ON MONTEL'S THEOREM

YOSHIRO KAWAKAMI

1. In this note we shall prove a theorem which is related to Montel's theorem [1] on bounded regular functions. Let E be a measurable set on the positive y-axis in the z(=x+iy)-plane, E(a,b) be its part contained in $0 \le a \le y \le b$, and |E(a,b)| be its measure. We define the lower density of E at y=0 by

$$\lambda = \lim_{r \to 0} \frac{|E(0, r)|}{r}.$$

Lemma. Let E be a set of positive lower density λ at y=0. Then E contains a subset E_1 of the same lower density at y=0 such that $E_1 \cup \{0\}$ is a closed set.

Proof. Let $r_n = 1/n$ (n = 1, 2, ...). There exists a closed subset $E_1(r_{n+1}, r_n)$ of $E(r_{n+1}, r_n)$, such that

$$|E_1(r_{n+1}, r_n)| \ge \delta_n |E(r_{n+1}, r_n)| \qquad (n = 1, 2, \ldots),$$

with $\delta_n = 1 - \frac{1}{n}$. We put

$$E_1 = \sum_{n=1}^{\infty} E_1(r_{n+1}, r_n).$$

Then if $r_n < r \le r_{n-1}$,

$$|E_1(0, r)| \ge \sum_{i=n}^{\infty} |E_1(r_{i+1}, r_i)| \ge \delta_n |E(0, r_n)|,$$

so that

$$\frac{|E_1(0,r)|}{r} \ge \frac{|E_1(0,r_n)|}{r} \delta_n \ge \frac{|E(0,r_n)|}{r_n} \cdot \frac{r_n}{r_{n-1}} \delta_n,$$

whence

$$\lambda = \underline{\lim_{r \to 0}} \frac{|E(0, r)|}{r} \ge \underline{\lim_{r \to 0}} \frac{|E_1(0, r)|}{r} \ge \underline{\lim_{n \to \infty}} \frac{|E(0, r_n)|}{r_n} \ge \lambda.$$

Hence

Received December 7, 1955; revised April 12, 1956.

$$\lim_{r\to 0}\frac{|E_1(0, r)|}{r}=\lambda.$$

2. We shall prove the following theorem.

THEOREM. Let f(z) = f(x+iy) be regular and bounded in x > 0, and continuous at a measurable set E of positive lower density λ at y = 0 on the positive y-axis. If $f(z) \to A$ when $z \to 0$ along E, then $f(z) \to A$ uniformly when $z \to 0$ in the domain $|y| \le kx$, where k is any positive constant.

Proof. By the lemma we assume that $E \cup \{0\}$ is a closed set. Without loss of generality we may assume that $|f(z)| \le 1$ and A = 0. Let $D_{\rho} : |z| < \rho$, x > 0 be the half-disc. Let us denote by $u_{\rho}(z)$ the harmonic measure of $E(0, \rho) \cup \{0\}$ with respect to D_{ρ} .

If we take $0 < \rho < 1$ sufficiently small such that $|f(z)| \le \varepsilon$ on $E(0, \rho)$, then, by the maximum principle, we have

$$\log |f(z)| \leq u_{P}(z) \cdot \log \varepsilon$$
 for $z \in D_{o}$;

hence

$$|f(z)| \le \varepsilon^{u_p(z)} \quad \text{for} \quad z \in D_{\circ}.$$
 (1)

As is well known,

$$u_{p}(z) = \frac{1}{2\pi} \int_{E(0,\,p)} \frac{\partial}{\partial n} G(i\eta,\,z) \,d\eta,$$

where $G_{\mathbb{P}}(w, z)$ $(w = \xi + i\eta)$ is the Green's function of $D_{\mathbb{P}}$ with pole at z = x + iy. By a simple calculation we have

$$\left(\frac{\partial G}{\partial n}\right)_{\xi=0} = \frac{2\,x(\rho^2 - x^2 - y^2)(\rho^2 - \eta^2)}{\{x^2 + (y - \eta)^2\}\{(\rho - y\eta)^2 + x^2\eta^2\}}\,.$$

Hence

$$\mathbf{u}_{\rho}(z) = \frac{1}{2\pi} \int_{0}^{\rho} \frac{2x(\rho^{2} - x^{2} - y^{2})(\rho^{2} - \eta^{2})}{\{x^{2} + (y - \eta)^{2}\}\{(\rho^{2} - y\eta)^{2} + x^{2}\eta^{2}\}} d\mu(\eta),$$

where

$$\mu(\eta) = \int_{E(0,\tau)} d\eta = |E(0,\eta)|.$$

If $|z| \leq \delta \rho$, $\eta \leq \delta \rho$, $(0 < \delta < 1)$, then

$$(\rho^2 - x^2 - v^2)(\rho^2 - \eta^2) \ge \rho^4 C_1, \qquad (\rho^2 - v\eta)^2 + x^2 \eta^2 \le \rho^4 C_2,$$

whence

$$u_{p}(z) \geq C_{2} \int_{0}^{\delta_{p}} \frac{x}{x^{2} + (y - \eta)^{2}} d\mu(\eta),$$

where C_1 , C_2 , C_3 are constants, depending on δ only. Hence if $|y| \leq kx$, we have

$$u_{\rho}(z) \geq C_3 \int_0^{\delta \rho} \frac{x}{x^2 + (\eta + kx)^2} d\mu(\eta).$$

By the substitution $\eta = xt$, we have

$$\begin{split} U_{\rho}(z) & \ge \frac{C_3}{x} \int_0^{\delta\rho/x} \frac{1}{1 + (t+k)^2} d\mu(xt) \\ & = \frac{C_3}{x} \left[\frac{\mu(xt)}{1 + (t+k)^2} \right]_0^{\delta\rho/x} + \frac{2C_3}{x} \int_0^{\delta\rho/x} \frac{\mu(xt)(t+k)}{\{1 + (t+k)^2\}^2} dt \\ & \ge \frac{2C_3}{x} \int_0^1 \frac{\mu(xt)(t+k)}{\{1 + (t+k)^2\}^2} dt. \end{split}$$

Since $\mu(xt) \ge \lambda'xt$ for some λ' such that $0 < \lambda' < \lambda$, we have

$$u_{\rho}(z) \ge 2C_3 \int_0^1 \frac{\lambda' t(t+k)}{\{1+(t+k)^2\}^2} dt = C,$$

where C is a constant depending on k, δ , and λ' only. Hence by (1)

$$|f(z)| \le \varepsilon^{c}$$
, if $|z| \le \delta \rho$ and $|y| \le kx$,

so that $\lim_{z\to 0} f(z) = 0$ uniformly, when $z\to 0$ in the domain $|y| \le kx$.

Remark. The writer has proved that our theorem holds when E satisfies the condition that λ_{α} is positive, where

$$\lambda_{\alpha} = \lim_{r \to 0} r^{\alpha - 1} \int_{r}^{1} \frac{d\mu(t)}{t^{\alpha}} \qquad (\alpha \ge 2).$$

However, Professor Ohtsuka kindly informed him that this condition for any $\alpha > 1$ is equivalent to the condition that the lower density of E at y = 0 is positive.¹⁾

REFERENCE

[1] P. Montel, Sur les familles de fonctions analytiques qui admettent des valeurs exceptionelles dans un domaine, Ann. Sci. Ecole Norm. Sup. (3), 23 (1912), pp. 487-535.

Seikei University, Tokyo

¹⁾ See the paper after the next.