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TW.0 DIMENSIONAL COMPRESSIBLE SHEAR FLOW IN A CHANNEL*

BY
JAMES D. MURRAY**

King's College, University of Durham, Newcastle-on-Tyne, England

1. Introduction. As far as the author is aware, no theoretical or numerical solution
has been obtained for the two-dimensional, inviscid, adiabatic rotational flow of a
compressible gas through a divergent channel such as shown in Fig. 1. Kramer and
Stanitz [2] have obtained a relaxation solution for the incompressible shear flow in a
90° elbow. Mitchell [3] has derived a method for evaluating the non-isentropic rotational
field downstream of the bow shock wave formed when a supersonic stream impinges
on a blunt nosed obstacle.
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In the present paper, it is intended to illustrate the principal physical features of
the completely sub- and super-sonic adiabatic rotational flow through a channel, with
particular reference to the effect of the divergence of the channel on the vorticity and
the stream lines.

2. Fundamental equations and boundary conditions. In the two-dimensional
steady motion of an inviscid, adiabatic, rotational compressible gas through a divergent
channel (see Fig. 1), the stream function is defined in cartesian coordinates by the
equations
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where qx and q, are the cartesian velocity components, and p is the density. The vorticity
<o is defined by
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which, from Vaszonyi [4], gives the equation for ip as

d_( ( -i _ dh, „ . .
dx \p dx] + dy \p dy) p d+ ' ®

where h, is the stagnation enthalpy.
Bernoulli's equation for an adiabatic gas may be written as

7(7 - 1 )~Vp + h2 = h. , (3)
where p is the pressure, q the velocity, y the ratio of specific heats, and pp~y = constant.
In an adiabatic rotational flow, h. is necessarily a function of ip-

As to the nature of the boundary conditions necessary for a unique solution to these
equations in the general case, there is still some doubt. In the particular problem of the
flow through a divergent channel with straight parallel sides , far upstream and down-
stream of the constriction, the boundary conditions are more straightforward. The
physical assumption is that at infinity upstream and downstream of the constriction
the flow is parallel to the channel walls. Thus, taking the rc-axis parallel and along the
lower wall in the narrow section of the channel, the condition is dip/dx = 0 at x — ± °°,
the constriction being x = 0. Since at a; = ± <», the flow is parallel, the pressure, and
consequently the density, is constant across the channel. Accordingly, if h, (or the
vorticity) is given as a function of is obtained from Eq. (2), and is thus known
round a closed boundary, enclosing the field of flow, which in the elliptic case (subsonic
flow) defines a unique solution over the complete field. Alternatively, if dip/dx = 0,
and 4> is given upstream at x = — °°, and d\p/dx — 0 at x = + <», a solution is again
defined.

Letting the suffix zero denote quantities at x — — 00 f it is convenient at this stage
to introduce non-dimensionalising quantities p0 , p0 , H the channel width, and c0 the
speed of sound, where Co = YPo/po • Thus, with only slight change in notation, p, p,
q, co, hs , x and y, now stand for the non-dimensional quantities ^(p0Co#)_1, p/pa , p/po ,
q/ca , co///c0 , h„/cl , x/H and y/H. In the following, it must be remembered that all
quantities are non-dimensional.

In the specific problem, let the initial vorticity co0 be a constant, which from Eq.
(1) gives

(qx)0 - M0 - co0y, (4)

where M0 is the initial Mach number of the flow on the lower channel wall. The density
is initially constant and equal to unity, which gives

\f/ = M0y — icooj/2. (5)

From Eqs. (3), (4) and (5) the stagnation enthalpy h, is given as a function of yp by

h, = (I/7 — 1 + — wo^. (6)

The function given by Eq. (6) remains unaltered throughout the flow, since h,
is constant along a streamline.

In the parallel flow region at a; = + 00, where the channel width is 2H (the general
case rH is treated in a similar manner), d\f//dx = 0. Denoting conditions in this region
by the suffix unity, Eq. (2) reduces to
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d ( -x diM
dy[p

which on integration gives

& = A + By — |p?woi/*,

(8)

where A and B are constants. On the lower channel wall at y = — §, ^ = 0, and on the
upper wall at y = 3/2, — M0 — [from Eq. (5)], which results in

= \{2Ma — <o0 + 36)o pi J + |(2Af0 — w0 + 2uoth)y — huopW • (7)
Thus, wjth the exception of pt , all quantities are known analytically in the parallel
flow region at a; = + °°. Equation (3) must be satisfied at all points in the field, which
in dimensionless form gives

I

(t - irV"1 + |(prl = (y - l)-1 + hMl - Woti ,

where is given by Eq. (7). This last equation reduces to

+ 2(7-1rvr1 + p!\m*>o - Wo -mi- 2(7- i)-1!
+ (§M„ - co0/4)2 = 0.

By Descarte's theorem, there cannot be more than two real positive roots of Eq. (8).
It Bhould be noted that Eq. (8) is not the general equation, but is that for a divergent
two-dimensional channel whose area ratio is two. The general equation for any area
ratio can be obtained quickly using the above method.

In Eq. (3), the stagnation enthalpy h, is constant along a stream line (although it
varies from one stream line to another), and so for any one such stream line

(7 - I)"1 + Wo = (7 - 1 rlpr* + iql .
From this last equation, it is seen that if < q0 , Pi > 1, and if qx > q0 , Pi < 1. Thus,
the fact that pi > 1 for subsonic flow, and pi < 1 for supersonic flow is also the case
when o)q > 0. It is true for w0 = 0, which is the well known irrotational flow through a
divergent channel. Accordingly, the appropriate solution of Eq. (8) is chosen in each
case: these are now considered separately.

3. Subsonic flow. In subsonic flow through the channel, the velocity at station
unity is less than at station zero, and so pi is necessarily greater than unity. Thus, the
requisite solution of Eq. (8) is that for px > 1. With the restriction on co0 , given subse-
quently by Eq. (10), it can be quickly shown (by the method of signs) that the other
real solution (> 0) of Eq. (8) is that in which pt < 1. From Eqs. (1) and (2), the final
vorticity w, is given as

Ml = — Pl ^ = PiUo , (9)

which gives > <o0 • That is, in the rotational flow of a compressible gas through a
divergent channel, the vorticity will in general increase in value. Figure 2 illustrates how
«i varies with m0 , for several values of M0 ■ There is a discontinuity in m, , which will
occur when q0 > 1 and q0 < 1 over some section of the channel near x = — a>. In such
a case the problem is of mixed type, and there is still some doubt as to the boundary



234 JAMES D. MURRAY [Vol. XV, No. 3

0.5

U„»4.0
Uo-3.0
Uo*2.0

0.6

Fig. 2

conditions necessary for a solution to be defined. This difficulty does not arise when q0
is everywhere greater than or less than unity.

In any physical flow, the velocity in the parallel flow regions must necessarily be in
the direction of increasing x, that is, q > 0 at all points near x = ± °°. Thus, w0 must
satisfy co0 < M0 from Eq. (4), and w0 < 2M0 (1 + 4pi)-1 from Eq. (7). Together these
give the following restriction on the initial vorticity u0 :

o>o < 2M0(1 + 4p?)_1 < M0 . (10)

Equation (10) ensures that there is no 'back' flow region (that is q > 0) in the field. The
importance of this lies in the fact that if co0 < M0 ensuring that q > 0 near x = —
the divergence of the channel may be such that the vorticity is increased sufficiently
to make q < 0 at some points in the region near x = + co : that is w0 violates the first
inequality in Eq. (10). Physically this could perhaps result in breakaway of the flow,
the cause of which has always been entirely attributed to viscosity effects. It should
be pointed out that Eq. (10) is again for an area ratio of two.

The effect of the divergence on the stream lines is marked, and is probably shown
most profitably by the final deflection in the central stream line at x = — °°, that is
(4>a)v-i = (\M0 — o>0/8). Substitution of this value for \pi in Eq. (7), gives a quadratic
equation, and the requisite value of y at x = + oo as the appropriate solution. The non-
dimensional deflection 5 of this stream line at x = + °° is given by Eq. (11), where y
is the solution to the quadratic with the negative sign with the root bracket. The de-
flection S must tend to zero as a>0 tends to zero (irrotational flow), which necessitates
the negative sign used in Eq. (11). Thus, the deflection is given by

8 = y — 0.5 = (2u0ply1[(M0 — fo,0) ~ (Ml + wo/4 + 4coop\ — &j0M0 — woPi)I/2], (11)

from which it is seen that 8 —» 0 as co0 -* 0. The root bracket in Eq. (11) may be written
as [(M0 — |a,0)2 + a>;jpi(4pf — I)]4, which is greater than (Ma — 5W0) when pt > 1,
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which is the subsonic case. Thus, from Eq. (11), 5 < 0 when the flow is subsonic, for
any w0 and M0 satisfying Eq. (10). The variation in 8 with initial vorticity for several
values of the initial velocity M0 , is illustrated in Fig. 3. One important feature of the
flow arising from the figure is the fact that this deflection decreases with increase in the
initial velocity for the same value of the vorticity. It should also be noted that the central
stream line moves to a region of higher velocity at x = + 00 than the central value in
this region.

0.15

-o.os

In a problem of this type, which is elliptic, a simultaneous relaxation process can
be carried out over the complete field of flow. The author has in fact evaluated such
a problem, where the constriction was discontinuous, each wall having two right-angled
corners. This relaxation solution was compared with a similar one for incompressible
flow through the same channel, and it was found that in general the displacement effects
were smaller in the compressible flow, but of the same sign.

4. Supersonic flow. In the completely supersonic flow through the channel, assuming
that no shock waves are present, the differential equations are intrinsically different.
This case is a hyperbolic problem, amenable to solution by characteristics, and con-
ditions need only be given initially at x = — °°. However, from physical considerations,
it is assumed that the flow near x = + is parallel to the walls of the channel as before.

In this case the divergence of the channel increases the velocity, and the value of
Pt is the requisite solution of Eq. (8) satisfying 0 < px < 1. Accordingly, it follows from
Eq. (9) that w, < co0 , and the restriction on w0 for completely supersonic flow at all
points is, from Eq. (4)

wo < M0 - 1. (12)

Thus, the divergence decreases the vorticity, and the variation of with w0 for several
values of M0 is shown in Fig. 2. In this case q0 > 1 at all points.

The deflection in the central stream line is again given by Eq. (11), the negative
sign being again used with the root bracket for the same reason as in Sec. 3. From Eq.
(8), with w0 and M0 (> 1) satisfying Eq. (12), it can be shown that pi is in fact less than
0.5 [this can also be seen immediately from Fig. 2 and Eq. (9)] and so the root exponent
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in Eq. (11) becomes [(M0 — §co0)2 — &>oP?(l — 4pJ)]i, which, since 1 > 4pJ , is less than
(Af0 — |(o0). Thus, Eq. (11) gives 8 > 0 for all u0 and M0 (> 1) satisfying Eq. (12) in
the completely supersonic flow (that is, where pv < 1). The variation of 5 with w0 and
M0 is shown in Fig. 3. The essential difference between this case and the subsonic case,
is that the central stream line at x = — <» is deflected towards a region of lower velocity
at x = + co than the central value at this station. Further, the magnitude of the de-
flection is very much smaller (in fact an order of magnitude different) in the supersonic
case. One point of similarity is that the deflection decreases with increase in velocity.

In supersonic shear flow the effect of the vorticity on the deflection of the downstream
stream lines is an order of magnitude different from that in the subsonic flow. This
phenomenon substantiates the experimental work of Davies [1], who found that the
deflection in the free stream of the stagnation stream line when a pitot tube is placed
in a supersonic shear flow is opposite in sign and of a very much smaller magnitude
from that obtained by Young and Maas [5] in the low subsonic case.

5. Discussion of results. By considering the differential equations (2) and (3),
the variation in the vorticity due to the divergence in the channel is obtained, when
the flow is, in one case, completely subsonic and, in the other, completely supersonic.
It is shown that the difference between initial vorticities becomes smaller with increase
in velocity in both cases, but in the subsonic case the final vorticity is greater than the
initial value, the opposite being the case in the supersonic flow, as is shown in Fig. 2.

The effect of the divergence of the channel on the stream lines is characterised by
consideration of the deflection in the initial central stream line, as is illustrated in Fig.
3. It is found that the deflection in the supersonic case is of an order of magnitude smaller
and opposite in sign, from that found in the subsonic case. This result is in agreement
with the state of affairs in the experimental work on supersonic flow past a pitot tube
carried out by Davies.

One final remark is that there is a possibility of 'back' flow, which could result in
breakaway of the flow in the subsonic rotational flow through a channel of this type.
Restrictions on the initial rotation and channel width necessary for no 'back' flow to
be present are derived.

The case of a divergent channel with general area ratio can be derived using the
method described in this paper, with a proportional increase in algebraic labour.
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