based constraint serves
as an invariant and thus prevents the violation of design decisions during later
modifications of UML diagrams. It assists in detecting when design or context
modifications compromise intended functionality. It helps to prevent unantic-
ipated side effects during redesign and it supports collaborative design man-
agement. The only constant in life is change, and requirements tend to change
quite often. This paper suggests improving the adaptability of a system model
by enforcing conformity with meta-information. This meta-information can be
easily adapted, whenever the context of a model element changes. In this case,
some CoCon specifications may apply anew to this model element, while oth-
ers may cease to apply. Furthermore, the CoCon specifications themselves can
also be modified if requirements change. Each deleted, modified or additional
CoCon can be automatically enforced and any resulting conflicts can be identi-
fied as discussed in [2]. It is changing contexts that drive evolution. CoCons are
context-based and are therefore easily adapted if the contexts, the requirements
or the configuration changes – they improve the traceability of contexts and
requirements. CoCons can be verified during modeling, during deployment and
at runtime. They facilitate description, comprehension and reasoning at differ-
ent levels and support checking the compliance of a system with requirements
automatically. According to [9], automated support for software evolution is cen-
tral to solving some very important technical problems in current day software
engineering.
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